

Associated production of a vector boson with light jets

SM@LHC2022

Jelena Mijušković

on behalf of the ATLAS, CMS and LHCb collaborations

University of Montenegro and IRFU, CEA, Université Paris-Saclay

11 April 2022

Introduction

- W and Z bosons are produced at high rate at the LHC in collisions with different center of mass energies (7, 8 and 13 TeV)
- Processes involving production of Z or W boson in association with jets are an important part of the LHC physics program:
 - ⇒ provide fundamental tests of quantum chromodynamics (QCD)
 - ⇒ important for understanding and modelling QCD interactions
 - ⇒ essential to improve theoretical predictions and MC generator techniques
 - ⇒ constrain the parton distribution functions (PDFs)
 - ⇒ important background to many Standard Model processes as well as to searches for physics beyond the SM
- W and Z bosons are reconstructed via leptonic final states that are the cleanest final states experimentally
 - ➤ The most recent V + jets results from ATLAS, CMS and LHCb collaboration are presented in this talk

Analyses overview

In today's talk:

- ✓ Measurements of the production cross section of a Z boson in association with high transverse momentum jets in pp collisions at \sqrt{s} = 13 TeV with the **ATLAS** detector
- ✓ Azimuthal correlations in Z+jets events at 13 TeV (CMS)
- Measurement of multi-differential cross sections for the production of a Z boson in association with jets in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$ (CMS)
- ✓ Measurement of charged hadron production in Z-tagged jets in proton-proton collisions at \sqrt{s} = 8 TeV (**LHCb**)
- ✓ Measurement of forward W and Z boson production in association with jets in proton-proton collisions at \sqrt{s} =8TeV (**LHCb**)
- ✓ Determination of the parton distribution functions of the proton from **ATLAS** measurements of differential W[±] and Z boson production in association with jets

Full list of analyses:

- ⇒ ATLAS : https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults
- ⇒ CMS: https://cms-results.web.cern.ch/cms-results/public-results/publica6ons/SMP/index.html
- ⇒ LHCb: https://lhcbproject.web.cern.ch/lhcbproject/Publica6ons/LHCbProjectPublic/Summary_QEE.html

Collinear Z + jets

ATLAS

- Measurements of the cross section of a Z boson produced in association with at least one high $p_{\scriptscriptstyle T}$ jet
- 13 TeV, 139 fb⁻¹

Results include electron and muon channels combined

CMS: JHEP 05 (2021) 285

- ► SHERPA 2.2.11 and MG5_aMC+PY8 FxFx show improved modelling in collinear and high p_T regions
 ► MG5_aMC+PY8 and SHERPA 2.2.1 overestimate the cross section for large jet p_T and large
- SHERPA versions differences:

 S_{τ}

- addition of a 5th parton at LO in the ME
- the addition of NLO virtual EW corrections
- different treatment of unordered histories in the parton shower

- Inclusive: jet $p_{\tau} > 100$ GeV, |y| < 2.5
- ✓ High p_{τ} : lead jet $p_{\tau} > 500 \text{ GeV}$
- ✓ High scalar sum p_{τ} of jets: $S_{\tau} > 600 \text{ GeV}$

The collinear and the back-to-back events studied

*Results are unfolded to particle-level

Z + jets differential measurements

CMS promptions

- Measurement of differential cross sections as a function of:
 - double differential p_⊤ and |y| of Z and jets
 - exclusive and inclusive jet multiplicities (up to 8 jets)
 - jet p_{T} and |y| of 5 jets
 - dijet invariant mass.
- Results include electron and muon channels combined

- Measured differential cross sections are within the experimental and theoretical uncertainties of the expectations from theory
- Deviations are observed for jet multiplicities higher than 3
- The GENEVA generator steeper spectrum, because of the lack of hard jets at ME level beyond two

13 TeV, 35.9 fb

Z + jets azimuthal correlations

CMS Sound service serv

- Measurement of the multiplicity of jets, azimuthal correlation between the Z boson and the leading jet, and the correlation between the two leading jets
- Results include electron and muon channel combined

Measurement performed in different $Z p_T$ regions:

- ✓ $p_{T}(Z) < 10 \text{ GeV}$
- \checkmark 30 < p_⊤ (Z) < 50 GeV
- √ p_⊤ (Z) > 100 GeV

The **best description** is from **GENEVA** NNLO

- matrix elements at NNLO for Z production
- NNLL' resummation
- parton shower and MPI from PYTHIA8

MG5_AMC+CASCADE3 (Z ≤ 3j LO) using parton branching -TMD parton densities and parton shower with merging of jet multiplicities - good agreement in the regions where MPI is negligible

Charged hadrons in forward Z + jets

LHCb

Phys. Rev. Lett. 123, 232001

- Measurements of charged hadrons in jets recoiling against a Z boson
- First measurements of jet hadronization forward rapidities
- The longitudinal momentum fraction, momentum transverse to the jet axis, and radial profile of the charged hadrons are measured with respect to the jet axis
- Forward measurements compared to inclusive jet measurements at central rapidity from ATLAS - differences between light-quark and gluon fragmentation

Light quark-dominated jets recoiling against a Z boson at forward rapidity are more collimated in both z and r

8 TeV

> PYTHIA8 underestimates the number of charged hadrons

V + jets at forward rapidities

LHCb-PAPER-2016-011

- Measurements of the forward W and Z boson cross sections in association with jets
- Differential cross sections measured for:

 - $W
 ightarrow \mu v_{\mu}$: as a function of $p_{T,jet}$, η_{jet} , and η_{μ} $Z
 ightarrow \mu \mu$: as a function of $p_{T,jet}$, η_{jet} , y_{Z} , and $|\Delta \phi|_{Z,j}$

Ratio measurements:

The ratio of the W⁺ to the W⁻

The ratio of the W cross sections to the Z cross section

The charge asymmetry of W production as a function of η,,

Overall good agreement between the data and the POWHEG and aMC@NLO predictions

Slightly larger ratio and asymmetry in data particularly in the first bin of η_{ij}

Parton distribution functions from V + jets

JHEP 07 (2021) 223

- Impact of ATLAS measurements of vector boson production in association with at least one jet on the parton distribution functions of the proton
- New set of proton parton distribution functions ATLASepWZVjet20
- NNLO analysis using:
 - Hera data
 - ATLAS W/Z@7TeV
 - ATLAS W/Z+jets@8TeV

- ATLASepWZVjet20 is similar to the ATLASepWZ16 for the up quarks and gluon
- For the down and strange sea-quark distributions **significantly smaller experimental and parameterisation uncertainties** at high
 Bjorken x

Summary

- Wide range of V + jets results from ATLAS, CMS and LHCb presented
- Measurements are compared with different theoretical predictions up to NNLO precision with different matrix element and parton shower models
 - → overall good agreement is observed for several angular and kinematical observables
- Studies of V + jets provided valuable inputs for improving the existing constraints on the proton PDFs
- ➤ LHCEW V + Jets group working on common strategies for the future of this kind of measurement

Plenty of results still coming from Run 2 data!