EW Corrections in PDFs

Christopher Schwan

SM@LHC 2022, 11 April 2022

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 740006

Where do EW correction enter PDF fits?

PDF fitting in a nutshell: theory predictions

$$\mathsf{MC} \rightarrow \left\{ \sigma_{ab}(x_1, x_2, Q^2) \right\}_{a,b,x_1,x_2,Q^2} \xrightarrow{\mathsf{DGLAP}} \left\{ \tilde{\sigma}_{ab}(x_1, x_2, Q^2_0) \right\}_{a,b,x_1,x_2} \rightarrow \mathsf{fit} \ \left\{ f_a(x, Q^2_0) \right\}_{a,b}$$

EW corrections concern 3 points:

- evolution equations: QED corrections/full EW corrections in DGLAP
- aparton definition: photon, leptons, massive gauge bosons, top quark, ... in the hadron
- fixed-order corrections: NLO EW + NNLO QCD for Drell-Yan W/Z, ...

$$\begin{split} \sigma_{\mathrm{pp}\to X} &= \sum_{a,b} \int \mathrm{d}x_1 \mathrm{d}x_2 \mathrm{d}Q^2 f_a(x_1,Q^2) f_b(x_2,Q^2) \sigma_{ab}(x_1,x_2,Q^2) \\ &= \sum_{a,b} \int \mathrm{d}x_1 \mathrm{d}x_2 \qquad f_a(x_1,Q_0^2) f_b(x_2,Q_0^2) \tilde{\sigma}_{ab}(x_1,x_2,Q_0^2) \\ \sigma_{ab}(x_1,x_2,Q^2) &= \sum_{n,m} \alpha_{\mathrm{s}}^n(Q^2) \alpha^m \sigma_{ab}^{n,m}(x_1,x_2,Q^2) \end{split}$$

Why do we need EW corrections in PDFs?

- → PDFs are becoming more and more precise, due to
 - more data (LHC 7, 8, 13 TeV),
 - · more precise measurements,
 - better methodologies. . . .
 - but we (mostly) neglect EW corrections. Impact with EW corrections?
 - enlarged phase space: large $M_{\ell\bar{\ell}}$ in DY
 - impact of observables affected by large EW corrections? large x?
 - PDF uncertainties?

Overview O

A few (NLO) integrated cross section with PDF uncertainties for LHC @ 14 TeV:

- "LO EW" PDFs with QED in DGLAP + photon PDF:
 - CT18qed/lux [K. Xie, T.J. Hobbs, T.-J. Hou, C. Schmidt, M. Yan, C.-P. Yuan]
 - MSHT20ged [T. Cridge, L.A. Harland-Lang, A.D. Martin, R.S. Thorne]
 - NNPDF3.1luxQED [V. Bertone, S. Carrazza, N.P. Hartland, J. Rojo]

DGLAP:

- O(α)
- $\mathcal{O}(lpha_{
 m s}lpha)$ [D. de Florian et al.]
- \circ $\mathcal{O}(lpha^2)$ [D. de Florian et al.]

LUXged [A. Manohar] [A. Manohar et al.]:

$$\begin{split} x\gamma(x,Q_0^2) &= \frac{1}{2\pi\alpha(\mu)} \int_x^1 \frac{\mathrm{d}z}{z} \left\{ \int_{m_{\mathrm{D}}^2 x^2/(1-z)}^{\mu^2/(1-z)} \frac{\mathrm{d}Q^2}{Q^2} \alpha^2(Q^2) \Big[-z F_{\mathrm{L}}(x/z,Q^2) \\ &+ \left(z P_{\gamma \mathrm{q}}(z) + \frac{2x^2 m_{\mathrm{D}}}{Q^2} \right) F_2(x/z,Q^2) \Big] - \alpha^2(\mu) z^2 F_2(x/z,\mu^2) \right\} + \mathcal{O}(\alpha_{\mathrm{s}}\alpha,\alpha^2) \end{split}$$

or similar formulae for variants of it [L.A. Harland-Lang et al.]

Momentum sum rule:

$$\int dx \left(\Sigma(x, Q_0^2) + g(x, Q_0^2) + \gamma(x, Q_0^2) \right) = 1$$

- MSHT20 [S. Bailey et al.]: NLO EW K-factors for some processes
- LUXIep [L. Buonocore et al.]: leptons in the proton

What is left to do?

