Cancellation in Dark Matter-Nucleon Interactions: the Role of Non-Standard-Model-like Yukawa Couplings (IMEPNP 2022)

Bibhabasu De

ICFAI University Tripura, India

February 10, 2022

Collaborators: D. Das (IOPB), S. Mitra (IIITH)

Physics Letters B 815 (2021) 136159

Outline

- Introduction to Dark Matter
- Theory of Direct Detection
- Present Picture of DD Experiments
- A General Approach
- Practical Realization
- Numerical Results
- Isospin Violation
- Summary

Dark Matter : A Brief Introduction

What is Dark Matter?

• "Something", which shows gravitational interaction in the same way as usual matter does.

• "Something", which is invisible to us \Rightarrow No EM interaction.

• "Something", whose nature is still a mystry!

Signatures of Dark Matter

What can be inferred?

DM is "Something", composed of particles, which may have weak interaction along with the gravitational one.

Basic Idea of Direct Detection

- Earth is moving through the **DM** halo.
- If **DM** is a **WIMP**, there must be **DM-quark** interaction \Rightarrow **DM-nucleus** scattering.
- The measure of this scattering cross section is a **direct** evidence of particle **DM**.

Figure : A schematic diagram showing the fundamental idea of DD

Present Picture: Experimental Aspects

LZ Collaboration: Phys.Rev.D 101 (2020) 5, 052002

- Null results from the DM-search experiments.
- Detector sensitivity is gradually approaching the **neutrino floor**.
- WIMP paradigm is losing its miracle!

< ロト < 同ト < ヨト < ヨト

6/19

And the Theory Says...

• Several **simple** extensions of SM (e.g. Z-portal, H-portal, Z'-portal etc.) have been proposed to explain the **DM** phenomenology.

• The **Higgs portal** models ⇒ most relevant in **SI DD** for many favoured **BSM** scenarios (e.g. **SUSY**).

• But the continuous null results have put strong constraints on these simple extensions, threatening them to be ruled out.

Are we missing something?

Some Attempts

• In some parts of the parameter space the DM couplings to Z or h may be highly suppressed or even zero \Rightarrow Blind spots. [Phys. Rev. D 79 (2009) 023521, J. High Energy Phys. 05 (2013) 100]

• A much suppressed σ_{SI} can be obtained if the DD proceeds only through the loops. [Eur.Phys.J.C 78 (2018) 6, 471]

• In a simple H-portal DM model with a complex scalar, a softly broken symmetry might ensure $\sigma_{SI} \rightarrow 0$. [Phys. Rev. Lett. 119 (2017) 191801, J. Cosmol. Astropart. Phys. 11 (2018) 050]

• Isospin-violating DM is another interesting scenario which assumes non-identical f_p and f_n . [Phys. Rev. D 69 (2004) 063503, Phys. Lett. B 703 (2011) 124-127]

More general approach?

Probably, Yes!

• Almost all the earlier attempts tried to tune λ_{ϕ} .

• But what happens if $\lambda_N \to 0$ irrespective of λ_{ϕ} ?

• $\lambda_N = 0 \Rightarrow Non-SM$ -like negative y_q .

 \bullet If y_c and y_s are allowed to deviate from ${\bf SM}$:

$$y_s = -\frac{m_s}{f_s^{(N)}} \left(f_u^{(N)} \frac{y_u}{m_u} + f_d^{(N)} \frac{y_d}{m_d} \right)$$
$$y_c = -m_c \left(\frac{y_b}{m_b} + \frac{y_t}{m_t} \right)$$

But wait... in SM, $y_q \propto m_q/v$!!!

Here is the Path...

Let's have a particular type of effective dim-6 operators at some NP scale Λ in the quark Yukawa interaction Lagrangian,

$$\mathcal{L} \supset -Y_u \bar{q}_L \tilde{H} u_R - Y_d \bar{q}_L H d_R + \Delta \mathcal{L}_{eff} + H.c.$$
(1)

where,

$$\Delta \mathcal{L}_{eff} = \frac{H^{\dagger}H}{\Lambda^2} \left(Y_H^u \bar{q}_L \tilde{H} u_R + Y_H^d \bar{q}_L H d_R \right).$$
(2)

After EWSB,

$$m_q = v \left(Y_q - \epsilon Y_H^q \right), \tag{3}$$

$$y_q = \left(Y_q - 3\epsilon Y_H^q\right) = \frac{m_q}{v} - 2\epsilon Y_H^q \tag{4}$$

where, $\epsilon \equiv (v/\Lambda)^2$ and $v \simeq 174$ GeV.

And that's it! $y_q \neq m_q/v$

イロト イヨト イヨト イヨト 三日

$$\Lambda \sim \mathbf{TeV} \text{ and } Y_H^q \simeq \mathcal{O}(1)$$

 \bullet The sign of y_q depends on the sign of the Wilson coefficients $Y^q_H.$

• For the first two gen. of quarks (u, d, s, c), $m_q/v \ll \epsilon Y_H^q \Rightarrow y_q$ may naturally become negative.

• To achieve the **correct** m_q with $y_q < 0$, the necessary condition is: $\boxed{Y_H^q \left(\frac{v}{\Lambda}\right)^2 > \frac{m_q}{2v}} \Rightarrow$ sets an **upper** bound on Λ (e.g. $\Lambda \leq 2.9$ TeV for $m_c = m_c^{\text{SM}}$).

