

Recent results on \boldsymbol{W} mass and branching fraction

Menglin Xu

Standard Model @ LHC, Switzerland CERN 04/11/2022

m_W status

- Long term goal: close gap in precision between direct and indirect determinations
- Global EW fit provides prediction with 7 MeV precision: almost half the uncertainty of the PDF average of the <u>PDG average</u> of direct measurement (12MeV)
- Hadron Collider measurements already available form ATLAS, CDF and D0
 - Most precise measurements at LHC to data achieve 19 MeV precision

m_W measurement at LHCb

- High precision measurement of m_W is possible at LHCb, PDF systematic uncertainty can be reduced by a factor 2
- Sensitivity to the m_W by carefully measuring the muon p_T
- Modelling of W production and decay in 5D

m_W uncertainties at LHCb

Source [JHEP 01 (2022) 036]	Size MeV Average of NNPDF31, CT18, MSHT20
Parton distribution functions	9
Theory (excl. PDFs) total	17 Envelope from five different models
Transverse momentum model	
Angular coefficients	10 — Uncorrelated scale variation
QED FSR model	Envelope of the QCD FSR from Pythi8,
Additional electroweak corrections	$_{\circ}$
Experimental total	$_{ m 10}$ Photos and Herweig7
Momentum scale and resolution modelling	7]
Muon ID, trigger and tracking efficiency	6 Includes statistical uncertainties,
Isolation efficiency	details of the methods (e.g. binning,
QCD background	² smoothing
Statistical	23
Total	32

m_W results at LHCb

- LHCb achieves a precision of \sim 32 MeV using roughly 1/3 of the Run-II dataset
- An overall precision ~ 20 MeV is achievable with all existing LHCb data

$$m_W=80354\pm23_{
m stat.}\pm10_{
m exp.}\pm17_{
m theory}\pm9_{
m PDF}$$
 MeV

[Nucl. Instrum. Meth. A 270 (1988) 110] [Nucl, Instrum. Meth. A 500 (2003) 391]

- Combine with ATLAS results using Best Linear Unbiased Estimator method
 - > Assuming experimental uncertainties are uncorrelated
 - > Consider different assumptions for the correlation of theoretical and PDF uncertainties

[Nucl. Instrum. Meth. A 270 (1988) 110] [Nucl, Instrum. Meth. A 500 (2003) 391]

- Combine with ATLAS results using Best Linear Unbiased Estimator method
 - > Assuming experimental uncertainties are uncorrelated
 - > Consider different assumptions for the correlation of theoretical and PDF uncertainties

Latest m_W results from CDF [Science 376 (2022) 170]

The precision is impressive

- $m_W = 80433.5 \pm 6.4_{
 m stat.} \pm 6.9_{
 m syst.}$ MeV
- The result is tension with SM and other experiments

Current state of W boson branching fraction measurements

[PR 532, 119-244 (2013)]

- The most precise values come from LEP experiments
 - Good agreement between $B(W \to e)$ and $B(W \to \mu)$
 - $R_{\tau/(e+\mu)} = \frac{2\mathcal{B}(W \to \tau \overline{v_{\tau}})}{\mathcal{B}(W \to e\overline{v_e}) + \mathcal{B}(W \to \mu \overline{v_{\mu}})} \text{ shows } \mathbf{2.6\sigma}$ from the SM expectation of 0.9996
- At LHC, large ross section for the production of tar t offers a sizable high-purity of W boson pairs
- ATLAS has precisely measured B_{τ}/B_{μ}
 - Consistent with lepton flavour universality (LFU)

W Leptonic Branching Ratios

W boson branching fractions at CMS

- Three leptonic decay branching fractions of the W boson as well as the average leptonic and inclusive hadronic branching fractions assuming LFU
- Datasets: 2016 data at 13TeV $\sim 35.9 \text{ fb}^{-1}$
- Max likelihood fit of all W BR with histogram templates for leptons p_T

Branching fraction results at CMS

- $B(W \to ev_e)$ and $B(W \to \mu v_\mu)$ are ~1.5 times more precisely than at LEP
- $B(W \to \tau v_{\tau})$ have similar total uncertainty
- $B(W \rightarrow lv)$ is consistent with LEP, but much more statistically precise
- Inclusive hadronic $B(W \to q\bar{q})$ is about 70%, uncertainty is ~ 15% smaller than LEP

