

State of the art Standard Model Higgs boson measurements

Tim Scanlon

On behalf of the ATLAS and CMS Collaborations

Introduction

Overview

- ➢ Higgs over the past 10 years
- Measurements
- > Overview
- Higgs measurements
 - ≻ H→bb
 - ≻H→WW
 - ≻ Η→ττ
 - ≻ Η→γγ
 - Combinations
 - \succ Higgs width

• Summary

Higgs branching Ratios

<u>CMS: arXiv:1202.1487</u> <u>ATLAS: arXiv:1202.1415</u>

ATLAS

Just over 10 years ago...

100

DATA Background Signal (m =125 GeV) Signal (m^H=150 GeV) Signal (m^H=190 GeV)

 $H \rightarrow ZZ^{(*)} \rightarrow 4I$

 $\int Ldt = 4.8 \text{ fb}^{-1}$

150

 $\sqrt{s} = 7 \text{ TeV}$

///// Syst.Unc.

• There was some excitement about a smattering of events

"More data are required to ascertain the origin of this excess." "Once the look-elsewhere effect is considered, none of these excesses are significant."

200

250

m₄I[GeV]

...the discovery...

"An excess of events is observed above the expected background, with a local significance of 5.0 standard deviations, at a mass near 125 GeV, signalling the production of a new particle.

"Clear evidence for the production of a neutral boson with a measured mass of 126.0 +/- 0.4(stat) +/- 0.4(sys) GeV is presented."

CMS arXiv:1207.7235

ATLAS arXiv:1207.7214

...approximately 10 years (and 15M Higgs bosons) later

• A lot of amazing progress....

All main production modes observed to > 5 sigma

New era for Higgs physics

• Moving from the era of discovery to measurement

Measurements

- Inclusive (although also used broken down into production/decay modes)
 - > Signal strength: μ = measurement/SM prediction
 - > Coupling strength modifier: κ_X = alter strength(s) of coupling to X
- Simplified Template Cross Section (STXS)
 - Measure cross-sections in template bins
 - Minimise theoretical uncertainties
 - Maximise experimental sensitivity
 - Enhanced sensitivity beyond SM (BSM)

- Fiducial
 - Measure in restricted phase space that closely matches experimental selection
 - Less model dependence
 - Combinations more difficult
 - Difficult for complicated variables (multivariate outputs)
 - Differential: Measure in several bins

State-of-the-art

Channel	STXS Fiducial						
H→bb	ATLAS: <u>ATLAS-CONF-2021-051</u> (09/21)	ATLAS: <u>ATLAS-CONF-2022-015</u> (03/22) CMS: <u>arXiv:2006.13251</u> (06/20)					
H→WW	ATLAS: ATLAS-CONF-2021-014 (03/21) CMS: CMS-HIG-PAS-20-013 (03/22)	CMS: arXiv:2007.01984 (04/20)					
H→ZZ	ATLAS: <u>arXiv:2004.03447</u> (04/20) CMS: <u>arXiv:2103.04956</u> (03/21)	ATLAS: <u>arXiv:2004.03969</u> (04/20) CMS: <u>arXiv:2103.04956</u> (03/21)					
Η→ττ	ATLAS: <u>arXiv:2201.08269</u> (01/22) CMS: <u>CMS-PAS-HIG-19-010</u> (07/20)	CMS: <u>arXiv:2107.11486</u> (07/21)					
Н→уу	ATLAS: <u>ATLAS-CONF-2020-026</u> (07/20) CMS: <u>arXiv:2103.06956</u> (03/21)	ATLAS: <u>arXiv:2202.00487 (02/22)</u> CMS: <u>CMS-PAS-HIG-19-016</u> (03/22)					
Combinations	ATLAS: <u>ATLAS-CONF-2021-053</u> (09/21) CMS: <u>CMS-PAS-HIG-19-005</u> (01/20)	ATLAS: <u>ATLAS-CONF-2022-002</u> (01/22)					
Channel	State-of-the-art limits						
Н→сс	ATLAS: arXiv:2201.11428 (01/22), CMS: CMS	-PAS-HIG-21-008 (02/22)					
Property	State-of-the-a	rt measurements					
Mass	ATLAS: <u>ATLAS-CONF-2020-005</u> (04	/20), CMS: <u>arXiv:2002.06398</u> (02/20)					
Width	ATLAS: arXiv:1808.01191 (08/18), CMS: arXiv:2202.06923 (02/22)						
СР	ATLAS: arXiv:2109.13808, arXiv:2004.0454	45 CMS: arXiv:2110.04836, arXiv:2003.10866					
12/04/2022	Newer results in RED discussed today See talks on Thursday for latest <u>H->cc</u> and <u>CP results</u>						