- → PDF fit with NLO EW corrections for all/most PDF processes
 - fully differential predictions or K factors?
- → Use measurements matching our predictions
 - Born- vs. dressed lepton observables
 - Other subtractions from data
 - Data selection: how much inconsistency do we tolerate?

NLO EW for pp $\rightarrow \ell \bar{\ell} + X$ ("Z-boson production")

- predictions for CMS 13 TeV $L = 2.8 \, \text{fb}^{-1}$ [CMS Collaboration]
- ullet very large FSR (QED) corrections around $M_{
 m Z}$ due to very small bins
- photon shower needed?
- weak correction in the tail
- ullet uncertainty band increases for $M_{\ellar\ell}\lessapprox M_{
 m Z}$ with NLO EW o PDF + theory uncertainties

FSR: Born- vs. dressed-lepton observables

large FSR effects in DY, but in purely QCD corrections not covered

- either predict extra photon radiation in theory → dressed-leptons, post-FSR observables,
- ② or "remove" photon radiation in data → Born-leptons, pre-FSR observables.

- Only charged object is the lepton: bare lepton
- Add photons around some ΔR of the lepton: dressed lepton
- Lepton before it radiates: Born lepton
- \rightarrow predictions must match measurements:
 - either purely strong corrections and Born-leptons,
 - ② or QCD+EW corrections and dressed-leptons (preferred option here),
 - or QCD+purely weak corrections and Born-leptons,
 - or a double-counting problem
 - or throw measurements away!
- ... more double-counting problems (backup slides):
 - $\gamma \gamma$ subtraction in DY,
 - t-channel single top-quark production,
 - DIS and EW corrections, . . .

→ find a compromise between consistency and data size!

K factors vs. interpolation grids

Should one use K factors or interpolation grids in PDF fits?

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{O}} = \sum_{a,b} \int \mathrm{d}x_1 \int \mathrm{d}x_2 \int \mathrm{d}Q^2 f_a(x_1, Q^2) f_b(x_2, Q^2) \frac{\mathrm{d}\sigma_{ab}}{\mathrm{d}\mathcal{O}}(x_1, x_2, Q^2)$$

$$\approx \sum_{a,b} \sum_{i,j,k} f_a\left(x_1^i, Q_k^2\right) f_b\left(x_2^j, Q_k^2\right) \frac{\mathrm{d}\sigma_{ab}}{\mathrm{d}\mathcal{O}}\left(x_1^i, x_2^j, Q_k^2\right)$$

$$\frac{\mathrm{d}\sigma_{ab}}{\mathrm{d}\mathcal{O}}\left(x_1^i, x_2^j, Q_k^2\right) = \sum_{n,m} \alpha_\mathrm{s}^n(Q_k^2) \alpha^m \frac{\mathrm{d}\sigma_{ab}^{n,m}}{\mathrm{d}\mathcal{O}} \approx \kappa \sum_{n',m'} \alpha_\mathrm{s}^{n'}(Q_k^2) \alpha^{m'} \frac{\mathrm{d}\sigma_{ab}^{n',m'}}{\mathrm{d}\mathcal{O}}$$

Advantages of interpolation grids:

- fully differential: correct channel (a, b) dependence
- truly PDF independent
- correct scale variation easy to get
- K factors can be calculated from grids

Disadvantages:

• interpolation code for arbitrary FO calculation in $\alpha_s^n \alpha^m$ needed

K factors vs. interpolation grids—CMS DY 13 TeV

→ Are EW corrections channel dependent?

CMS DY 13 TeV (as show before):

- last invariant-mass bin: $M_{\ell ar{\ell}} \in [1500, 3000] \text{GeV}$ with NNPDF3.1luxQED, $\mu = M_{\ell ar{\ell}}$
- total $K_{\text{EW}} = \mathcal{O}(\alpha^3)/\mathcal{O}(\alpha^2) = -12\%$

Channel	NLO fraction	$\kappa_{\sf EW}$
$u\bar{u} + c\bar{c}$	74 %	-14%
$d\bar{d} + s\bar{s}$	24 %	-9%
$\gamma\gamma$	5.8 %	2.5 %
ug + cg	-3%	0 %
:	:	:
	<u> </u>	•

- ug + cg: non-zero at $\mathcal{O}(\alpha_s \alpha^2) \to \text{zero } \mathcal{O}(\alpha^3)$ correction
- K factor strongly channel-dependent
- might be an extreme case
- whether this is significant depends on experimental uncertainties, ...
- ightarrow interpolation grids are the safe choice, developed PINEAPPL [S. Carazza, E.R. Nocera, C.S., M. Zaro]