Ratios of leptonic branching fractions at CMS

- Ratios between branching fractions give a quick check of LFU
- The ratio between the τ and e/μ ratios is calculated assuming partial LU, i.e., $B_e=B_\mu\neq B_\tau$

	CMS	LEP	ATLAS	LHCb	CDF	D0
$R_{\mu/e}$	1.009 ± 0.009	0.993 ± 0.019	1.003 ± 0.010	0.980 ± 0.012	0.991 ± 0.012	0.886 ± 0.121
$R_{\tau/e}$	0.994 ± 0.021	1.063 ± 0.027	_	_	_	_
$R_{\tau/u}$	0.985 ± 0.020	1.070 ± 0.026	0.992 ± 0.013	_	_	_
	1.002 ± 0.019		_	_	_	_
., .						

12

[arXiv:2201.07861]

Other SM parameters at CMS

- The measured values of the leptonic branching fractions can also be used as to derive several other quantities of interest
 - $lpha_S(m_W^2)$: although not competitive compared with the current world average, confirms the usefulness of the W boson decays to constrain this fundamental standard model parameter at future colliders
 - > Using the world average value of $\alpha_S(m_W^2)$, $\sum_{ij} |Vij|^2$ providing a precise check of CKM unitarity
 - V_{CS} : is as precise as the current V_{CS} = 0.987 ± 0.011 result obtained from direct D meson decay data

$$\frac{\mathcal{B}(W \to q\overline{q}')}{1 - \mathcal{B}(W \to q\overline{q}')} = \sum_{\substack{i = (u,c), \\ j = (d,s,b)}} |V_{ij}|^2 \left[1 + \sum_{i=1}^4 c_i \left(\frac{\alpha_S}{\pi} \right)^i + c_{EW}(\alpha) + c_{mix}(\alpha\alpha_S) \right] \qquad \frac{\alpha_S(m_W^2)}{0.095 \pm 0.033} \quad \frac{|V_{cs}|}{0.967 \pm 0.011} \quad \frac{\sum_{ij} |V_{ij}|^2}{1.984 \pm 0.021}$$

[arXiv:2201.07861]

4/11/2022 Standard Model @ LHC

Summary

W boson mass measurement

[JHEP 01 (2022) 036] [Eur. Phys. J. C 78 (2018) 110] [Science 376 (2022) 170]]

- > An overall precision < 20 MeV looks achievable with existing LHCb Run 2 datasets
- > ATLAS achieve 19 MeV precision, the most precise measurements at LHC to data
- > LHCb+ ATLAS results combinations could have about 16 MeV precision
- \succ CDF latest m_W results is **tension** with the SM and other experiments, with **impressive precision**
- W branching fraction measurement
 - \succ ATLAS has precisely measured $B_{ au}/B_{\mu}$ at 13TeV , the result is consistent with LFU
 - > The precision CMS result exceeds the previous best result obtained by LEP and confirms the ATLAS result
 - LHCb measurement is ongoing

[Nat. Phys. 17, 813–818 (2021)]

BACKUP

- Detector in the forward region with excellent momentum and vertex resolutions
- Coverage is complementary to ATLAS and CMS (with some Iverlapping at low pseudoratpidity)

Interesting process @ LHC

- Take advantage of $t\bar{t}$ production
 - ightharpoonup Abundantly produced ($\sigma_{t\bar{t}}$ = 832 pb $\gg \sigma_{WW}$ = 120 pb
 - Unique signature (multiple jets, b tagging) allows selection of high purity sample
 - Well understood systematic uncertainties
- Also consider as signal: tW, WW and W+jets
- Main challenge: account for overlap between prompt W decays vs. W decays with intermediate au

Categorization

Base line selection

- > One muon with $p_T > 25$ GeV or one electron with $p_T > 30$ GeV
- Select events with additional electrons, muons, hadronic tau leptons, or jets
- > Overlap in object reconstruction prioritizes $\mu \rightarrow e \rightarrow \tau \rightarrow h$