ATLAS-CONF-2021-051 ATLAS-CONF-2022-006

ATLAS Preliminary VH, $H \rightarrow b\overline{b}$, $V \rightarrow lep$. (resolved + boosted)

H→bb

[fb]

- Two VH, H→bb results combined in new STXS measurement
 - Resolved: <u>arXiv:2007.02873</u>
 - Boosted: <u>arXiv:2008.02508</u>
 - Enhanced sensitivity to BSM
- Fiducial measurements*
 - ▶ Based upon resolved VH, $H \rightarrow bb$ STXS
 - Focuses only on H(bb) + MET final state

12/04/2022

* See also X+H->bb measurements, ATLAS arXiv:2111.08340, CMS arXiv:2006.13251

ATLAS-CONF-2022-006

H→bb Fiducial Measurement

Limited by modelling of:

- Data statistical
- Jets
- Background modelling
- Unfolding uncertainty

Source of uncertain	σ_{μ}			
Source of uncertain	loy	T_1	T_2	
Total		0.71	0.53	
Statistical		0.45	0.46	
Systematic		0.55	0.26	
Experimental		0.21	0.14	
Jets		0.16	0.11	
Missing transverse	$\operatorname{momentum}$	0.06	0.05	
	<i>b</i> -jets	0.06	0.06	
Flavour-tagging	<i>c</i> -jets	0.06	0.04	
	light-flavour jets	0.03	0.01	
Leptons		0.01	0.04	
Pile-up		0.02	0.02	
Luminosity		0.02	0.02	
Background modell	ing	0.29	0.14	
$t\overline{t}$		0.18	0.06	
Dibosons		0.14	0.06	
Z + jets		0.13	0.08	
W + jets		0.10	0.03	
Single top quark		0.07	0.04	
Fiducial templates	modelling	0.18	0.11	
Unfolding uncertain	nty, T_1	0.17	< 0.01	
PS model acceptan	ce	0.01	0.09	
Unfolding uncertain	nty, T_2	< 0.01	0.05	
WH/~ZH		0.01	0.03	
NLO EW		0.01	0.02	
QCD scale accepta	nce, $ggZH$	0.02	0.01	
2/3 jets ratio		0.01	0.01	
PS model m_{bb} shap	e	0.01	< 0.01	
QCD scale accepta	0.01	< 0.01		
PDF acceptance		< 0.01	< 0.01	
MC statistics		0.17	0.11	
Floating normalization	tions	0.14	0.06	

H→WW

- Targets ggH, VBF, VH production modes
- Final states with at least two leptons
- Measurements
 - Combined cross section
 - μ=0.95 +0.10 -0.09
 - Production mode cross sections
 - > 14 STXS bins

Category	Number of leptons	Number of jets	Sub-categorization	
ggH	2	-	$(\mathrm{DF},\mathrm{SF}) imes(0 ext{ jets},1 ext{ jet},\geq 2 ext{ jets})$	
VBF	2	≥ 2	(DF, SF)	NEW
VH2j	2	≥ 2	(DF, SF)	
WHSS	2	≥ 1	$(DF, SF) \times (0 \text{ jets}, 1 \text{ jet})$	
WH3 ℓ	3	0	SF lepton pair with opposite or same sign	
$ZH3\ell$	3	≥ 1	(1 jet, 2 jets)	
$ m ZH4\ell$	4	-	(DF, SF)	

$H \rightarrow WW$

3%

5%

9%

10%

Backg. norm.

Stat. uncertainty

Syst. uncertainty

Total uncertainty

4%

6%

10%

11%

6%

28%

23%

36%

Lepton modelling

12/04/2022

4%

21%

19%

29%

6%

31%

11%

33%

Η→ττ

Full Run 2 dataset STXS measurements

- Targets ggH, VBF, VH, ttH production modes
- Leptonic and hadronic τ final states
- 12 reconstruction categories designed for STXS binning

Measure

- Inclusive and production mode cross sections
- STXS cross section measurements in 9 bins