Summary

NLO EW for PDF processes:

- size of EW corrections can be large, e.g. in DY
- in DY strongly dependent on the bin sizes

Data and theory issues:

- Born-lepton and dressed-lepton observables in purely QCD and QCD+EW fits, respectively: otherwise double counting
- ullet proper observable definitions: $\gamma\gamma$ -initiated contributions, single-top production, . . .
- realistic fit: compromise between correctness and dataset size (DIS and EW corrections)

Tools:

- PINEAPPL: interpolation grids for any FO calculation
- toolchain for producing theory predictions available: https://github.com/NNPDF/runcards
- calculated corrections for all LHC processes (see backup slides)
- we'll publish all of our grids at some point

The (N)NLO tower for $pp \to t\bar{t}\ /\ pp \to jj$

- include NNLO QCD corrections in predictions for PDF fits
- ightarrow but also higher-order lpha contributions: mixed LOs, NLO EW, NLO QCD-EW, ...
 - for all PDF processes
 - study the impact of all of these new contributions/corrections
 - if we have them, use them
 - importance of individual orders very much process/observable dependent

The (N)NLO tower for $pp \to t\bar{t}\ /\ pp \to jj$

- include NNLO QCD corrections in predictions for PDF fits
- \rightarrow but also higher-order α contributions: mixed LOs, NLO EW, NLO QCD-EW, ...
 - for all PDF processes
 - study the impact of all of these new contributions/corrections
 - if we have them, use them
 - importance of individual orders very much process/observable dependent

NLO EW for $\mathrm{pp} \to \mathrm{t} \overline{\mathrm{t}} + X$

- predictions for ATLAS 8 TeV lepton-jet [ATLAS Collaboration]
- $\bullet \ |y_{\rm t}|$ included in CT18, MSHT20 and NNPDF4.0
- NLO EW = $\mathcal{O}(\alpha_{\mathrm{s}}\alpha) + \mathcal{O}(\alpha_{\mathrm{s}}^2\alpha)$
- ullet up to $-5\,\%$ corrections for $p_{
 m T}^{
 m t}$

NLO EW for $pp \rightarrow \ell \bar{\ell} + j + X (Z + j)$

- ullet predictions for CMS 13 TeV L $= 35.9\,\mathrm{fb^{-1}}$ [CMS Collaboration]
- NLO EW = $\mathcal{O}(\alpha^3) + \mathcal{O}(\alpha_s \alpha^3)$
- ullet up to $-14\,\%$ corrections

NLO EW for ${ m pp} o \ell ar{ u}_\ell/ar{\ell} u_\ell + X$ (DY ${ m W}^\pm$)

- predictions for LHCb 8 TeV [LHCb Collaboration]
- included in ABMP16, CT18, MSHT20, NNPDF4.0
- very small corrections

NLO EW for pp $ightarrow \ell \bar{\ell} + X$ (Z) (I)

- predictions for ATLAS 7 TeV central-central [ATLAS Collaboration]
- included in C18A/Z, MSHT20, NNPDF4.0
- ullet small corrections because of symmetric bin limits around $M_{
 m Z}$

NLO EW for $pp \to \ell \bar{\ell} + X$ (Z) (II)

- \bullet predictions for CMS 13 TeV $L=2.8\, fb^{-1}$ [CMS Collaboration]
- ullet very large FSR (QED) corrections around $M_{
 m Z}$ due to very small bins
- higher order correction? photon shower?
- ullet uncertainty band increases in the vicinity of $M_{\ellar\ell} \lessapprox M_{
 m Z}$ upon inclusion of NLO EW

Subtraction of photon-photon contributions

- \bullet For ATLAS and CMS it seems to be standard procedure to subtract $\gamma\gamma\text{-induced}$ contributions:
- not considered part of "Drell-Yan lepton pair production"
- but: proton contains photons, should be counted towards signal!
- Subtracted in data (using photon-PDF), original data most likely lost
- Size of the LO contribution can become significant in large-invariant-mass bins (3% to 6%) depending on the used PDF

t-channel single-top production

Not properly/easily definable at NLO EW (see also [R. Frederix, D. Pagani, I. Tsinikos]):

