

Rare heavy flavour decays

Standard Model at the LHC 2022

11- 14 April 2022 – CERN, Geneva

Caterina Aruta¹

on behalf of the ATLAS, CMS and LHCb Collaborations

¹ University & INFN Bari

Outline

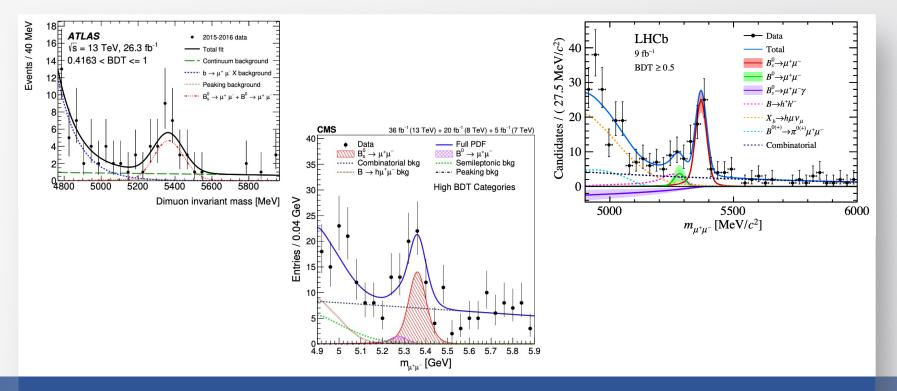
- Search for $B^0_{(s)} → \mu^+ \mu^-$ decays
 + combination of results @LHC
 + updated results from LHCb
- ▶ Search for $B^0_{(s)} \to e^+e^-$ and $B^0_{(s)} \to \tau^+\tau^-$ decays
- > Search for $B^0_{(s)} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ decays
- - $\tau \rightarrow 3\mu$ • $B^0_{(s)} \rightarrow \tau\mu$ LHCb • $B^0_{(s)} \rightarrow e\mu$ LHCb

ATLAS CMS LHCD

HCD

Search for $B_{(s)}^0 \rightarrow \mu\mu$ decays

- Very rare in SM (only proceed via quantum-loop transitions)
- In addition, they are helicity and CKM suppressed

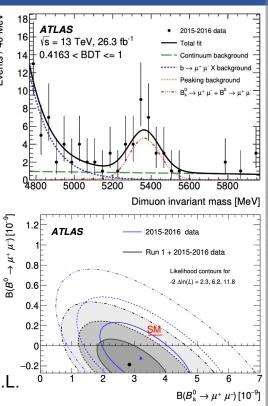

SM predictions of their time-integrated BR have small uncertainties • precise measurements may reveal discrepancies with expected values!

Significant deviations from SM predictions could arise in models involving **non-SM heavy particles**, such as in

- Minimal Supersymmetric Standard Model
- Minimal Flavour Violation,
- TwoHiggs-Doublet Models, ...
- > In the $B_s^0 \overline{B}_s^0$ system, light and heavy mass eigenstates are characterized by a <u>sizable difference</u> between their decay widths, $\Delta \Gamma = 0.082 \pm 0.007 \text{ ps}^{-1}$.
- > In SM, only heavy state decays to $\mu^+\mu^-$ (CP odd), but this does not necessarily hold in BSM scenarios
 - contributions from the 2 states can be disentangled by measuring $B_s^0 \rightarrow \mu^+ \mu^-$ effective lifetime, which, in the search for physics BSM, is a *complementary probe to BR measurement*