		$\sqrt{s} = 13$	TeV, 13	ion 9 fb⁻¹, H	$\rightarrow \tau \tau$								
<u>v</u>	ttH_1	0.0	0.0	0.0	0.2	0.2	0.1	0.0	0.1	6.7	_	220	ds
ge	ttH_0	0.2	0.0	0.5	0.8	0.4	0.5	0.3	0.3	8.5	_	200	/iel
Cat	VBF_1	0.2	0.2	0.0	3.1	1.5	4.0	0.1	131.2	0.0	_	180	a
ğ	VBF_0	9.8	5.7	4.0	23.8	8.0	61.4	1.5	191.0	0.4	-	160	ign
lcte	VH_1	1.9	0.5	7.1	5.9	2.6	0.1	35.9	0.2	0.4	_	140	S
stru	VH_0	63.9	9.8	92.4	51.3	12.5	1.6	74.5	2.1	1.1	_	120	ctec
Suo	boost_3	0.0	0.0	0.0	9.8	75.8	0.0	1.1	12.0	0.7	_	100	bec
ec.	boost_2	0.1	14.7	14.6	200.3	14.5	4.5	2.4	25.5	1.3	_	80	Щ
ш	boost_1_ge2J	30.9	24.0	188.5	28.7	0.0	36.0	3.9	25.9	1.9	_	60	
	boost_1_1J	38.0	223.4	17.2	20.1	0.0	4.4	1.9	12.6	0.0	_	40	
	boost_0_ge2J	54.5	3.3	21.1	0.1	0.0	7.9	1.1	5.2	0.5	_	20	
	boost_0_1J	104.2	39.0	4.7	0.0	0.0	2.0	0.9	4.7	0.0	_	0	
	N(jets) p _T (H) [GeV] m _{jj} [GeV]	: ≥1 :[60, 120] :[0, 350] [♠]	1 [120,	≥ 2 , 200] [0, 350]	≥ 0 [200, 300]	≥ 0 [300, ∞[≥ 2 [0, 200] [350, ∞[≥2 [60, 120]	≥2 [350, ∞[0	
			gluon	fusion + g	$gg \rightarrow Z(-z)$	→ qq)H		VBF + V	$(\rightarrow qq)H$	ttH			

.

180

12/04/2022

ATLAS arXiv2201.08269

Η→ττ

Limited by

- Data statistical
- Signal uncertainties
- Jet and missing transverse energy modelling
- Background sample size

Source of uncertainty	Impact on Δ Observed	$\Delta \sigma / \sigma (pp \to H \to \tau \tau) $ [%] Expected
Theoretical uncertainty in signal	8.7	8.5
Jet and $\vec{E}_{\rm T}^{\rm miss}$	4.5	4.2
Background sample size	4.0	3.7
Hadronic τ decays	2.1	2.1
Misidentified τ	2.0	2.0
Luminosity	1.8	1.8
Theoretical uncertainty in $Z + jets$ processes	1.7	1.2
Theoretical uncertainty in top processes	1.1	1.1
Flavour tagging	0.4	0.5
Electrons and muons	0.4	0.4
Total systematic uncertainty	12.0	11.4
Data sample size	7.2	6.7
Total	13.9	13.2

CMS arXiv:2107.11486

• Full Run 2 dataset results:

- Fiducial inclusive cross section
 - 426±102 fb (expected 408 ± 27 fb)
- Differential fiducial cross-sections
 - Number of jets, Higgs p_T and leading jet p_T

Limited by

- Data statistical
- Signal uncertainties
- Background modelling

H→γγ

ATLAS arXiv:2202.00487 CMS-PAS-HIG-19-016

- Updated measurements with full Run 2 dataset
 - Both CMS and ATLAS provided fiducial cross-sections measurements:
 - Inclusive and differential
 - Targeting several production modes
 - As a function of multiple variables
 - Double differential measurements

ATLAS arXiv:2202.00487 CMS-PAS-HIG-19-016

12/04/2022

Combination

- Combination of latest results in
 - γγ, ZZ, WW, ττ, bb, μμ, Zγ
 - Many updated to full dataset
 - New channels included
- Global signal strength

