

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Photons and Jets

SM@LHC 2022

Marius Höfer¹

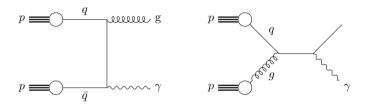
m.hoefer@physik.uni-muenchen.de

with X. Chen, T. Gehrmann, E.W.N. Glover, A. Huss, R. Schürmann

 $^{1}\mathrm{Faculty}$ of Physics, ASC, LMU Munich

Outline

Introduction


- photon production at hadron colliders
- photon isolation: basics
- photon isolation: cone based isolations

Phenomenology

- comparison of isolation prescriptions at NNLO
- impact of photon fragmentation
- observable to access the fragmentation: $z_{\rm rec}$

Photon production at hadron colliders

- probe of the hard QCD dynamics
- direct sensitivity to the gluon distribution in the proton
- background estimates in new physics (NP) searches (see e.g. [1705.04664])

Photon production at hadron colliders

- probe of the hard QCD dynamics
- direct sensitivity to the gluon distribution in the proton
- background estimates in new physics (NP) searches (see e.g. [1705.04664])

Experimental status

- exp. uncertainties on $\sigma_{\rm tot}$ and distributions pushed down to $\mathcal{O}({\rm few~\%})$

	1505.06520	$\gamma + j$	8TeV	
CMS	1807.00782	$\gamma + X/j$	13TeV	
	1907.08155	$\gamma + j$	8TeV	triple differential
ATLAS	1605.03495	$\gamma + X$	8TeV	
	1801.00112	$\gamma + j$	13TeV	
	[1901.10075]	$\gamma + X$	$R_{13/8}^{\gamma}$	
	1908.02746	$\gamma + X$	13TeV	
	[1912.09866]	$\gamma + 2j$	13TeV	

MH, Photons and Jets 4 □ ▶ 4 🗗 ▶ 4 🖹 ▶ 4 🖹 ▶ 3/11

Photon production at hadron colliders

- probe of the hard QCD dynamics
- direct sensitivity to the gluon distribution in the proton
- background estimates in new physics (NP) searches (see e.g. [1705.04664])

Theoretical status

- NLO QCD theory uncertainty $> \mathcal{O}(10\%)$
 - \rightarrow need higher order QCD corrections

MCFM	1703.10109	NNLO QCD, smooth cone isolation
	1904.01044	NNLO QCD, hybrid isolation
NNLOJET	22xx.xxxxx	NNLO QCD+NLO EW, hybrid isolation
	[2201.06982,22xx.xxxxx]	NNLO QCD, fixed cone isolation

□ → < □ → < □ → < □ → < □ → 3/11
</p>

For any collider process with final state (FS) photons:

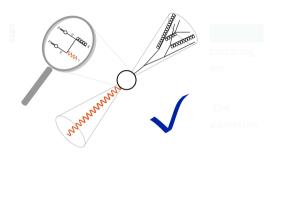
primary photons

photons created in the hard scattering

$$\mathrm{d}\hat{\sigma}^{\gamma+X} = \underbrace{\mathrm{d}\hat{\sigma}^{\gamma+X}}_{\text{direct}} + \underbrace{\sum_{a} \mathrm{d}\hat{\sigma}^{a+X} \otimes D_{a \to \gamma}}_{\text{fragmentation}}$$

secondary photons

- photons emitted after the actual scattering, e.g. during the hadronization process $(\pi\to\gamma\gamma,\dots)$
- not a contribution associated with the underlying hard process under consideration
 → huge background


residual $q\gamma$ -collinear singularities: absorbed into fragmentation functior

For any collider process with final state (FS) photons:

primary photons

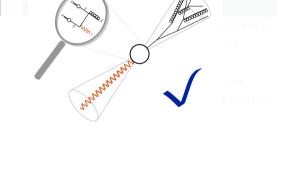
photons created in the hard scattering

residual $q\gamma$ -collinear singularities: absorbed into fragmentation function