Rare heavy flavour decays – SM@LHC 2022

12 - 04 - 2022


Search for $B^0_{(s)} \rightarrow \mu\mu$ decays μ^{μ}

Search for $B^0_{(s)} ightarrow \mu\mu$ decays

- \triangleright **B**⁰_(s) → μ⁺μ⁻ BR measured relative to B⁺ → J/ψ(μ⁺μ⁻)K⁺
 - this reference decay mode is abundant, has a very well-measured BR and allows for the reduction of several systematic uncertainties
- > The detector resolution in $\mu^+\mu^-$ invariant mass is comparable to $B_s^0 B^0$ mass difference
 - · a single fit determines the signal yields for both decay modes
- BR extracted from data using un unbinned extended max-likelihood fit on dimuon invariant mass distributions
 - result of the fit parametrized with the total yield of $B_s^0 \to \mu^+ \mu^-$ and $B^0 \to \mu^+ \mu^-$ events
- ➤ The values of BR obtained from the statistical analysis involving the Neyman construction, are: $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.2^{+1.1}_{-1.0}) \cdot 10^{-9} \qquad \mathcal{B}(B^0 \to \mu^+ \mu^-) < 4.3 \cdot 10^{-10} \text{ at } 95\% \text{ C.L.}$
- After combination with Run 1 results:

 $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.8^{+0.8}_{-0.7}) \cdot 10^{-9} \quad \mathcal{B}(B^0 \to \mu^+ \mu^-) < 2.1 \cdot 10^{-10} \text{ at } 95\% \text{ C.L.}$

Consistent with SM predictions within 2.4 σ in the $\mathcal{B}(B^0 \to \mu^+ \mu^-) - \mathcal{B}(B^0_s \to \mu^+ \mu^-)$ plane

Search for $B^0_{(s)} \rightarrow \mu\mu$ decays

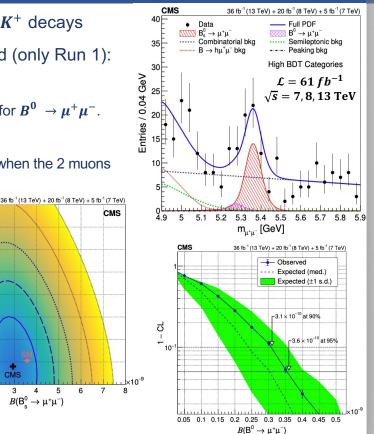
4

- BR determined by measuring event yields relative to $B^+ \rightarrow J/\psi K^+$ decays \geq
- Main improvements in this analysis w.r.t. previous BR measured (only Run 1): \geq
 - greater statistical precision of the larger data sample,
 - improved muon identification algorithm (newly developed BDT),
 - better constraints against background contamination in the search for $B^0 \rightarrow \mu^+ \mu^-$.
- ▶ BR of $B^0_{(s)} \rightarrow \mu^+ \mu^-$ determined with a **3D extended UML fit** to:
 - binary distribution of dimuon pairing configuration C, with C = +1 (-1) when the 2 muons bend towards (away from) each other in the magnetic field

0.8×10

0.7

0.6

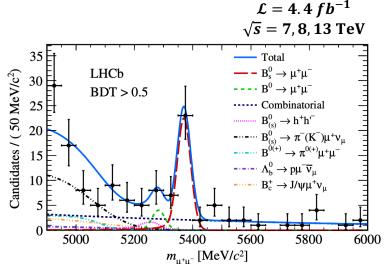

(_η₊η 0.5

B(B) 0.3

0.2

3 $B(\mathsf{B}^0_{\circ} \to \mu^+\mu^-)$

- $m_{\mu^+\mu^-}$ distribution,
- relative mass resolution $\sigma(m_{\mu^+\mu^-})/m_{\mu^+\mu^-}$,
- \triangleright B⁰_s → μ⁺μ⁻ decay observed with **5.6** σ significance $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.9 \pm 0.7 \text{ (exp)} \pm 0.2 \text{(frag)}) \cdot 10^{-9}$ $\tau (B_s^0 \rightarrow \mu^+ \mu^-) = 1.70^{+0.61}_{-0.44} \text{ ps}$
- No significant excess is observed for $B^0 \rightarrow \mu^+ \mu^ \mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.6 \cdot 10^{-10}$ at 95% C.L.