- included in ABMP16 and NNPDF4.0
- Analyses, e.g. [ATLAS collaboration], treat s-channels as irreducible background
- single-production at LO:

• but at NLO EW not (gauge-invariantly) separable:

- → ignore these datasets
- better idea: partonic cross section with zero b jets?
- probably not too important [E.R. Nocera, M. Ubiali, C. Voisey], due to larger data uncertainty

What is PINEAPPL? [S. Carrazza, E.R. Nocera, C.S., M. Zaro]

We needed

- an interpolation grid library supporting EW corrections,
- and Monte Carlo calculating them

- APPLGRID [T. Carli et al.] and FASTNLO [T. Kluge, K. Rabbertz, M. Wobisch] don't support EW corrections
- we tried to extend APPLGRID and AMCFAST [V. Bertone, R. Frederix, S. Frixione, J. Rojo, M. Sutton] (interface to Madgraph5)
- but we ran into memory/performance problems

Therefore we eventually developed

PINEAPPL (PINEAPPL Is Not an Extension of APPLGRID)

How can I use PINEAPPL?

Source code, installation instructions, etc.:

https://github.com/N3PDF/pineappl

- converters available: $APPLGRID/FASTNLO \rightarrow PINEAPPL$
- interfaces available for
 - MADGRAPH5_AMC@NLO [R. Frederix, S. Frixione, V. Hirschi, D. Pagani, H.-S. Shao, M. Zaro],
 - YADISM [A. Candido, F. Hekhorn, G. Magni]
 - other MCs in preparation ...
- public process (runcard) repository: https://github.com/NNPDF/runcards
 - run generators yourself
 - change parameters
 - · write runcards for new processes
- soon-to-be public grid repository for PDF processes: https://github.com/NNPDF/pineapplgrids (similar to ploughshare)
- can be used to produce EW K factors
- command-line program for easy convolutions, plots, etc.
- APIs for C, Fortran, Python, Rust

Data set	Ref.	NNPDF3.1	NNPDF4.0	ABMP16	CT18	MSHT20
NMC F_2^d/F_2^p	[31]	1	1	×	×	1
NMC $\sigma^{NC,p}$	[32]	1	1	×	1	1
SLAC F_1^p, F_2^d	[33,237]	1	1	1		1
BCDMS F_2^p	[34]	1	1	1	1	1
BCDMS F_2^d	[238]	1	1	×	1	1
BCDMS, NMC, SLAC F_L	[32, 34, 237]	×		×		1
CHORUS σ_{CC}^{σ} , σ_{CC}^{δ}	[35]	1	1	×	*	1
CHORUS	[239]	×		1	×	×
NuTeV F_2 , F_3	[240]	×		×	*	1
NuTeV/CCFR σ_{CC}^{ν} , σ_{CC}^{ρ}	[36]	1	1	1	1	1
EMC F2	[42]	(V)	(V)	×		×
NOMAD	[100]	×	(V)	1		×
CCFR xFT	[241]	×		×	1	×
CCFR F2	[242]	×		×	1	×
CDSHW F_2^p , xF_3^p	[243]	×		×	1	×
1065 $F_2^{\alpha}, F_2^{\beta}$	[244]	x	*	×	×	1
HERA NC, CC	[245]	×		×	*	1
HERA I+II $\sigma_{NC,CC}^p$	[36]	1	1	1	1	
HERA I+II #224	[145]	×	1	×	(V)	1
HERA I+II out	[145]	×	1	×	(V)	×
HERA I+II σ_{nl}^{red}	[39]	1		1	1	
H1 F2 ^{el}	[246]	×		×	1	×
H1 F2	[40]	1		1		×
ZEUS of M	[41]	1		1		×
H1 FL	[247]	×		×	1	1
H1 and ZEUS FL	[246, 249]	×		×		1
ZEUS 820 (HQ) (1j)	[110]	×	(V)			
ZEUS 920 (HQ) (1j)	[111]	×	(V)	×	*	×
H1 (LQ) (1j-2j)	[113]	×	(v)	×		×
H1 (HQ) (1j-2j)	[114]	×	(V)	×		×
ZEUS 920 (HQ) (2j)	[112]	x	(V)			

Table B.1. The fixed-target and collider DIS measurements used for PDF determination. For each PDF set, a blue tick indicates that the given dataset is included and a red cross that it is not included. A parenthesized tick denotes that a dataset was investigated but not included in the baseline fit.