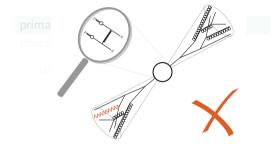
For any collider process with final state (FS) photons:

primary photons

photons created in the hard scattering


$$\mathrm{d}\hat{\sigma}^{\gamma+X} = \underbrace{\mathrm{d}\hat{\sigma}^{\gamma+X}}_{\mathrm{direct}} + \underbrace{\sum_{a}\mathrm{d}\hat{\sigma}^{a+X} \otimes D_{a \to \gamma}}_{\mathrm{fragmentation}}$$

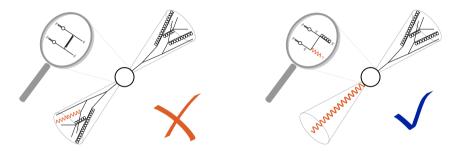
(fragmentation)


 $D_{a o\gamma}\sim\mathcal{O}(lpha)$

residual $q\gamma$ -collinear singularities: absorbed into fragmentation function

(direct)

For any collider process with final state (FS) photons:

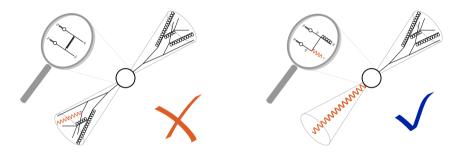


secondary photons

- photons emitted after the actual scattering, e.g. during the hadronization process $(\pi \to \gamma\gamma,\dots)$
- not a contribution associated with the underlying hard process under consideration
 → huge background

residual $q\gamma$ -collinear singularities: absorbed into fragmentation function

Idea: look for photons isolated from hadronic radiation



Photon Isolation

 \Rightarrow Most of the (transverse) energy in the vicinity of the candidate isolated photon must be carried by the photon itself.

Here: cone based isolations

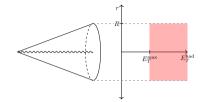
Idea: look for photons isolated from hadronic radiation

Photon Isolation

 \Rightarrow Most of the (transverse) energy in the vicinity of the candidate isolated photon must be carried by the photon itself.

Here: cone based isolations

Fixed/Hard cone isolation


Idea/Concept

- define cone around photon with fixed $R=\sqrt{\Delta\eta^2+\Delta\phi^2}$
- integrate all hadronic E_T within the cone
- set upper limit: $E_T^{\mathsf{had}} \leq E_T^{\mathsf{max}}(p_T^\gamma) = \varepsilon p_T^\gamma + E_T^{\mathsf{thres}}$

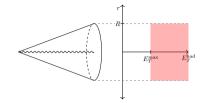
technical complications

Les Houches 2009, 2011, 2015 .

- direct component ✓, fragmentation component ✓
- fragmentation functions $D_{a\to\gamma}$ [M.Gluck et al. 1995; L.Bourhis e al.,hep-ph/9704447] are complicated to include into theory calculations
- $E_T^{\rm max} o 0$: no frag. contribution but not infrared (IR) safe

Standard procedure used in all modern collider experiments

Fixed/Hard cone isolation


Idea/Concept

- define cone around photon with fixed $R=\sqrt{\Delta\eta^2+\Delta\phi^2}$
- integrate all hadronic E_T within the cone
- set upper limit: $E_T^{\mathsf{had}} \leq E_T^{\mathsf{max}}(p_T^\gamma) = \varepsilon p_T^\gamma + E_T^{\mathsf{thres}}$

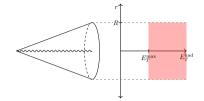
technical complications

Les Houches 2009, 2011, 2015.

- direct component ✓, fragmentation component ✓
- fragmentation functions $D_{a\to\gamma}$ [M.Gluck et al. 1995; L.Bourhis et al.,hep-ph/9704447] are complicated to include into theory calculations
- $E_T^{\text{max}} \rightarrow 0$: no frag. contribution but not infrared (IR) safe

Standard procedure used in all modern collider experiments

Fixed/Hard cone isolation


Idea/Concept

- define cone around photon with fixed $R=\sqrt{\Delta\eta^2+\Delta\phi^2}$
- integrate all hadronic E_T within the cone
- set upper limit: $E_T^{\mathsf{had}} \leq E_T^{\mathsf{max}}(p_T^\gamma) = \varepsilon p_T^\gamma + E_T^{\mathsf{thres}}$

technical complications

Les Houches 2009, 2011, 2015 ...

