

1

Recent Z Results:

BR \rightarrow **Invisible**, **A**_{FB}, **Forward Production**, **Mass Dependent p**_T

April 11th, 2022

Oz Amram

On Behalf of CMS, ATLAS and LHCb Collaborations

Z / Drell-Yan at the LHC

- Why study Z at hadron colliders?
 - One of the best understood theoretically and experimentally
 - Precise study of kinematics allows probing of various QCD effects
 - High precision measurements can probe BSM scenarios

(Source)

Multiple excellent measurements have been performed at LHC, highlight only a few recent results

$Z p_T Spectrum (1/2)$

- ATLAS
 - Measurement of Z p_{τ} and $\phi_{\eta}{}^{*}$ in Z peak region (66 < m < 116 GeV)
 - ~32 million $Z \rightarrow \ell \ell$ events
 - Bkg contribution ~ 0.5%
 - ee and $\mu\mu$ channels combined using χ^2 minimization

$$\phi_{\eta}^* = \tan\left(\frac{\pi - \Delta\phi}{2}\right) \times \sin(\theta_{\eta}^*),$$

Eur. Phys. J. C 80 (2020) 616 (arxiv)

$Z p_{T}$ Spectrum (2/2)

ATLAS

- Unfolded Born-level Z p_T distribution compared to various predictions
 - Sherpa v2.2.1 Powheg + Pythia8
 - RadISH+NNLOJet NNLO + N³LL Pythia8 + AZ Tune

DY p_{T} over wide mass range (1/3)

CMS

Split into 5 mass bins

CMS-PAS-SMP-20-003

- Measure p_T in masses away from Z peak
 - 5 invariant mass bins
- Observe scale dependence μ ~ m
 - Test agreement of different models (Pythia, TMD, NNLL + ME)

- Anti-btag to veto $\ensuremath{t\bar{t}}$ events
- Hadrons MisID as electrons estimated using data-driven method

DY p_{T} over wide mass range (2/3)

Measured p_T distribution unfolded to fiducial space using 'dressed' (ΔR <0.1) leptons

Measurement results are compared with:

- ME + PS approach
 - MG5_amc@NLO + Pythia 8
 @NLO up to 2 partons + PS
- TMD approach
 - CASCADE (amc@NLO+ PBTMD)
 + Pythia6 for FS and hadronization
 - Analytic calculation from ArTeMiDe TMD based
- Resummation
 - GENEVA, NNLO Z+0j ME and resummation at NNLL[']_τ

CMS

DY p_{T} over wide mass range (3/3)

- aMC@NLO + Pythia8 gives good overall description
 - Fails at low $p_{\scriptscriptstyle T}$ and high mass
- CMS-PAS -SMP-20-003
- ArTeMiDe gives best description within its region of validity
- The QED FSR, added to the prediction from amc@NLO, shows the effect of migrations to low mass from the Z peak

Forward Z Production

- Forward detector of LHCb allows measurements of Z production at high rapidity
- Stringent tests of QCD and useful pdf constraints
 - High $y \rightarrow very$ high or low Bjorken x
- Two sets of measurements
 - Differential cross section
 - Angular Coefficients

LHCb

 $y = \frac{1}{2} \ln \frac{x_1}{x_2}$

8

Forward Z: Differential cross sections

LHCb

- Cross section measured in bins of y, p_T , and ϕ^*
- Corrected to Born level in QED, allows comparison with theory predictions

 $\Delta\sigma/\sigma$ [% Source Statistical 0.11 Background 0.03Alignment & calibration Efficiency 0.77Closure 0.06 FSR 0.04Total Systematic (excl. lumi.) 0.772.00Luminosity Total 2.15

Lumi and tracking eff. dominant uncs.

Good agreement overall, slight deficit in lower y region (2 < y < 3)

arXiv: 2112.07458 Submitted to JHEP

Forward Z: Integrated & double differential

Integrated cross section (in fiducial region)

First double differential cross section measurement in forward region

arXiv: 2112.07458 Submitted to JHEP

LHCb

Forward Z: Angular coefficients (1/2)

LHCb

- Further probe of Z production in forward region, angular coefficients of Z boson are measured
 - Similar event selection to cross section analysis

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta\mathrm{d}\phi} \propto (1+\cos^2\theta) + \frac{1}{2}A_0(1-3\cos^2\theta) + A_1\sin2\theta\cos\phi + \frac{1}{2}A_2\sin^2\theta\cos2\phi + A_3\sin\theta\cos\phi + A_4\cos\theta + A_5\sin^2\theta\sin2\phi + A_6\sin2\theta\sin\phi + A_7\sin\theta\sin\phi,$$

- A_4 comes from parity violation, sensitive to $sin^2\theta_w$, not the focus of measurement
- Lam-Tung relation, $A_0 \approx A_2$, violated at higher orders in QCD
- A_2 sensitive to TMD's, measured in low p_T region with different mass bins
- A_5 , A_6 , A_7 only have small deviations from zero at NNLO \rightarrow fixed to zero in fit

Forward Z: Angular coefficients (2/2)

LHCb

Results in low p_{τ} region

- Compared with various predictions:
 - POWHEG+PYTHIA
 - DYTurbo
 - RESBOS
 - PYTHIA8+LHCb tune

First measurement of angular coeffs. in forward region!