➤ 1.06 ±0.06

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}, 36.1 - 139 \text{ fb}^{-1}$ $m_H = 125.09 \text{ GeV}$ $p_H = 79\%$		Total Stat. Syst. SM	
SM SM		Total	Stat. Syst.
ggF γγ 🥊	1.02	+0.11	$\begin{pmatrix} +0.08 \\ -0.08 \end{pmatrix}$, $\begin{pmatrix} +0.07 \\ -0.07 \end{pmatrix}$
ggF ZZ	0.95	+0.11 -0.11	$\begin{pmatrix} +0.10 \\ -0.10 \end{pmatrix}$, $\begin{pmatrix} +0.04 \\ -0.03 \end{pmatrix}$
ggF WW	1.13	+0.13 -0.12	$\begin{pmatrix} +0.06 \\ -0.06 \end{pmatrix}$, $\begin{pmatrix} +0.12 \\ -0.10 \end{pmatrix}$
ggF tt 📫	0.87	+0.28 -0.25	$\begin{pmatrix} +0.15 \\ -0.15 \end{pmatrix}$, $\begin{pmatrix} +0.23 \\ -0.20 \end{pmatrix}$
ggF+ttH μμ 📕 📕	0.52	+0.91 -0.88	$\begin{pmatrix} +0.77 & +0.49 \\ -0.79 & -0.38 \end{pmatrix}$
VBF γγ	1.47	+0.27 -0.24	$\begin{pmatrix} +0.21 & +0.17 \\ -0.20 & -0.14 \end{pmatrix}$
VBF ZZ	1.31	+0.51 -0.42	($^{+0.50}_{-0.42}$, $^{+0.11}_{-0.06}$
VBF WW	1.09	+0.19 -0.17	$\left(\begin{array}{cc} +0.15 \\ -0.14 \end{array}\right. , \begin{array}{c} +0.11 \\ -0.10 \end{array}$
VBF ττ 🙀	0.99	+0.20 -0.18	$\left(\begin{array}{cc} + \ 0.14 \\ - \ 0.14 \end{array} \right. , \begin{array}{c} + \ 0.15 \\ - \ 0.12 \end{array}$
VBF+ggF bb	0.98	+0.38 -0.36	$\left(\begin{array}{cc} +0.31 \\ -0.33 \end{array} \right.$, $\begin{array}{c} +0.21 \\ -0.15 \end{array}$
VBF+VH μμ 🗾	2.33	+1.34 -1.26	$\left(\begin{array}{cc} + 1.32 \\ - 1.24 \end{array}\right. , \begin{array}{c} + 0.20 \\ - 0.23 \end{array}$
VH γγ	1.33	+0.33 -0.31	$\left(\begin{array}{cc} +0.32 \\ -0.30 \end{array} \right. , \begin{array}{c} +0.10 \\ -0.08 \end{array}$
VH ZZ	1.51	+1.17 -0.94	($^{+1.14}_{-0.93}$, $^{+0.24}_{-0.16}$
VΗ ττ μ μ	0.98	+0.59 -0.57	($^{+0.49}_{-0.49}$, $^{+0.33}_{-0.29}$
WH bb	1.04	+0.28 -0.26	($^{+0.19}_{-0.19}$, $^{+0.20}_{-0.18}$
ZH bb	1.00	+0.24 -0.22	$\left(\begin{array}{cc} +0.17 \\ -0.17 \end{array}\right), \begin{array}{c} +0.17 \\ -0.14 \end{array}$
ttH+tH γγ 💼	0.93	+0.27 -0.25	($^{+0.26}_{-0.24}$, $^{+0.08}_{-0.06}$
ttH+tH WW	1.64	+0.65 -0.61	($^{+0.44}_{-0.43}$, $^{+0.48}_{-0.43}$
ttH+tH ZZ	1.69	+1.69 -1.10	$\left(\begin{array}{c} +1.65\\ -1.09\end{array}, \begin{array}{c} +0.37\\ -0.16\end{array}\right.$
ttH+tH tt	1.39	+0.86 -0.76	($^{+0.66}_{-0.62}$, $^{+0.54}_{-0.44}$
ttH+tH bb	0.35	+0.34 -0.33	$\left(\begin{array}{c} +0.20\\ -0.20\end{array}\right., \begin{array}{c} +0.28\\ -0.27\end{array}$
	 ▲		

ATLAS-CONF-2021-053

STXS Combination

- STXS combination performed
 - Covers 37 bins
- Measurements parameterized as:

$$(\sigma \times B)_{if} = (\sigma \times B)_{i,ZZ} \cdot \left(\frac{B_f}{B_{ZZ}}\right)$$

• All measured coupling strength parameters found to be consistent with the SM

ATLAS-CONF-2022-002

Fiducial Combination

- Combined measurement of $H \rightarrow ZZ$ and $H \rightarrow \gamma \gamma$
- Channels extrapolated to full phase space
 - Reduced total uncertainty
- Measurements as a function of:
 - Higgs transverse momentum, rapidity, number of jets, and leading jet transverse momentum

Higgs Width

• Up to full Run 2 dataset ZZ production

Four charged leptons or two charged leptons and MET

- First evidence for off-shell Higgs production
- Provides measurement of Higgs width
 ➤ Γ_H= 3.2+2.4-1.7 MeV

Summary

- An amazing amount of progress has been made since Higgs discovery in 2012
 - All main production channels and decays now observed
 - Significant progress on gaining sensitivity to rarer modes
- Higgs boson physics now into the age of measurements
 - Rapid and continual progress in making more precise measurements
 - Main limitations
 - Signal modelling uncertainties, object modelling and data statistics
- Still only at the very beginning of our exploration of the Higgs
 - A lot more data to analyse and improvements to be made
 - A lot more to learn and maybe some surprises....