Data set	Ref.	NNPDF3.1	NNPDF4.0	ABMP16	CT18	MSHT20
DY E866 $\sigma_{\rm DY}^d/\sigma_{\rm DY}^p$ (NuSea)	[45]	1	1	1	1	1
DY 1966 σ_{DY}^{p}	[44]	1	1	×	1	1
DY E995 σ_{DY}^{p}	[43]	1	1	1	1	×
DY E905 $\sigma_{rev}^d / \sigma_{rev}^p$ (SeaQuest)	[115]		1	×		x

Table B.2. Same as Table B.1 for fixed-target Drell-Yan data sets.

Data set	Ref.	NNPDF3.1	NNPDF4.0	ABMP16	CTIS	MSHT20
CDF Z rapidity	[46]	1	1	×	1	1
CDF $W \rightarrow \ell \nu$ asymmetry (1.8 TeV)	[250]	×	×	×	1	×
CDF $W \rightarrow \epsilon \nu$ asymmetry ($\mathcal{L} = 170 \text{ pb}^{-1}$)	[251]	×	×	×	1	×
CDF $W \rightarrow \epsilon \nu$ asymmetry ($\mathcal{L} \equiv 1 \text{ fb}^{-1}$)	[252]	×	×	×	×	1
CDF & inclusive jets	[50]	100	1	×		1
CDF cone-based inclusive jets	[253]	×	×	×	1	×
D0 Z rapidity	[47]	1	1	×	1	1
D0 W \rightarrow ev asymmetry ($\mathcal{L} = 0.75 \text{ fb}^{-1}$)	[254]	×	×	×		1
D0 W $\rightarrow e\nu$ (prod.) asymmetry ($\mathcal{L} = 9.7 \text{ fb}^{-1}$)	[255]	×	×	(V)		1
D0 W $\rightarrow e\nu$ (prod. and decay) asymmetry ($\mathcal{L}=9.7~\mathrm{fb}^{-1}$)	[49]	1	(2)	1	1	×
D0 W $\rightarrow \mu\nu$ asymmetry ($\mathcal{L} = 0.3 \text{ fb}^{-1}$)	[256]	×	×	×	1	×
D0 W $\rightarrow \mu\nu$ asymmetry ($\mathcal{L} = 7.3 \text{ fb}^{-1}$)	[48]	1	1	1		1
D0 cone-based inclusive jets	[257]			×	1	1
CDF and D0 top-pair production	[258]	x	×	(V)	×	1
CDF and D0 single-top production	[250]	x	×	1		×

Table B.3. Same as Table B.1 for Tevatron data sets.

Data set	Ref.	NNPDF3.1	NNPDF4.0	ABMP16	CT18	MSHT20
ATLAS W, Z 7 TeV $(\mathcal{L} = 35 \text{ pb}^{-1})$	[51]	1	1	1	1	1
ATLAS W, Z 7 TeV ($\mathcal{L} = 4.6 \text{ fb}^{-1}$)	[52]	1	1	×	(V)	1
ATLAS low-mass DY 7 TeV	[53]	1	1	×	(V)	
ATLAS high-mass DY 7 TeV	[54]	1	1	×	(V)	1
ATLAS W 8 TeV	[79]	×	(V)	×		1
ATLAS DY 2D 8 TeV	78	×	1	×	*	1
ATLAS high-mass DY 2D 8 TeV	[77]	×	1	×	(V)	1
ATLAS $\sigma_{W,Z}$ 13 TeV	[81]	×	1	1		×
ATLAS W+jet 8 TeV	[93]	×	1	×		1
ATLAS $Z p_T$ 7 TeV	[260]	(V)		×	(V)	×
ATLAS Z p_T 8 TeV	[63]	1	1	×	1	1
ATLAS $W + c$ 7 TeV	[83]	×	1	×	(V)	
ATLAS of 7, 8 TeV	[65]	1	1	1	*	×
ATLAS office 7, 8 TeV	[261-266]	×		1		×
ATLAS σ_{td}^{tot} 13 TeV ($\mathcal{L} = 3.2 \text{ fb}^{-1}$)	[66]	1		1		
ATLAS σ_{td}^{tot} 13 TeV ($\mathcal{L} = 139 \text{ fb}^{-1}$)	[134]	×	1	×		
ATLAS σ_{tt}^{int} and Z ratios	[267]	×		×	*	(4)
ATLAS tf lepton+jets 8 TeV	[67]	1	1	×	1	1
ATLAS tt dilepton 8 TeV	[85]		1	×	×	1
ATLAS single-inclusive jets 7 TeV, R=0.6	[73]	1	(V)	×	1	1
ATLAS single-inclusive jets 8 TeV, R=0.6	[se]	×	1	×		×
ATLAS dijets 7 TeV, R=0.6	[148]	x	1	×		
ATLAS direct photon production 8 TeV	[100]	×	(V)	×	×	×
ATLAS direct photon production 13 TeV	[101]	×	1	×	×	×
ATLAS single top Rs 7, 8, 13 TeV	[94,96,98]	×	1	1	×	
ATLAS single top diff. 7 TeV	[94]	×	1	×	×	×
ATLAS single top diff. 8 TeV	[96]	x	1	×		

