Jet substructure variables in quark and gluon jets

Mateusz Goncerz (IFJ-PAN) on behalf of the LHC collaborations

Motivation

- jet structure and evolution open problem
- heavily boosted decays produce overlapping jets
 - New Physics particles are typically quite heavy...
 - ...and searched for via boosted final states
 - important to separate all jets!
- signal-background discrimination
 - jet characteristics reflect its origin
 - heavy particles (e.g. top) produce sub-jets
 - light quark and gluon jets lack distinguishable structure
- probe of perturbative and non-perturbative effects
 - effective QCD
 - resummation methods
 - parton showering

LHC experiments

- different detectors give access to different jet aspects
- LHCb
 - overlap of boosted jets
 - mostly quark-initiated jets
- ATLAS and CMS
 - mostly central, gluon-initiated jets

Distinguishing between jet types

- J. High Energ. Phys. 2022, 188 (2022) (CMS)
- gluon-initiated di-jets and, for the first time, quark-initiated jets from Z+jets events
- a set of distinguishing variables proposed

$$\lambda_{\beta}^{\kappa} = \sum_{i \in jet} z_i^{\kappa} \left(\frac{\Delta R_i}{R}\right)^{\beta}$$

- influence of jet grooming tested
 - soft and wide angle radiation removed

• high p_T jets have similar gluon and quark content

J. High Energ. Phys. 2022, 188 (2022)

- on average, gluon jets produce higher values except for $(p_T^D)^2$
 - at low jet- p_T this difference is significant good separation power
 - at high jet- p_T the gluon content is close to 50%
- the agreement with data is much better at high jet-p_T
- no significant improvement with grooming

J. High Energ. Phys. 2022, 188 (2022)

- overall, Sherpa achieves the best agreement with data
 - improvements still needed!
- small differences between Pythia8's CP2 and CP5
 - low dependence on the choice of $\alpha_s(m_z)$
 - high on the fragmentation model
- extra jet improves Sherpa predictions
 - additional partons affect fraction of gluon jets in the signal region
 - measurement of ratio is sensitive to gluon content

Charged hadrons in Z-tagged and inclusive jets

- PRL 123 (2019) 232001 (LHCb)
 - charged hadrons produced in jets recoiling of a Z boson
 - first measurement in the forward region and first with Z boson
 - relatively low background (Z+jets)
 - dominated by light-quark jets
- EPJ C71, 1795 (2011) (ATLAS)
 - jet fragmentation and transverse profile of inclusive jets
 - dominated by gluon-initiated jets
 - see also Phys. Rev. D 100 (2019) 052011 for 13 TeV follow-up

- spatial momentum distribution
 - longitudinal fraction

$$z \equiv rac{oldsymbol{
ho}_{jet} \cdot oldsymbol{
ho}_{hadron}}{\left|oldsymbol{
ho}_{jet}
ight|^2}$$

transverse to jet axis

$$j_T \equiv rac{|oldsymbol{p}_{jet} imes oldsymbol{p}_{hadron}|}{|oldsymbol{p}_{jet}|}$$

$$r \equiv \sqrt{\left(\phi_{ extit{jet}} - \phi_{ extit{hadron}}
ight)^2 + \left(y_{ extit{jet}} - y_{ extit{hadron}}
ight)^2}$$

PRL 123 (2019) 232001 (LHCb) and EPJ C71, 1795 (2011) (ATLAS)

- low z difference due to p_{track} > 4 GeV requirement
 - higher p_T jets probe lower z
- $\, \bullet \,$ jets from quarks (LHCb) narrower than gluon-initiated jets (ATLAS)
- quark-initiated jets produce more hadrons than gluon-initiated jets at higher longitudal momentum fractions

PRL 123 (2019) 232001 (LHCb) and EPJ C71, 1795 (2011) (ATLAS)

- number of hadrons produced at small r highly sensitive to jet p_T
- reduced p_T dependence at higher r may suggest small dependence in non-perturbative contributions
- more low-r hadrons in quark-initiated jets

PRL 123 (2019) 232001 (LHCb) and EPJ C71, 1795 (2011) (ATLAS)

- the shape of j_T distribution indicates a useful observable for transverse-momentum-dependent framework
- similar characteristics of quark- and gluon-initiated jets around the peak

Conclusions

- study of jet fragmentation provides valuable insights into their evolution and reconstruction algorithms
- gluon- and quark-initiated jets differ and they can be effectively distinguished
- flavor-dependence and jet parameters are a useful background discriminant
- many predictions are still inconsistent with the data