

Vector Boson Fusion and Vector Boson Scattering: observations and limitations

Matteo Magherini
PhD @ Università degli Studi di Perugia
matteo.magherini@cern.ch
On behalf of CMS and ATLAS

What are VBF and VBS? — Lowest Order

Vector Boson Fusion (VBF) Vector Boson Scattering (VBS)

 Self interactions between vector bosons → anomalous triple/quartic gauge coupling

- Self interactions between vector bosons → anomalous triple/quartic gauge coupling
- Scattering of longitudinal polarizations really sensible to variations in the Higgs sector

- Self interactions between vector bosons → anomalous triple/quartic gauge coupling
- Scattering of longitudinal polarizations really sensible to variations in the Higgs sector
- Allows EFT + model dependant approaches

- Self interactions between vector bosons → anomalous triple/quartic gauge coupling
- Scattering of longitudinal polarizations really sensible to variations in the Higgs sector
- Allows EFT + model dependant approaches
- Peculiar topology of the final state objects

Fig. from <u>ATLAS</u>

Search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector boson pairs in proton-proton collisions at $\sqrt{s} = 13 \, TeV$ (*Eur. Phys. J. C 81 (2021) 723)*

• Search for $H^5 = \mathbf{H}^{\pm}, \mathbf{H}^{\pm \pm}$ in Georgi-Machacek (GM) model

$$W^{\pm}W^{\pm} \to H^{\pm\pm} \to W^{\pm}W^{\pm} \to \ell^{\pm}\nu\ell'^{\pm}\nu'$$

$$W^{\pm}Z \to H^{\pm} \to W^{\pm}Z \to \ell^{\pm}\nu\ell^{+}\ell^{-}$$

 Only fermiophobic charged Higgs in the GM model considered

Search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector boson pairs in proton-proton collisions at $\sqrt{s} = 13 \ TeV$ (*Eur. Phys. J. C 81 (2021) 723*)

 Signal extraction → fit on 2-dim distribution in SR:

$$m_{jj}$$
 Discrimination VBS-non VBS VS Discrimination resonant resonant

- Different binning for the 2 SR, just m_{jj} to fit the bkg
- No deviations from SM found

Search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector boson pairs in proton-proton collisions at $\sqrt{s} = 13 \ TeV$ (Eur. Phys. J. C 81 (2021) 723)

- Modified frequentist approach with the CLs criterion
 + asymptotic method for the test statistic
- $\sigma_{VBF}(H^{\pm\pm}) \times B(H^{\pm\pm} \to W^{\pm}W^{\pm})$ 95% limit extracted

Search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector boson pairs in proton-proton collisions at $\sqrt{s} = 13 \ TeV$ (<u>Eur. Phys. J. C 81 (2021) 723)</u>

- Modified frequentist approach with the CLs criterion
 + asymptotic method for the test statistic
- $\sigma_{VBF}(H^{\pm\pm}) \times B(H^{\pm\pm} \rightarrow W^{\pm}W^{\pm})$ 95% limit extracted
- $\sigma_{VBF}(H^{\pm}) \times B(H^{\pm} \rightarrow W^{\pm}Z)$ 95% limit extracted

Search for resonant WZ production

Search for Resonant $WZ \to \ell \nu \ell' \ell'$ Production in Proton-Proton Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector (ATLAS-CONF-2022-005)

$$qq \rightarrow W'(H^{\pm}) \rightarrow W^{\pm}Z \rightarrow \ell'\nu\ell\ell$$

- Parametrized lagrangians with Heavy Vector Triplet (HVT) → W'
 - VBF process only sensible to gauge coupling → benchmark model assumes no coupling between W' and fermions

Search for resonant WZ production

Search for Resonant $WZ \to \ell \nu \ell' \ell'$ Production in Proton-Proton Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector (ATLAS-CONF-2022-005)

- Artificial Neural Network (ANN) trained to discriminate HVT and GM versus SM WZ production
- ANN output used to cut, maximizing significance at the lowest mass point
 - Proven not much difference in performance with one ANN for each mass point
 - Gain in computing time and simplicity
- Good description of data in SR by background with the ANN score

Search for resonant WZ production

Search for Resonant $WZ \to \ell \nu \ell' \ell'$ Production in Proton-Proton Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector (ATLAS-CONF-2022-005)