Table B.4. Same as Table B.1 for ATLAS data sets.

Data set	Ref.	NNPDF3.1	NNPDF4.0	ABMP16	CT18	MSHT20
CMS W asym. 7 TeV ($\mathcal{L} = 36 \text{ ph}^{-1}$)	[208]	×	×	×	×	1
CMS Z 7 TeV ($\mathcal{L} = 36 \text{ pb}^{-1}$)	[200]	×	×	×	×	1
CMS W electron asymmetry 7 TeV	[55]	100	1	×	1	1
CMS W muon asymmetry 7 TeV	[56]	1	1	1	1	×
CMS Drell-Yan 2D 7 TeV	[57]	1	1	×	(4)	1
CMS Drell-Yan 2D 8 TeV	[270]	(V)	×	×		×
CMS W rapidity 8 TeV	[58]	1	1	1	1	1
CMS W, $Z p_T$ 8 TeV ($\mathcal{L} = 18.4 \text{ fb}^{-1}$)	[271]	×	×	×	(4)	
CMS $Z p_T$ 8 TeV	[64]	1	1	×	(4)	×
CMS $W + c$ 7 TeV	[76]	100	1	×	(4)	1
CMS $W + c$ 13 TeV	[84]	×	1	×	×	(V)
CMS single-inclusive jets 2.76 TeV	[75]	1	×	×		1
CMS single-inclusive jets 7 TeV	[147]	100	(Z)	×	1	1
CMS dijets 7 TeV	[74]	×	1	×	×	×
CMS single-inclusive jets 8 TeV	[67]	x	1	×	1	1
CMS 3D dijets 8 TeV	[149]	x	(V)	×		×
CMS and 5 TeV	[88]	x	1	×		
CMS alg* 7, 8 TeV	[146]	1	1	×		
CMS and 8 TeV	[272]	×	×	×		1
CMS and 5, 7, 8, 13 TeV	[68, 273-281]	x	×	1		×
CMS and 13 TeV	[69]	1	1	1	×	
CMS tř lepton+jets S TeV	[70]	100	1	×	×	1
CMS tr 2D dileuton 8 TeV	[90]		1		1	1
CMS tř lepton+jet 13 TeV	[91]	×	1	×	×	
CMS tr dilepton 13 TeV	[92]	×	1	×	×	
CMS single top as + as 7 TeV	[95]		1	1	× .	
CMS single top R. S. 13 TeV	[97,99]		1	- 2		- 2
CMS single top 13 TeV	[282, 283]	- 2			7	(v)

Table B.5. Same as Table B.1 for CMS data sets.

Data set	Ref.	NNPDF3.1	NNPDF4.0	ABMP16	CTIS	MSHT20
LHCb Z 7 TeV ($\mathcal{L} = 940 \text{ pb}^{-1}$)	[59]	1	1	×	×	1
LHCb $Z \to ee$ 8 TeV $(\mathcal{L} = 2 \text{ fb}^{-1})$	[61]	1	1	1	1	1
LHCb W 7 TeV ($\mathcal{L} = 37 \text{ pb}^{-1}$)	[284]	×	×	×	×	1
LHCb $W, Z \rightarrow \mu$ 7 TeV	[60]	100	1	1	1	1
LHCb $W, Z \rightarrow \mu$ 8 TeV	[62]	100	1	1	1	1
LHCb $W \to e$ 8 TeV	[60]	×	(V)	×	×	×
LHCb $Z \rightarrow \mu\mu$, se 13 TeV	[62]		1	×		×

Table B.6. Same as Table B.1 for LHCb data sets.