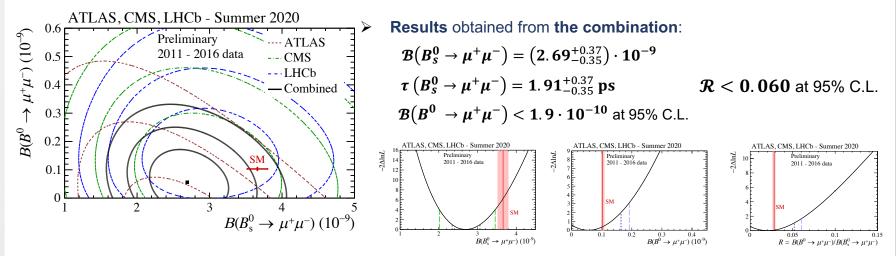

Search for $B^0_{(s)} \rightarrow \mu\mu$ decays

- > Multivariate classifiers employed at various stages of the analysis to select the signal:
 - · loose preselection based on a multivariate discriminator
 - $B^0_{(s)} \rightarrow \mu^+ \mu^-$ candidates classified according to their dimuon mass and the output variable of a multivariate classifier based on a BDT (used to separate signal and combinatorial bkg)
- Signal yield determined from fit to dimuon mass distribution of candidates • converted into a BR using as normalization modes the decays $B^0 \to K^+\pi^-$ and $B^+ \to J/\psi(\mu^+\mu^-)K^+$

$$\begin{array}{l} \succ \quad B_s^0 \rightarrow \mu^+ \mu^- \text{ decay observed with 7.8 } \sigma \text{ significance} \\ \mathcal{B}(B_s^0 \rightarrow \mu^+ \mu^-) = (\ 3.0 \ \pm 0.6^{+0.3}_{-0.2} \) \cdot 10^{-9} \\ \tau \left(B_s^0 \rightarrow \mu^+ \mu^-\right) = 2.04 \pm 0.44 \pm 0.05 \text{ ps} \quad \begin{array}{c} \text{first} \\ \text{measurement!} \end{array} \right) \\ \begin{array}{l} \succ \quad \text{No significant excess is observed for } B^0 \ \rightarrow \mu^+ \mu^- \\ \mathcal{B}(B^0 \ \rightarrow \mu^+ \mu^-) < 3.4 \cdot 10^{-10} \text{ at 95\% C.L.} \end{array}$$

All results in agreement with SM expectations

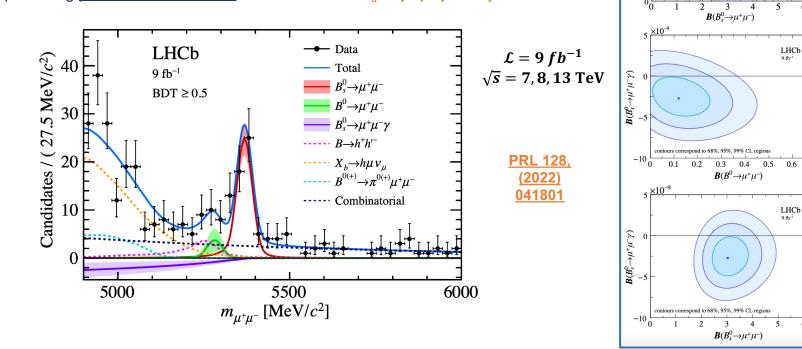
Rare heavy flavour decays – SM@LHC 2022


Combination of results for $B^0_{(s)} \rightarrow \mu\mu$ searches @LHC

Most up-to-date SM predictions for the $B^0_{(s)} \rightarrow \mu^+\mu^-$ BR JHEP 10 (2019) 232

 $\begin{array}{l} \mathcal{B}(B_{s}^{0} \rightarrow \mu^{+}\mu^{-}) = (3.66 \pm 0.14) \cdot 10^{-9} \\ \mathcal{B}(B^{0} \rightarrow \mu^{+}\mu^{-}) = (1.03 \pm 0.15) \cdot 10^{-10} \end{array} \qquad \mathcal{R} = \frac{\mathcal{B}(B^{0} \rightarrow \mu^{+}\mu^{-})}{\mathcal{B}(B_{s}^{0} \rightarrow \mu^{+}\mu^{-})} = 0.00281 \pm 0.0016$