Backup Slides

H→bb: Signal Yields

$H \rightarrow bb$: Composition

 $qq \rightarrow Z(II)H$

 O^{T_2}

H→bb: Efficiency/Purity

H→bb: Samples

Process	Generators	$\sigma \times B_{\rm bb}^{\rm H}$ [fb]
$qq \rightarrow ZH \rightarrow \nu\nu b\bar{b}$	Powheg MiNLO + $GoSam$ + Pythia 8.212 (NNPDF3.0NLO)	153.05×0.582
$qq \to WH \to \ell^+ \nu b\bar{b}$	Powheg MiNLO + $GoSam$ + Pythia 8.212 (NNPDF3.0NLO)	282.78×0.582
$qq \to WH \to \ell^- \nu b\bar{b}$	Powheg MiNLO + $GoSam$ + Pythia 8.212 (NNPDF3.0NLO)	179.49×0.582
$qq \to ZH \to \ell\ell b\bar{b}$	Powheg MiNLO + $GoSam$ + Pythia 8.212 (NNPDF3.0NLO)	77.04×0.582
$gg \to ZH \to \nu \nu b \bar{b}$	Powheg + Pythia 8.212 (NNPDF 3.0 NLO)	24.57×0.582
$gg \to ZH \to \ell\ell b\bar{b}$	Powheg + Pythia 8.212 (NNPDF 3.0 NLO)	12.42×0.582

H→bb: Selection

Selection	Detector-level	Particle-level				
	No electrons or muons $p_{\rm T} > 7 {\rm GeV}$					
Leptons	Electrons Muons $ \eta < 2.47$ $ \eta < 2.7$ LooseLH Loose	No electrons or muons $p_{\rm T} > 7 {\rm GeV}$ Electrons Muons				
	$\begin{array}{l} d_0/\sigma_{d_0} < 5 & d_0/\sigma_{d_0} < 3 \\ z_0 \sin \theta < 0.5 \mathrm{mm} & z_0 \sin \theta < 0.5 \mathrm{mm} \\ \mathrm{Loose \ track-isolation} \end{array}$	$ \eta < 2.47$ $ \eta < 2.7$				
Hadronic τ	$\begin{array}{c} p_{\rm T} > 20 \; {\rm GeV} \\ \eta < 1.37 \; {\rm or} \; 1.52 < \eta < 2.5 \\ {\rm Medium} \end{array}$	au-labelled central jets				
Anti- $k_t R = 0.4$ Jets	$\begin{array}{l} \mbox{From topological clusters} \\ \geq 2 \mbox{ central jets} \\ \mbox{Central} & \mbox{Forward} \end{array}$	$\begin{array}{ll} \mbox{From collider-stable particles} \\ & \geq 2 \mbox{ central jets} \\ \mbox{Central} & \mbox{Forward} \end{array}$				
<i>b</i> -jets	$\begin{array}{l} p_{\rm T} > 20 \; {\rm GeV} & p_{\rm T} > 30 \; {\rm GeV} \\ \eta < 2.5 & 2.5 < \eta < 4.5 \\ 2 \; b\text{-tagged central jets, MV2} \; (70\% \; {\rm efficiency}) \end{array}$	$\begin{array}{ll} p_{\mathrm{T}} > 20 \mathrm{GeV} & p_{\mathrm{T}} > 30 \mathrm{GeV} \\ \eta < 2.5 & 2.5 < \eta < 4.5 \\ 2 \ b \text{labelled central jets} \end{array}$				
Jet categories	At least one <i>b</i> -jet with $p_{\rm T} > 45 {\rm GeV}$ Two, with exactly 2 and 3 jets	At least one <i>b</i> -labelled jet with $p_{\rm T} > 45 {\rm GeV}$ One, with 2 or 3 jets				
Overlap removal	Between e, μ, τ and jets	Remove e/μ within $\Delta R = 0.4$ of a jet, remove τ -labelled jets				
$E_{\mathrm{T}}^{\mathrm{miss}}$	Negative vectorial sum of $p_{\rm T}$ of jets, leptons, taus and photons plus a track-based soft term $> 150 {\rm GeV}$	Negative vectorial sum of $p_{\rm T}$ of all stable interacting particles with $ \eta < 5$, including muons with $p_{\rm T} > 6 {\rm GeV}$ $> 150 {\rm GeV}$				
$ \begin{array}{c} H_{\rm T} \\ \min \Delta \phi(\vec{E}_{\rm T}^{\rm miss}, \vec{j}) \\ \Delta \phi(\vec{E}_{\rm T}^{\rm miss}, \vec{b}_1 + \vec{b}_2) \\ \Delta \phi(\vec{b}_1, \vec{b}_2) \\ \Delta \phi(\vec{E}_{\rm T}^{\rm miss}, \vec{p}_{\rm T}^{\rm miss}) \end{array} $	$> 120 \text{ GeV } (2 \text{ jets}), > 150 \text{ GeV } (3 \text{ jets}) > 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets}) > 120^{\circ} < 140^{\circ} < 90^{\circ}$	$> 120 \text{GeV} (2 \text{ jets}), > 150 \text{GeV} (3 \text{ jets}) > 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets}) > 120^{\circ} < 140^{\circ} -$				
$E_{\rm T}^{\rm miss}$ regions	$\begin{array}{l} 150{\rm GeV} \leq E_{\rm T}^{\rm miss} < 250{\rm GeV} \\ E_{\rm T}^{\rm miss} \geq 250{\rm GeV} \end{array}$	$\begin{array}{l} 150 \ \mathrm{GeV} \leq E_{\mathrm{T}}^{\mathrm{miss}} < 250 \ \mathrm{GeV} \\ E_{\mathrm{T}}^{\mathrm{miss}} \geq 250 \ \mathrm{GeV} \end{array}$				