Categorization by N_{jets} and N_{b tags}

- Main selection isolates $t\bar{t}$ and tW production
- > Finer binning of l_{τ} categories improves purity of hadronic τ ID
- > Enriched in $Z \rightarrow \tau\tau$ used for reducing τ reconstruction systematic uncertainties

Main systematics uncertainty sources

- Lepton reconstruction efficiencies and p_T scale
- Normalization of simulation and data-driven backgrounds
- Modelling of $t\bar{t}$

	$W \to e \overline{\nu}_e$	$W \to \mu \overline{\nu}_{\mu}$	$W \to \tau \overline{\nu}_\tau$	$W \to q \overline{q}'$
eup	20	6	11	14
minosity	5	14	5	7
S/JER	3-17	5-21	4-11	4-21
agging	<1-19	<1-25	<1-5	<1-17
normalization	35	43	27	46
W normalization	8	9	5	9
$W p_{\rm T}$	1-2	1-2	<1-5	<1-4
+ jets normalization	<1-6	<1-7	<1-13	<1-10
jets normalization	1	2	5	4
Z, ZZ normalization	<1	1	<1	<1
production:				
QCD scale	32	47	25	45
op quark p _T	16	24	7	18
SR	10	16	37	37
FSR	3	4	9	5
PDF	4	5	3	4
τs	5	5	3	6
PYTHIA 8 UE tune	1	5	7	7
idamp parameter	3	3	2	4
ell-Yan background:				
QCD scale	2-24	10-27	5-20	8-30
PDF	3	5	2	4
D multijet background:				
eμ	5	12	12	6
eh	3-4	11-17	6-7	6-10
uh.	10-11	10-13	5-13	2-3
$2\tau_{\rm h}$	<1-5	<1-8	<1-9	<1-7
$u\tau_{\rm h}$	<1-12	<1-10	<1-9	<1-10
		11 10		\1 10
neasurement: Reconstruction efficiency	50	13	3	15
dentification efficiency	<1-14	1-8	<1-10	<1-5
Trigger (prefiring)	29	2	1	9
Trigger	<1-27	<1-4	<1-13	<1-9
Energy scale	7	6	<1	4
	*		-	
neasurement: Reconstruction efficiency	<1-2	<1-5	<1-6	<1-6
Trigger	8	26	3	7
Energy scale	1	<1	3	2
37.5	1	<1	3	4
measurement:	0.14	7 17	21 46	14.01
Reconstruction efficiency	2-14	7–17	21–46	14-24
Energy scale	9	5	14	6
et misidentification	1-14	<1-10	1-24	<1-10
misidentification	<1	<1	2	1
$r \rightarrow e, \mu, h$	<1	<1	<1-2	<1-1

W branching fractions and correlations

	CMS	LEP	CMS+LEP*
w/o LU			
W o e u	$({\bf 10.83 \pm 0.01 \pm 0.10})\%$	$(10.71 \pm 0.14 \pm 0.07)\%$	$(10.800 \pm 0.085)\%$
$W o \mu \nu$	$({\bf 10.94 \pm 0.01 \pm 0.08})\%$	$(10.63 \pm 0.13 \pm 0.07)\%$	$(10.883 \pm 0.071)\%$
W o au u	$({\bf 10.77 \pm 0.05 \pm 0.21})\%$	$(11.38 \pm 0.17 \pm 0.11)\%$	$(11.035 \pm 0.146)\%$
w/ LU			
W o h	$(67.32 \pm 0.02 \pm 0.23)\%$	$(67.41 \pm 0.18 \pm 0.20)\%$	$(67.365 \pm 0.163)\%$

Correlations matrices for leptonic branching fractions

$$\begin{bmatrix} 1 & +0.439 & +0.138 \\ +0.439 & 1 & +0.190 \\ +0.138 & +0.190 & 1 \end{bmatrix} \begin{bmatrix} 1 & +0.136 & -0.201 \\ +0.136 & 1 & -0.122 \\ -0.201 & -0.122 & 1 \end{bmatrix} \begin{bmatrix} 1 & +0.383 & -0.045 \\ +0.383 & 1 & 0.005 \\ -0.045 & 0.005 & 1 \end{bmatrix}$$