- direct component ✓, fragmentation component ✓
- fragmentation functions $D_{\rm a \to \gamma}$ [M.Gluck et al. 1995; L.Bourhis et al.,hep-ph/9704447] are complicated to include into theory calculations
- $E_T^{\rm max} \to 0$: no frag. contribution but not infrared (IR) safe

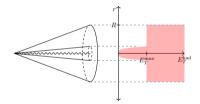
Standard procedure used in all modern collider experiments

Idea/Concept

S.Frixione,hep-ph/9801442 F.Siegert,1611.07226; X.Chen et al.,1904.01044

• make isolation condition r-dependent:

$$E_T^{\mathsf{had}}(r) \leq E_T^{\mathsf{max}}(p_T^{\gamma})\chi(r) \qquad \forall r \leq R$$


- $\chi(r) \xrightarrow[r \to 0]{} 0$ (smoothly): direct comp. \checkmark , frag. comp. \checkmark
- IR safe

technical complications

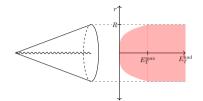
Les Houches 2013, 2015, 2019; S.Catani et al.,1802.02095; X.Chen et al.,1904.01044

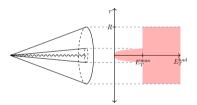
- problem: smooth profile cannot be implemented in experiment
- fix isolation parameters to mimic experimental isolation
- systematic discrepancy (O(few %)) between isolation prescriptions in experiment and theory

Idea/Concept

S.Frixione,hep-ph/9801442 F.Siegert,1611.07226; X.Chen et al.,1904.01044

• make isolation condition r-dependent:


$$E_T^{\mathsf{had}}(r) \leq E_T^{\mathsf{max}}(p_T^{\gamma})\chi(r) \qquad \forall r \leq R$$


- $\chi(r) \xrightarrow[r \to 0]{} 0$ (smoothly): direct comp. \checkmark , frag. comp. x
- IR safe

technical complications

Les Houches 2013, 2015, 2019; S.Catani et al.,1802.02095; X.Chen et al.,1904.01044

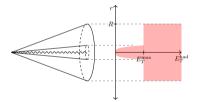
- problem: smooth profile cannot be implemented in experiment
- fix isolation parameters to mimic experimental isolation
- systematic discrepancy (O(few %)) between isolation prescriptions in experiment and theory

Idea/Concept

S.Frixione,hep-ph/9801442 F.Siegert,1611.07226; X.Chen et al.,1904.01044

• make isolation condition r-dependent:

$$E_T^{\mathsf{had}}(r) \leq E_T^{\mathsf{max}}(p_T^{\gamma})\chi(r) \qquad \forall r \leq R$$


- $\chi(r) \xrightarrow[r \to 0]{} 0$ (smoothly): direct comp. \checkmark , frag. comp. X
- IR safe

technical complications

Les Houches 2013, 2015, 2019; S.Catani et al.,1802.02095; X.Chen et al.,1904.01044

- problem: smooth profile cannot be implemented in experiment
- fix isolation parameters to mimic experimental isolation
- systematic discrepancy ($\mathcal{O}(\text{few \%})$) between isolation prescriptions in experiment and theory

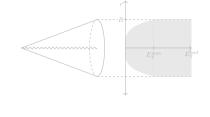
Idea/Concept

S.Frixione,hep-ph/9801442 F.Siegert,1611.07226; X.Chen et al.,1904.01044

■ make isolation condition r-dependent

$$E_T^{\text{had}}(r) \le E_T^{\text{max}}(p_T^{\gamma})\chi(r) \qquad \forall r \le R$$

- $\chi(r) \xrightarrow[r \to 0]{} 0 \text{ (si}$
- IR safe

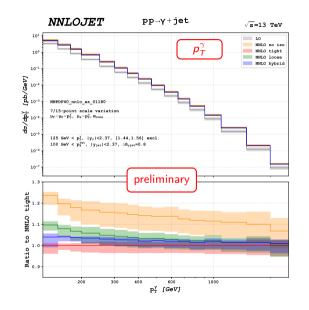

Implementation of fragmentation contribution in NNLOJET \Rightarrow

NNLO QCD with realistic photon isolation

technical complications

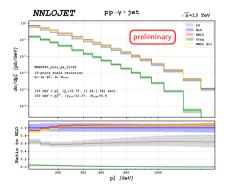
Les Houches 2013, 2015, 2019; S.Catani et al.,1802.02095; X.Chen et al.,1904.01044