Limits on GM model

Limits on HVT model

VBF: temptative list of interesting searches

- Interested in VBF? Don't miss the talk by **Emmanuel Sauvan**! (14/04/2022, 12:48)
- A non-comprehensive list of suggested articles:
 - CMS:
 - Search for high mass resonances decaying into W+W- in the dileptonic final state with 138fb-1 of proton-proton collisions at https://cds.cern.ch/record/2803723
 - Search for Higgs boson pair production via vector boson fusion with highly Lorentz-boosted Higgs bosons in the four b quark final state at √s=13 TeV https://cds.cern.ch/record/2776802
 - Constraints on anomalous Higgs boson couplings to vector bosons and fermions in its production and decay using the four-lepton final state https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.052004

ATLAS:

- Electroweak production of dijets in association with a Z boson at 13 TeV (<u>Physics Letters B 775 (2017) 206</u>)
- Search for invisible Higgs-boson decays in events with vector-boson fusion signatures using 139 fb-1 of proton-proton data recorded by the ATLAS experiment https://inspirehep.net/literature/2033393
- Observation of photon-induced W⁺ W⁻ production in pp collisions at √s=13 TeV using the ATLAS detector Phys. Lett. B 816 (2021) 136190

Search for exclusive $\gamma\gamma \to WW$ and $\gamma\gamma \to ZZ$ production in final states with jets and forward protons (<u>CMS-PAS-SMP-21-014</u>)

- $\gamma\gamma \rightarrow WW$
- $\gamma\gamma \to ZZ$
- Precision Proton Spectrometer
 (PPS) → measure of scattered protons
- $W, Z \rightarrow jj$
- Exploits the full reconstruction of the energy of the event

Search for exclusive $\gamma\gamma \to WW$ and $\gamma\gamma \to ZZ$ production in final states with jets and forward protons (<u>CMS-PAS-SMP-21-014</u>)

- Comparison data bkg expectation
 - "region δ"→ fully reconstructed events
 - "region o" → partially reconstructed events
- Non zero WW anomalous coupling → slightly above analysis sensitivity

Search for exclusive $\gamma\gamma \to WW$ and $\gamma\gamma \to ZZ$ production in final states with jets and forward protons (CMS-PAS-SMP-21-014)

 aQGC interpretation of the results with dim6 operators:

$$a_0^W$$
 , a_C^W , a_0^Z , a_C^Z

• Limits extrapolated for single operators

Search for exclusive $\gamma\gamma \to WW$ and $\gamma\gamma \to ZZ$ production in final states with jets and forward protons (<u>CMS-PAS-SMP-21-014</u>)

 aQGC interpretation of the results with dim6 operators:

$$a_0^W, a_C^W, a_0^Z, a_C^Z$$

- Limits extrapolated for single operators
- And simultaneous variation of two operators

Search for exclusive $\gamma\gamma \to WW$ and $\gamma\gamma \to ZZ$ production in final states with jets and forward protons (CMS-PAS-SMP-21-014)

 aQGC interpretation of the results with dim6 operators:

$$a_0^W, a_C^W, a_0^Z, a_C^Z$$

- Limits extrapolated for single operators
- And simultaneous variation of two operators
- $a_{0,C}^{W,Z}$ for $\gamma \rightarrow$ combination of dim8 couplings

Coupling	Observed (expected) 95% CL upper limit	Clipping
$ f_{M,0}/\Lambda^4 $	$66.0~(60.0)~TeV^{-4}$	-
$ f_{M,1}/\Lambda^4 $	$245.5 (214.8) TeV^{-4}$	-
$ f_{M,2}/\Lambda^4 $	$9.8~(9.0)~TeV^{-4}$	-
$ f_{M,3}/\Lambda^4 $	$73.0~(64.6)~TeV^{-4}$	-
$ f_{M,4}/\Lambda^4 $	$36.0~(32.9)~TeV^{-4}$	-
$ f_{M,5}/\Lambda^4 $	$67.0~(58.9)~TeV^{-4}$	_
$ f_{M,7}/\Lambda^4 $	$490.9 \ (429.6) \ TeV^{-4}$	-
$ f_{M,0}/\Lambda^4 $	79.8 (78.2) TeV^{-4}	1.4 TeV
$ f_{M,1}/\Lambda^4 $	$306.8 (306.8) TeV^{-4}$	1.4 TeV
$ f_{M,2}/\Lambda^4 $	$11.9\ (11.8)\ TeV^{-4}$	1.4 TeV
$ f_{M,3}/\Lambda^4 $	91.3 (92.3) TeV^{-4}	1.4 TeV
$ f_{M,4}/\Lambda^4 $	$43.5 (42.9) TeV^{-4}$	1.4 TeV
$ f_{M,5}/\Lambda^4 $	$83.7 \ (84.1) \ TeV^{-4}$	1.4 TeV
$ f_{M,7}/\Lambda^4 $	$613.7 (613.7) \ TeV^{-4}$	1.4 TeV