H→WW: STXS

H→WW: Signal Composition

31

ggH; 0-jet

ggH; 1-jet; p_H < 60

ggH; 1-jet; 60 < p_{-}^{H} < 200

ggH; ≥ 2-jet; m _ > 700

ggH; 200 < p^{H} < 300

qqH; m > 350; p + 200

qqH; 350 < m < 700

qqH; 60 < m_ < 120

WH lep; p^v > 150

WH lep; $p_{-}^{V} < 150$

ZH lep; $p_{-}^{V} > 150$

ZH lep; p^v₊ < 150

ggH; p_ > 300

qqH; m > 700

ggH; ≥ 2-jet; m_ < 350; p_ + > 120

ggH; ≥ 2-jet; m ggH; ≥ 2-jet; m

ggH; ≥ 2-jet; 350 < m < 700

H→WW: Correlation

	CMS	Prel	iminar	/								138 f	b ⁻¹ (1	3 TeV)
VBF; $m_{jj} > 700; p_T^H < 200^{-1}$	0.03	0.00	0.00	0.00	0.00	0.00	0.09	-0.05	-0.14	0.01	0.04	-0.05	-0.15	
VBF; $m_{jj} > 350; p_T^H > 200$	-0.04	0.01	0.00	0.00	0.01	0.01	0.00	0.01	0.03	-0.10	-0.28	-0.02		-0.15
$350 < m_{jj} < 700; p_T^H < 200^{-1}$	0.11	0.00	0.01	0.01	0.00	0.00	0.09	-0.02	-0.22	-0.03	0.00		-0.02	-0.05
ggH; <i>p</i> ^H _T > 300 -	-0.01	-0.05	-0.01	-0.01	0.00	0.00	-0.02	0.02	0.03	-0.38		0.00	-0.28	0.04
ggH; 200 < p_T^H < 300 -	-0.14	0.02	0.01	0.00	0.00	0.01	0.04	-0.04	-0.02		-0.38	-0.03	-0.10	0.01
ggH; 2j -	-0.48	0.01	-0.01	0.00	0.01	0.06	-0.18	-0.18		-0.02	0.03	-0.22	0.03	-0.14
ggH; 1j; 60 < p_T^H < 200 -	0.03	0.01	-0.01	0.00	0.00	0.11	-0.30		-0.18	-0.04	0.02	-0.02	0.01	-0.05
ggH; 1j; <i>p_T^H</i> < 60 ⁻	0.04	0.02	-0.02	0.01	0.02	-0.18		-0.30	-0.18	0.04	-0.02	0.09	0.00	0.09
ggH; 0j -	0.01	0.03	0.01	0.03	0.02		-0.18	0.11	0.06	0.01	0.00	0.00	0.01	0.00
ZH; $p_T^V < 150^{-1}$	0.00	0.01	0.01	0.04		0.02	0.02	0.00	0.01	0.00	0.00	0.00	0.01	0.00
ZH; $p_T^V > 150^{-1}$	0.00	0.02	0.00		0.04	0.03	0.01	0.00	0.00	0.00	-0.01	0.01	0.00	0.00
WH; $p_T^V < 150^{-1}$	-0.01	-0.35		0.00	0.01	0.01	-0.02	-0.01	-0.01	0.01	-0.01	0.01	0.00	0.00
WH; $p_T^V > 150^{-1}$	0.00		-0.35	0.02	0.01	0.03	0.02	0.01	0.01	0.02	-0.05	0.00	0.01	0.00
VH2j -	-	0.00	-0.01	0.00	0.00	0.01	0.04	0.03	-0.48	-0.14	-0.01	0.11	-0.04	0.03
	VH2j -	WH; $p_{T}^{V} > 150$ -	WH; $p_{T}^{V} < 150$ -	ZH; <i>p</i> ^T > 150 -	ZH; $p_{T}^{V} < 150$ -	- j0 - ggH; 0j	ggH; 1]; $p_T^H < 60$ -	ggH; 1j; 60 < p_T^H < 200 -	99H; 2j -	ggH; 200 < p_T^H < 300 -	ggH; p_{T}^{H} > 300 -	/BF; 350 < m_{jj} < 700; p_T^H < 200 -	VBF; $m_{jj} > 350; p_T^H > 200$ -	VBF; $m_{jj} > 700; p_T^H < 200$ -