- problem: smooth profile cannot be implemented in experimen
- fix isolation parameters to mimic experimental isolation
- systematic discrepancy (O(few %)) between isolation prescriptions in experiment and theory

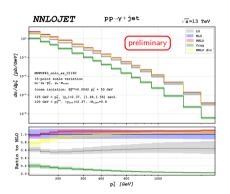

Loose vs. tight vs. no vs. hybrid isolation

photon transverse momentum

- highest isolation sensitivity in low p_T^{γ} region
- in high p_T^{γ} regime: photon well separated from additional hadronic energy
- moderate impact of photon isolation on prompt photon production


Isolations (R = 0.4)

- tight isolation: $E_T^{\rm max} \approx 10 \; {\rm GeV}$
- hybrid isolation: $E_T^{
 m max} pprox 10$ GeV $(R_{
 m inner} = 0.1)$
- loose isolation: $E_T^{\rm max} \approx 50 \; {
 m GeV}$

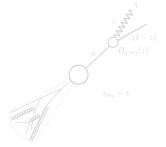


Size/impact of fragmentation contribution

direct vs. fragmentation contribution: increase sensitivity to fragmentation using looser criterion

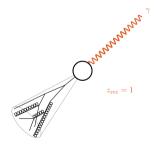
Tight isolation: $E_T^{\rm max} = 0.0042 p_T^{\gamma} + 10$ GeV

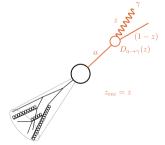
Loose isolation: $E_T^{\rm max} = 0.0042 p_T^{\gamma} + 50$ GeV


Accessing $D_{a \rightarrow \gamma}$ through z_{rec}

- $z_{
 m rec}=p_T^\gamma/p_T^{
 m jet}$: imbalance of the transverse momenta of the photon and the leading jet
- At LO: one-to-one correspondence to the momentum fraction in $D_{a o \gamma}(z)$

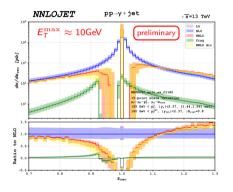
direct @ lowest order

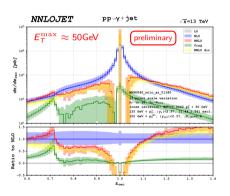

fragmentation @ lowest order


Accessing $D_{a \rightarrow \gamma}$ through z_{rec}

- $z_{
 m rec}=p_T^\gamma/p_T^{
 m jet}$: imbalance of the transverse momenta of the photon and the leading jet
- At LO: one-to-one correspondence to the momentum fraction in $D_{a o \gamma}(z)$

direct @ lowest order




fragmentation @ lowest order

Accessing $D_{a \rightarrow \gamma}$ through z_{rec}

- $z_{
 m rec}=p_T^\gamma/p_T^{
 m jet}$: imbalance of the transverse momenta of the photon and the leading jet
- At LO: one-to-one correspondence to the momentum fraction in $D_{a\to\gamma}(z)$

• $z_{\rm rec} o 1$ sensitive to soft emissions \Rightarrow requires resummation of large logarithms

Conclusions

- precision phenomenology at the percent level demands overcoming mismatch between theory and experiment in isolation prescriptions
- consistent treatment of direct and fragmentation contribution at NNLO QCD is now a possibility!

Outlook

- Is there a way to constrain $D_{a\to\gamma}$ from LHC data?
 - \Rightarrow $z_{\rm rec}$: a possible observable
- fragmentation contribution can be enhanced by **looser** isolation and **smaller cones** (to be studied)
 - ⇒ what is feasible experimentally?

MH, Photons and Jets

∢ □ ▶ ∢ □ ▶ ∢ □ ▶ ∢ □ ▶ ∢ □ ▶ ★ □ ▶ ★ □ ▶ 11/11

Conclusions

- precision phenomenology at the percent level demands overcoming mismatch between theory and experiment in isolation prescriptions
- consistent treatment of direct and fragmentation contribution at NNLO QCD is now a possibility!

Thank you!