Search for exclusive $\gamma\gamma \to WW$ and $\gamma\gamma \to ZZ$ production in final states with jets and forward protons (<u>CMS-PAS-SMP-21-014</u>)

 aQGC interpretation of the results with dim6 operators:

$$a_0^W, a_C^W, a_0^Z, a_C^Z$$

- Limits extrapolated for single operators
- And simultaneous variation of two operators
- $a_{0,C}^{W,Z}$ for $\gamma \to \text{combination of dim8}$ couplings
- Limits 15-x20 times more stringent that ones from $\gamma\gamma \rightarrow WW$ in Runl and close to the ones obtained in WW VBS

Coupling	Observed (expected) 95% CL upper limit	Clipping
$ f_{M,0}/\Lambda^4 $	$66.0~(60.0)~TeV^{-4}$	-
$ f_{M,1}/\Lambda^4 $	$245.5 (214.8) TeV^{-4}$	_
$ f_{M,2}/\Lambda^4 $	$9.8~(9.0)~TeV^{-4}$	-
$ f_{M,3}/\Lambda^4 $	$73.0~(64.6)~TeV^{-4}$	-
$ f_{M,4}/\Lambda^4 $	$36.0 (32.9) TeV^{-4}$	-
$ f_{M,5}/\Lambda^4 $	$67.0~(58.9)~TeV^{-4}$	-
$ f_{M,7}/\Lambda^4 $	$490.9 \ (429.6) \ TeV^{-4}$	-
$ f_{M,0}/\Lambda^4 $	79.8 (78.2) TeV^{-4}	1.4 TeV
$ f_{M,1}/\Lambda^4 $	$306.8 (306.8) TeV^{-4}$	1.4 TeV
$ f_{M,2}/\Lambda^4 $	$11.9 (11.8) TeV^{-4}$	1.4 TeV
$ f_{M,3}/\Lambda^4 $	91.3 (92.3) TeV^{-4}	1.4 TeV
$ f_{M,4}/\Lambda^4 $	$43.5 (42.9) TeV^{-4}$	1.4 TeV
$ f_{M,5}/\Lambda^4 $	$83.7 (84.1) TeV^{-4}$	1.4 TeV
$ f_{M,7}/\Lambda^4 $	$613.7 (613.7) \ TeV^{-4}$	1.4 TeV

$VBS: Z\gamma \to \ell\ell\gamma$

Measurement of the cross-section of the electroweak production of a $Z\gamma$ pair in association with two jets in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector (<u>ATLAS-CONF-2021-038</u>)

- Probes neutral quartic gauge coupling → forbidden in SM @ LO
- Full RunII statistics
- Final state: $\gamma e^+e^- + \gamma \mu^+\mu^-$
- Measurement of the EWK cross section

$VBS: Z\gamma \to \ell\ell\gamma$

Measurement of the cross-section of the electroweak production of a $Z\gamma$ pair in association with two jets in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector (<u>ATLAS-CONF-2021-038</u>)

• Maximum likelihood fit on m_{jj}

$$\mu_{EW} = 0.95^{+0.14}_{-0.13}$$

$$\sigma_{EW} = 4.49 \pm 0.40 \ (stat) \pm 0.42 \ (syst) fb$$

$$\sigma_{EW+QCD} = 20.6 \pm 0.6^{+1.2}_{-1.0} (syst) fb$$

No deviations from SM observed

Observation of electroweak production of two jets in association with an isolated photon and missing transverse momentum, and search for a Higgs boson decaying into invisible particles at 13 TeV with the ATLAS detector (Eur. Phys. J. C 82 (2022) 105)