Η→ττ: STXS

H→ττ: Composition

STXS Binning

H→ττ: Contribution

12/04/2022

H→ττ: Correlations

H→ττ: Samples

Process	Generate	or	PDF s	set	Tune	Normalisation
	ME	\mathbf{PS}	${ m ME}$	\mathbf{PS}		
Higgs boson						
ggF	Powheg Box $v2$	Pythia 8	PDF4LHC15nnlo	CTEQ6L1	AZNLO	$N^{3}LO QCD + NLO EW$
VBF	Powheg Box $v2$	$\mathbf{Pythia}8$	PDF4LHC15nlo	CTEQ6L1	AZNLO	NNLO $QCD + NLO EW$
VH	Powheg Box $v2$	$\mathbf{Pythia}8$	PDF4LHC15nlo	CTEQ6L1	AZNLO	NNLO $QCD + NLO EW$
$t\overline{t}H$	Powheg Box $v2$	$\mathbf{Pythia}8$	NNPDF3.0nnlo	NNPDF2.3lo	A14	NLO QCD + NLO EW
tH	MadGraph5_ aMC@NLO	Pythia 8	CT10	NNPDF2.3L0	A14	NLO
$b\overline{b}H$	$\operatorname{Powheg}\operatorname{Box}v2$	$\mathbf{Pythia}8$	NNPDF3.0nnlo	NNPDF2.3L0	A14	NLO
Background						
V + jets (QCD/EW)	Sherpa 2.	2.1	NNPDF3.	.0nnlo	Sherpa	NNLO for QCD, LO for EW
$t\overline{t}$	Powheg Box $v2$	$\mathbf{Pythia}8$	NNPDF3.0nnlo	NNPDF2.3lo	A14	NNLO + NNLL
Single top	Powheg Box $v2$	$\operatorname{Pythia} 8$	NNPDF3.0nnlo	NNPDF2.3lo	A14	NLO
Diboson	Sherpa 2 .	2.1	NNPDF3.	.0nnlo	Sherpa	NLO

$H \rightarrow \gamma \gamma$: Sample Composition

$H \rightarrow \gamma \gamma$: Response Matrices

$H \rightarrow \gamma \gamma$: Response Matrices

$H \rightarrow \gamma \gamma$: Selections

Object	particle-level	detector-level
Photons	$E_{\rm T} > 0.35/0.25 \times m_{\gamma\gamma}$ η \in [0, 1.37] \cup [1.52, 2.37]	← same ← same
	$E_{\rm T}^{\rm iso}(\Delta R < 0.2, p_{\rm T} > 1 {\rm GeV}, {\rm charged}) < 0.05 E_{\rm T}$	tight identification (shower shapes) $E_{\rm T}^{\rm iso, track}(\Delta R < 0.2, p_{\rm T} > 1 {\rm GeV}) < 0.05 E_{\rm T}$ $E_{\rm T}^{\rm iso, calo}(\Delta R < 0.2) < 0.065 E_{\rm T}$
Leptons	dressed with photons in $\Delta R < 0.1$	
	$p_{\rm T} > 15 \text{GeV}$ $e: \eta \in [0, 1.37] \cup [1.52, 2.47]$ $\mu: \eta \in [0, 2.7]$	$ z_0 \sin \theta < 0.5 \text{ mm} \land d_0/\sigma(d_0) < 5(e)/3(\mu)$ \leftarrow same \leftarrow same \leftarrow same <i>medium identification requirements</i> calorimeter and track-based isolation
Jets	anti- $k_t R = 0.4$ (excluding $\nu, \ell, X \leftarrow H$) $p_T > 30 \text{ GeV}$ y < 4.4	anti- $k_t R = 0.4$ particle-flow \leftarrow same \leftarrow same tight-JVT for jets with $ \eta < 2.5$ and $p_T < 60$ GeV
<i>b</i> -jets	jets with $ \eta < 2.5$ and <i>b</i> -hadron of $p_{\rm T} > 5$ GeV within $\Delta R < 0.4$	jets passing the DL1r <i>b</i> -tagging at 70% efficiency
$E_{\mathrm{T}}^{\mathrm{miss}}$	$\sum p_{\rm T}$ of neutrinos not from hadrons	$-\sum p_{\rm T}$ of selected γ , ℓ , jets + soft tracks from primary vertex
n	definition	
ton	two salastad photons	