Outlook

- Is there a way to constrain $D_{a\to\gamma}$ from LHC data?
 - \Rightarrow z_{rec} : a possible observable
- fragmentation contribution can be enhanced by looser isolation and smaller cones (to be studied)
 - ⇒ what is feasible experimentally?

MH, Photons and Jets

∢ □ ▷ ∢ 雹 ▷ ∢ 悥 ▷ ∢ 悥 ▷ 11/11

Backup slides

Contributions to the Cross Section

• $d\hat{\sigma}_i$ cross section for production of identified particle/parton i

$$\mathrm{d}\hat{\sigma}_i = \mathrm{d}\hat{\sigma}_i^{\mathrm{LO}} + rac{lpha_s}{2\pi} \mathrm{d}\hat{\sigma}_i^{\mathrm{NLO}} + \left(rac{lpha_s}{2\pi}
ight)^2 \mathrm{d}\hat{\sigma}_i^{\mathrm{NNLO}} + \mathcal{O}(lpha_s^3)$$

composition of the photon production cross section:

$$\begin{split} \mathrm{d}\hat{\sigma}^{\gamma+X,\mathrm{LO}} &= \mathrm{d}\hat{\sigma}_{\gamma}^{\mathrm{LO}} \\ \mathrm{d}\hat{\sigma}^{\gamma+X,\mathrm{NLO}} &= \mathrm{d}\hat{\sigma}_{\gamma}^{\mathrm{LO}} + \mathrm{d}\hat{\sigma}_{g}^{\mathrm{LO}} \otimes D_{g \to \gamma} + \sum_{q} \mathrm{d}\hat{\sigma}_{q}^{\mathrm{LO}} \otimes D_{q \to \gamma} - \sum_{q} \mathrm{d}\hat{\sigma}_{q}^{\mathrm{LO}} \otimes \mathbf{F}_{q \to \gamma}^{(0)} \\ \mathrm{d}\hat{\sigma}^{\gamma+X,\mathrm{NNLO}} &= \mathrm{d}\hat{\sigma}_{\gamma}^{\mathrm{NNLO}} + \mathrm{d}\hat{\sigma}_{g}^{\mathrm{NLO}} \otimes D_{g \to \gamma} + \sum_{q} \mathrm{d}\hat{\sigma}_{q}^{\mathrm{NLO}} \otimes D_{q \to \gamma} - \sum_{q} \mathrm{d}\hat{\sigma}_{q}^{\mathrm{NLO}} \otimes \mathbf{F}_{q \to \gamma}^{(0)} \\ &- \mathrm{d}\hat{\sigma}_{g}^{\mathrm{LO}} \otimes \frac{\alpha_{s}}{2\pi} \mathbf{F}_{g \to \gamma}^{(1)} - \sum_{q} \mathrm{d}\hat{\sigma}_{q}^{\mathrm{LO}} \otimes \frac{\alpha_{s}}{2\pi} \mathbf{F}_{q \to \gamma}^{(1)} \end{split}$$

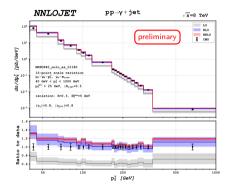
 $\mathbf{F}_{a\to\gamma}$: combination of mass factorization terms and fragmentation functions

Loose vs. tight vs. no vs. hybrid isolation

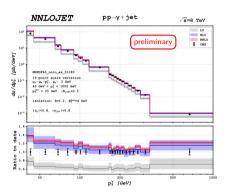
leading jet transverse momentum

in high p_T^{jet} regime:

- dominated by dijet events (effectively NLO)
- w/o isolation: main contribution from fragmentation with small momentum transfer


Isolations (R = 0.4)

- tight isolation: $E_T^{\rm max} \approx 10 \; {\rm GeV}$
- hybrid isolation: $E_T^{
 m max} pprox 10$ GeV $(R_{
 m inner} = 0.1)$
- loose isolation: $E_T^{\rm max} \approx 50 \; {\rm GeV}$



CMS triple differential measurement

Comparison between CMS data [1907.08155] and NNLO predictions with realistic isolation

$$R = 0.3, E_T^{\text{max}} = 5 \text{GeV}$$

$$R = 0.2, E_T^{\text{max}} = 4 \text{GeV}$$