- SM search:
 - $Z(\rightarrow \nu\nu)\gamma jj$
 - EWK SM $O(\alpha_{\text{ewk}}^5)$ process

Observation of electroweak production of two jets in association with an isolated photon and missing transverse momentum, and search for a Higgs boson decaying into invisible particles at 13 TeV with the ATLAS detector (<u>Eur. Phys. J. C 82 (2022) 105</u>)

- SM search:
 - $Z(\rightarrow \nu\nu)\gamma jj$
 - EWK SM $O(\alpha_{\text{ewk}}^5)$ process
- BSM searches:
 - $H \rightarrow \gamma + \gamma_d$
 - $H \rightarrow invisibile + \gamma$
 - VBF → highest expected sensitivity in this channel

Observation of electroweak production of two jets in association with an isolated photon and missing transverse momentum, and search for a Higgs boson decaying into invisible particles at 13 TeV with the ATLAS detector (Eur. Phys. J. C 82 (2022) 105)

- SM search:
 - Events categorized in 4 m_{jj} bins
 - Expanded likelihood to m_{jj} bins for each signal and control region

$$\sigma^{fid}_{Z(\rightarrow\nu\nu)\gamma EW} = 1.31 \pm 0.20 (stat) \pm 0.20 (syst) fb$$

• First observation with 5.2 σ significance

Observation of electroweak production of two jets in association with an isolated photon and missing transverse momentum, and search for a Higgs boson decaying into invisible particles at 13 TeV with the ATLAS detector (Eur. Phys. J. C 82 (2022) 105)

- $H \rightarrow invisible$:
 - Dense neural network
 - Likelihood fit in each DNN output bin for each CR + signal region
 - Upper limit on branching ratio for $H \rightarrow inv @ 95\%$ CL

$$\mathcal{B}_{inv}^{obs(exp)} = 0.37(0.34^{+0.15}_{-0.10})$$

Observation of electroweak production of two jets in association with an isolated photon and missing transverse momentum, and search for a Higgs boson decaying into invisible particles at 13 TeV with the ATLAS detector (Eur. Phys. J. C 82 (2022) 105)

- $H \rightarrow \gamma \gamma_D$:
 - Most sensible variable: $m_T(\gamma, E_{miss}) \rightarrow$ five m_T bins
 - ggF and VBF contribution to $H \rightarrow \gamma \gamma_d$ vary with m_{jj} \rightarrow two bins in m_{jj}
 - Upper limit on branching ratio for $H \rightarrow \gamma \gamma_d$ @ 95% CL

$$\mathcal{B}^{obs(exp)} = 0.018(0.017^{+0.007}_{-0.005})$$

VBS: a tentative list

- VBS is a quite in shape and nice field → if you're interested keep an eye on Roberto's talk!
- A non-comprehensive list of suggested articles:
 - CMS
 - Measurement of W[±]γW[±]γ differential cross sections in proton-proton collisions at √s= 13 TeV and effective field theory constraints https://cds.cern.ch/record/2791626
 - Search for vector boson scattering at the LHC Run 2 with CMS data in the semi-leptonic lvqq final state https://inspirehep.net/literature/1920670
 - Measurement of the inclusive and differential WZ production cross sections, polarization angles, and triple gauge couplings in pp collisions at √s= 13 TeV https://cds.cern.ch/record/2786853

ATLAS

- Observation of electroweak ZZjj production (Submitted to <u>NPHYS</u>)
- Observation of electroweak production of two jets in association with an isolated photon and missing transverse momentum, and search for a Higgs boson decaying into invisible particles at 13 TeV with the ATLAS detector (https://cds.cern.ch/record/2779942)
- Measurement of Vector Boson Scattering of VV final states in the Semileptonic decay channel (<u>Phys. Rev. D 100</u> (2019) 032007)

A glimpse into the future

«Hey Doc, we bettere back up. We don't have enough road to get to 88»

«Roads? Where we're going we don't need roads!»