Diphoton	two selected photons
VBF-enhanced	at least two jets, $m_{jj} \ge 600 \text{ GeV}$, $ \Delta y_{jj} \ge 3.5$
$N_{\text{lepton}} \ge 1$	electron or muon with $p_{\rm T}^{\ell} > 15 {\rm GeV}$
High $E_{\rm T}^{\rm miss}$	$E_{\rm T}^{\rm miss} > 80 {\rm GeV}, p_{\rm T}^{\gamma\gamma} > 80 {\rm GeV}$
<i>ttH</i> -enhanced	at least one <i>b</i> -jet and $(N_{\ell} = 0 \text{ and } N_j \ge 4, \text{ or} N_{\ell} \ge 1 \text{ AND } N_j \ge 3)$

$H \rightarrow \gamma \gamma$: Event Spread

$H \rightarrow \gamma \gamma$: Correlation

$H \rightarrow \gamma \gamma : tau_c$

$$\tau_{\rm C}^{\rm j} = \max_{\rm j} \left(\frac{\sqrt{E_{\rm j}^2 - p_{{\rm z},{\rm j}}^2}}{2\cosh\left(Y_{\rm j} - Y_{\rm H}\right)} \right)$$

Combination

Decay channel	Target Production Modes	$\mathcal{L} \ [\mathrm{fb}^{-1}]$	Ref.	Used in combined measurement
$H \to \gamma \gamma$	$\mathrm{ggF},\mathrm{VBF},WH,ZH,t\bar{t}H,tH$	139	[10]	Everywhere
$H \to ZZ^*$	$\mathrm{ggF},\mathrm{VBF},WH,ZH,t\bar{t}H(4\ell)$	139	[11]	Everywhere
	$tar{t}H$	36.1	[19]	Everywhere but STXS and SMEFT
$H \to WW^*$	m ggF, VBF	139	[12]	Everywhere
	$tar{t}H$	36.1	[19]	Everywhere but STXS and SMEFT
$H \to \tau \tau$	$ggF, VBF, WH, ZH, t\bar{t}H(\tau_{had}\tau_{had})$	139	[13]	Everywhere
	$t \bar{t} H$	36.1	[19]	Everywhere but STXS and SMEFT
$H \rightarrow b \bar{b}$	WH, ZH	139	[14, 15, 16]	Everywhere
	VBF	126	[17]	Everywhere
	$tar{t}H$	139	[18]	Everywhere
$H \to \mu \mu$	${ m ggF}, { m VBF}, VH, tar{t}H$	139	[20]	Everywhere but STXS and SMEFT
$H \to Z\gamma$	$\mathrm{ggF},\mathrm{VBF},VH,tar{t}H$	139	[21]	Everywhere but STXS and SMEFT
$H \rightarrow inv$	VBF	139	[22]	Sec. 6.2 & 6.3

Combination: Correlations

Combination: Correlations

48

Fiducial Combination

12/04/2022

Fiducial Combination

Photon and jet definitions			
Photons:	All photons except for those originating from hadron decay $p_{\rm T} > 15$ GeV, $ \eta < 1.37$ or $1.52 < \eta < 2.37$		
Jets:	$E_T^{\text{iso}}(\Delta R < 0.2, p_{\text{T}} > 1 \text{ GeV, charged}) < 0.05 E_{\text{T}}$ $p_T > 30 \text{ GeV}, y < 4.4$		
Event selection			
Diphoton fiducial: Mass window:	$\begin{split} N_{\gamma} \geq 2, p_T^{\gamma_1} > 0.35 m_{\gamma\gamma}, p_T^{\gamma_2} > 0.25 m_{\gamma\gamma} \\ 105 \ \mathrm{GeV} < m_{\gamma\gamma} < 160 \ \mathrm{GeV} \end{split}$		

Lepton and jet definitions			
Leptons	Dressed leptons not originating from hadrons or τ decay		
	$p_{ m T} > 5~{ m GeV}, \eta < 2.7$		
Jets	$p_{\rm T} > 30 { m ~GeV}, y < 4.4$		
Lepton selection and pairing			
Lepton kinematics	$p_{\rm T}$ threshold for three leading leptons: $> 20, 15, 10 { m ~GeV}$		
Leading pair (m_{12})	SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $		
Subleading pair (m_{34})	remaining SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $ as nominal.		
Event selection (at most one quadruplet per event)			
Mass requirements	50 GeV< $m_{12} < 106$ GeV and 12 GeV $< m_{34} < 115$ GeV		
Lepton separation	$\Delta R(\ell_i, \ell_j) > 0.1$		
Lepton/Jet separation	$\Delta R(\ell_i, ext{jet}) > 0.1$		
J/ψ veto	$m(\ell_i, \ell_j) > 5 \text{ GeV}$ for all SFOC lepton pairs		
Mass window	$105 \ { m GeV} < m_{4\ell} < 160 \ { m GeV}$		
If extra lepton with $p_{\rm T} > 12 {\rm ~GeV}$	Quadruplet with largest ggF matrix element value		

Diphoton