- On the contrary, $y_q > 0$ can only set a lower bound on Λ .
- The choice of **negative** values for y_q is more **natural** and **predictive**.

Experimental Bounds on y_q

• Projected reach in the absolute y_q values (q = u, d, s, c) at the LHC with 3000 fb⁻¹ of IL : [J. High Energy Phys. 01 (2020) 139]

 $|y_u| < 560 \ y_u^{\text{SM}}, \quad |y_d| < 260 \ y_d^{\text{SM}}, \quad |y_s| < 13 \ y_s^{\text{SM}}, \quad |y_c| < 1.2 \ y_c^{\text{SM}}.$

 \bullet Utilizing processes sensitive to the \mathbf{sign} of $y_q,$ the HL-LHC can restrict,

•
$$-1550 < y_u/y_u^{\text{SM}} < 700 \& -800 < y_d/y_d^{\text{SM}} < 300$$

[arXiv:1608.04376]

• $y_c/y_c^{\rm SM} \sim [-0.6, 3]$. [Phys. Rev. Lett. 118 (2017) 121801]

• A huge room is still available for the variation of first two gen. of quark Yukawa couplings.

Singlet Scalar DM and Negative y_q

Let's consider a specific realization of the dim-6 operators through new heavy VL particles at the NP scale Λ :

 $\mathcal{L}_{eff} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{NP}} + \mathcal{L}_{\mathrm{DM}}$

 $\mathcal{L}_{\mathrm{NP}}$: Underlying New Physics

Considering only one gen. of VL quarks,

$$SU(2)$$
 Doublet $SU(2)$ Singlets $Q = (C, S)(3, 2, 1/6)$ $C(3, 1, 2/3)$ & $S(3, 1, -1/3)$

$$-\mathcal{L}_{\rm NP} = \left(\lambda_{QC} \bar{Q}_L \tilde{H} C_R + \lambda_{QS} \bar{Q}_L H S_R\right) \\ + \left(\lambda_{qC} \bar{q}_L \tilde{H} C_R + \lambda_{qS} \bar{q}_L H S_R\right) \\ + \left(\lambda_{Qc} \bar{Q}_L \tilde{H} c_R + \lambda_{Qs} \bar{Q}_L H s_R\right) + H.c. \tag{5}$$

$\mathcal{L}_{\mathrm{NP}}$: Underlying New Physics

• The dim-6 operators in Eq. (2) can be obtained after integrating out the heavy VL quarks.

$$Y_H^c = \lambda_{qC} \lambda_{QC}^* \lambda_{Qc} \quad , \quad \Lambda = \sqrt{M_C M_Q} \; , \tag{6}$$

$$Y_H^s = \lambda_{qS} \lambda_{QS}^* \lambda_{Qs} \quad , \quad \Lambda = \sqrt{M_S M_Q} \; . \tag{7}$$

• Thus, with $M_{Q,C,S} \sim 2$ TeV and all the $\lambda_{NP} \sim \mathcal{O}(1)$, the $y_{q=c,s}$ can be considered for modification [Eq. (4)].

・ロト ・日ト ・ヨト ・ヨト

\mathcal{L}_{DM} : DM Phenomenology

• For a real singlet scalar ϕ as the **DM** particle,

 $V = \frac{1}{2}\mu_{\phi}^2\phi^2 + \lambda_{H\phi}(H^{\dagger}H)$

• After **EWSB**, the ϕ -mass term, $M_{\phi} = \sqrt{\mu_{\phi}^2 + 2\lambda_{H\phi}v^2}$.

• This variation is generated using *micrOMEGAs*.

• The dependence of $\Omega_{\phi}h^2$ on the variations of y_c and y_s is negligible.

σ_{SI} and the Large Cancellation

• These exact cancellation values (i.e. $y_s = -0.77 y_s^{\text{SM}} \& y_c = -1.875 y_c^{\text{SM}}$ in 1st fig. and $y_c = -2.91 y_c^{\text{SM}}$ in the 2nd) have been obtained for a typical set of $f_q^{(N)}$: [arXiv:1305.0237]

16/19

Isospin Violation

• The fig. shows that $\sigma_{SI}^{\phi-n}$ lies below the proposed **DD** bounds for $M_{\phi} \geq 50$ GeV.

• For the same set of y_c and y_s where $\lambda_p \to 0$, $\lambda_n \neq 0 \Rightarrow$ **Isospin Violation**

• In this framework $\lambda_n/\lambda_p \equiv f_n/f_p > 0$ can be easily achieved, but $f_n/f_p < 0$ appears only within a narrow domain of y_q/y_q^{SM} .

Summary

• We considered a **H-portal** DM model and assumed *non-SM-like* negative values for $y_q \Rightarrow \sigma_{SI} \rightarrow 0$.

• $y_q < 0$ can be realized in presence of a dim-6 effective operator \Rightarrow an **upper** bound on the NP scale Λ .

• A model with **new particles** (VL quarks & ϕ) has been discussed as a practical realization of this idea.

• The proposed framework is able to accommodate isospin violation.

• Even though the future DM-search experiments are blind to our proposal, it might be tested at the **HL-LHC**.

・ロト ・ 日 ・ モー・ ・ 日 ・ うへで