$W^{\pm}W^{\pm}jj$

CMS-PAS-FTR-18-005

$W^{\pm}W^{\pm}jj$

CMS-PAS-FTR-18-005

$W^{\pm}W^{\pm}jj$

CMS-PAS-FTR-18-005

$W_L^{\pm}W_L^{\pm}jj$

CMS-PAS-FTR-21-001

$W_L^{\pm}W_L^{\pm}jj$

CMS-PAS-FTR-21-001

$W_L^{\pm}W_L^{\pm}jj$

CMS-PAS-FTR-21-001

 VBS and VBF are very active fields, which give us a special probe to investigate both SM predictions and put limits on new physics in a very versatile way

- VBS and VBF are very active fields, which give us a special probe to investigate both SM predictions and put limits on new physics in a very versatile way
- Effort from the two collaborations to put limits in EFT framework and in model dependant theories

- VBS and VBF are very active fields, which give us a special probe to investigate both SM predictions and put limits on new physics in a very versatile way
- Effort from the two collaborations to put limits in EFT framework and in model dependant theories
- Quite impressive results also in the rare processes and rarest decay

- VBS and VBF are very active fields, which give us a special probe to investigate both SM predictions and put limits on new physics in a very versatile way
- Effort from the two collaborations to put limits in EFT framework and in model dependant theories
- Quite impressive results also in the rare processes and rarest decay
- Runlll is coming!

Search for resonant WZ production

Search for Resonant $WZ \to \ell \nu \ell' \ell'$ Production in Proton-Proton Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector (<u>ATLAS-CONF-2022-005</u>)

Baseline WZ selection

Event cleaning and primary vertex Single-electron or single-muon trigger

Exactly 3 *Loose* leptons (e or μ) with $p_T > 25$ GeV($p_T > 27$ GeV for trigger-matched lepton)

ZZ veto: veto events with additional Baseline leptons

Z candidate: A *Tight Z* Same-Flavour-Opposite-Sign lepton pair with $|m_{\ell\ell} - m_Z| < 20$ GeV W candidate: *Tight W* lepton requirements on non Z leptons and $E_T^{\text{miss}} > 25$ GeV

Selection	Drell-Yan	VBF	
Signal region	$p_{\mathrm{T}}(V)/m(WZ) > 0.35$	At least 2 <i>VBF jets</i> $m_{jj} > 100 \text{ GeV}$ Veto events with <i>b</i> -tagged jets ANN Output > 0.82	
WZ-QCD control region	$p_{\rm T}(W)/m(WZ) \le 0.35$ or $p_{\rm T}(Z)/m(WZ) \le 0.35$ $p_{\rm T}(V)/m(WZ) > 0.1$	At least 2 <i>VBF jets</i> $m_{jj} > 500 \text{ GeV}$ Veto events with b-tagged jets ANN Output < 0.82	
Additional Baseline lepton No $E_{ m T}^{ m miss}$ requirement		Additional $Baseline$ lepton No $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement At least 2 VBF $jets$	

$VBS: Z\gamma \to \ell\ell\gamma$

Measurement of the cross-section of the electroweak production of a $Z\gamma$ pair in association with two jets in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector (<u>ATLAS-CONF-2021-038</u>)

• Maximum likelihood fit on m_{jj}

$$\mu_{EW} = 0.95^{+0.14}_{-0.13}$$

$$\sigma_{EW} = 4.49 \pm 0.40 \, (stat) \pm 0.42 \, (syst) fb$$

$$\sigma_{EW+QCD} = 20.6 \pm 0.6^{+1.2}_{-1.0} (syst) fb$$

Comparison between predicted and measured cross sections

VBS: $\gamma\gamma \rightarrow VV$

Search for exclusive $\gamma\gamma \to WW$ and $\gamma\gamma \to ZZ$ production in final states with jets and forward protons (CMS-PAS-SMP-21-014)

VBF Z production

Differential cross-section measurements for the electroweak production of dijets in association with a Z boson in proton-proton collisions at ATLAS (*Eur. Phys. J. C* 81, 163 (2021))

$$\sigma_{EWK}^{meas} = 37.4 \pm 3.5(stat) \pm 5.5(syst)fb$$

- Comparison of the differential cross section between state-ofthe-art theoretical predictions from:
 - Powheg+Pythia8
 - Herwig7+Vbfnlo
 - Sherpa