High mass A_{FR} measurement (1/3)

- **CMS**
- Forward-backward asymmetry (A_{FB}) results from parity violation
 - Interference from heavy BSM would change A_{FR} at high mass

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} \propto \frac{3}{8} \left[1 + \cos^2\theta + \frac{A_0}{2} \left(1 - 3\cos^2\theta \right) + A_4\cos\theta \right]$$

• A_{FB} directly related to A₄

$$\frac{3}{8}A_4 = A_{\rm FB}$$

$$A_{\rm FB} = \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}},$$

Quark carries more momentum than anti-quark on avg.

- pp collider \rightarrow quark vs anti-quark direction only known statistically \rightarrow asymmetry diluted
- Measured via template fitting approach
 - Templates include dilution effect, automatically unfolded
- A_{FB} and A_0 measured for dilepton masses > 170 GeV

High mass A_{FB} measurement (2/3)

- CMS
 - tt
 • tt
 and VV backgrounds using MC, validated in eµ control region
 - Hadrons MisID as leptons estimated using data-driven method

- Data fit to templates of $cos\theta_{\text{R}}$ and rapidity distributions in ee and $\mu\mu$ channels in different mass bins

14

High mass A_{FB} measurement (3/3)

CMS

- Various sets of fits performed
 - ee and $\mu\mu$ fit separately
 - ee and $\mu\mu$ fit with common A_{FB} and A_{O} params
 - Test LFU: Fit for $\Delta A_{FB}(ee, \mu\mu)$
 - Slight 2.4σ tension found
- Results used to set limits on $Z'_{\mbox{\tiny SSM}}$

- $M_{Z'}$ < 4.4 TeV excluded @ 95% CL

Z invisible branching ratio (1/2)

 Z invisible width can be extracted from ratio of Z(vv)+jets to Z(le)+jets

$$\Gamma(Z \to \nu \bar{\nu}) = \frac{\sigma(Z + \text{jets})\mathcal{B}(Z \to \nu \bar{\nu})}{\sigma(Z + \text{jets})\mathcal{B}(Z \to \ell \ell)} \Gamma(Z \to \ell \ell)$$

- Simultaneous fit to 3 analysis regions:
 - Z→vv region: Jets + p_{T,miss}
 - $Z \rightarrow \ell \ell$ region: $\mu \mu$ + jets and ee + jets to select
 - W+jets Control Region: μ +p_{T,miss}+jets, e+ p_{T,miss}+jets, and τ_{H} + p_{T,miss}+jets

CMS

Z invisible branching ratio (2/2)

- CMS
- Events selected in the p_{T,miss}>200 GeV region
 - Dileptons from Z decays excluded in p_{T,miss} calculation
- W+jets bkg in SR estimated from CR + transfer factor
- Effect of γ^{\ast} accounted for and removed

Γ_{inv} =523 ± 3(stat)± 16 (syst) MeV

CMS-PAS-SMP-18-014

Conclusions

- Several recent measurements of Z/DY properties have been presented from ATLAS, CMS and LHCb
 - $Z p_T$ distribution
 - DY p_T over wide mass range
 - Forward Z cross section
 - Forward Z angular coefficients
 - High mass forward-backward asymmetry
 - Z invisible branching ratio
- Providing valuable tests of QCD modeling
- Precision measurements used as probes of new physics

More exciting results to come, stay tuned!

List of Analyses Presented

- Measurement of the transverse momentum distribution of Drell-Yan lepton pairs in protonproton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector (Eur. Phys. J. C 80 (2020) 616)
- Measurement of mass dependence of the transverse momentum of Drell Yan lepton pairs in proton-proton collisions at √s= 13 TeV (CMS-PAS-SMP-20-003)
- Precision measurement of forward Z boson production in proton-proton collisions at √s= 13 TeV (arXiv:2112.07458)
- First measurement of the $Z \rightarrow \mu + \mu -$ angular coefficients in the forward region of pp collisions at \sqrt{s} = 13 TeV (arXiv:2203.01602)
- Measurement of the Drell-Yan forward-backward asymmetry at high dilepton masses in proton-proton collisions at √s= 13 TeV (arxiv:2202.12327)
- Precision measurement of the Z invisible width with the CMS experiment in pp collisions at \sqrt{s} = 13 TeV (CMS-PAS-SMP-18-014)

$$\phi_{\eta}^* = \tan\left(\frac{\pi - \Delta\phi}{2}\right) \times \sin(\theta_{\eta}^*), \qquad \cos(\theta_{\eta}^*) = \tanh[(\eta^- - \eta^+)/2]$$

- Measurements at low Z p_{T} limited by momentum resolution of leptons
- Alternatively use ϕ_{η}^{*} variable
 - Depends only on directions of two leptons → more accurate meassurements
 - Theoretically a little harder to interpret

Z p_T Extra Plots

High Mass p_T Extra Plots

CMS-PAS-SMP-20-003

p_T(*ll*) [GeV]

Forward Z Extra Cross Section Extra Plots

Source	$\Delta \sigma / \sigma$ [%]
Statistical	0.11
Background	0.03
Alignment & calibration	-
Efficiency	0.77
Closure	0.06
FSR	0.04
Total Systematic (excl. lumi.)	0.77
Luminosity	2.00
Total	2.15

Forward Z Angular Coeffs. Extra Plots

Coeffs. vs. y

 A_2 in low p_T region

arXiv:2203.01602 Submitted to PRL

DY AFB Extra Plots