VBF Z production

Differential cross-section measurements for the electroweak production of dijets in association with a Z boson in proton-proton collisions at ATLAS (*Eur. Phys. J. C* 81, 163 (2021)

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i$$

$$|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + 2Re(\mathcal{M}_{SM}^*\mathcal{M}_{d6}) + |\mathcal{M}_{d6}|^2$$

- Interference and interference + pure dim6 terms considered
- 4 SMEFT dim-6 operators considered: $\boldsymbol{o}_{W}, \widetilde{\boldsymbol{o}}_{W}, \boldsymbol{o}_{HWB}, \widetilde{\boldsymbol{o}}_{HWB}$
- Differential cross section → limits extraction

VBF Z production

Differential cross-section measurements for the electroweak production of dijets in association with a Z boson in proton–proton collisions at ATLAS (*Eur. Phys. J. C* 81, 163 (2021))

Wilson coefficient	Includes $ \mathcal{M}_{d6} ^2$	95% confidence interv	95% confidence interval [TeV ⁻²]	
		Expected	Observed	
c_W/Λ^2	No	[-0.30, 0.30]	[-0.19, 0.41]	45.9%
	Yes	[-0.31, 0.29]	[-0.19, 0.41]	43.2%
\tilde{c}_W/Λ^2	No	[-0.12, 0.12]	[-0.11, 0.14]	82.0%
	Yes	[-0.12, 0.12]	[-0.11, 0.14]	81.8%
c_{HWB}/Λ^2	No	[-2.45, 2.45]	[-3.78, 1.13]	29.0%
	Yes	[-3.11, 2.10]	[-6.31, 1.01]	25.0%
$\tilde{c}_{HWB}/\Lambda^2$	No	[-1.06, 1.06]	[0.23, 2.34]	1.7%
	Yes	[-1.06, 1.06]	[0.23, 2.35]	1.6%

VBS: invisible + γ final state

Observation of electroweak production of two jets in association with an isolated photon and missing transverse momentum, and search for a Higgs boson decaying into invisible particles at 13 TeV with the ATLAS detector (Eur. Phys. J. C 82 (2022) 105)

Variable	SR	$W_{\mu\nu}^{\gamma}$ CR	$W_{e\nu}^{\gamma}$ CR	$Z_{\mathrm{Rev.Cen.}}^{\gamma}$ CR	Fake-e CR	Low- $E_{ m T}^{ m miss}$ VR			
$p_{\mathrm{T}}(j_1)$ [GeV]	> 60								
$p_{\mathrm{T}}(j_2)$ [GeV]	> 50								
$p_{\mathrm{T}}(j_{>2})$ [GeV]	> 25								
$N_{ m jet}$	2,3								
$N_{b ext{-jet}}$	< 2								
$ \Delta\eta_{ m jj} $	> 3.0								
$\eta(j_1) \times \eta(j_2)$	< 0								
C_3	< 0.7								
$\Delta\phi(j_i, \vec{E}_{\mathrm{T}}^{\mathrm{miss,lep-rm}})$	> 1.0								
N_{γ}	1								
$\Delta\phi_{ m jj}$	< 2.5 [2.0]								
$\Delta\phi(\gamma, \vec{E}_{ m T}^{ m miss,lep-rm})$	> 1.8 [-]								
$p_{\mathrm{T}}(\gamma)$ [GeV]	$> 15, < 110 [> 15, < \max(110, 0.733 \times m_{\rm T})]$								
$m_{\rm jj}$ [TeV]	> 0.25 0.25								
$E_{\mathrm{T}}^{\mathrm{jets,no-jvt}}$ [GeV]	> 130					> 100			
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	> 150	_	> 80	> 150	< 80	110-150			
$E_{\mathrm{T}}^{\mathrm{miss,lep-rm}}$ [GeV]	_	> 150	> 150	_	> 150	110-150			
C_{γ}	> 0.4	> 0.4	> 0.4	< 0.4	> 0.4	> 0.4			
N_ℓ	0	$1~\mu$	1 <i>e</i>	0	1 <i>e</i>	0			
$p_{\mathrm{T}}(\ell)$ [GeV]	-	> 30	> 30	-	> 30	_			

C3 equivalent centrality for 3rd jet