R prediction has smaller uncertainty than individual BR, owing to the cancellation of several common factors 6


- Combination of data collected @LHC between 2011 and 2016 performed using 2D profile likelihoods obtained by each experiment from their fit to the dimuon invariant mass distributions
 - each likelihood assumes the lifetime for $B_s^0 \rightarrow \mu^+ \mu^-$ to be the SM one

Results compatible with SM predictions within **2.1** σ in the 2D plane of the BR

> Improved measurements of $B_{(s)}^0 \to \mu^+ \mu^-$ time-integrated BR and of the $\tau (B_s^0 \to \mu^+ \mu^-)$, superseding previous LHCb results + first search for $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ decays

The contribution from $B^0 \rightarrow \mu^+ \mu^- \gamma$ decays negligible compared to that from $B_s^0 \rightarrow \mu^+ \mu^-$ because of the additional CKM suppression

7

LHCb

-4.4 fb⁻¹

9 fb⁻¹

LHCb

0.7

LHCb 9 fh⁻¹

contours correspond to 68%, 95%, 99% CL region

2

0.6

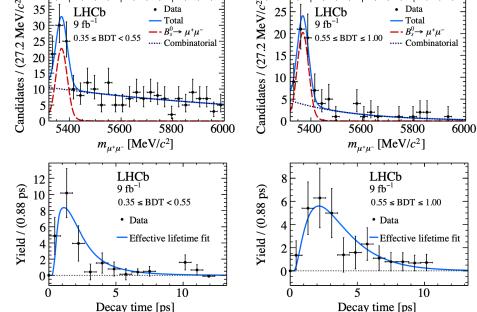
 $(\vec{n}_{+}n) = 0.5$

0.3 8 8

0.2 0.1

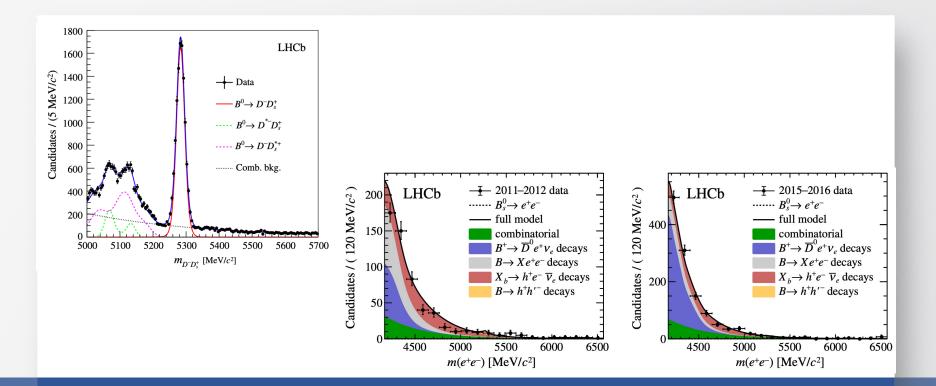
Search for $B^0_{(s)} ightarrow \mu\mu$ decays - Results V^{C^n}

- \succ B_s^0 → $\mu^+\mu^-$ decay observed with ~ 11 σ significance
 - $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.09^{+0.46+0.15}_{-0.43-0.11}) \cdot 10^{-9}$
 - $\tau \left(B_s^0 \rightarrow \mu^+ \mu^- \right) = 2.07 \pm 0.29 \pm 0.03 \text{ ps}$
- ➤ No significant signal for $B^0 \rightarrow \mu^+ \mu^$ and $B^0_s \rightarrow \mu^+ \mu^- \gamma$ is found


$$\mathcal{B}ig(B^0
ightarrow \mu^+\mu^-ig) < 2.6\cdot 10^{-10}$$
 at 95% C.L.

 $\mathcal{B}(B^0_s
ightarrow \mu^+ \mu^- \gamma) < 2.0 \cdot 10^{-9}$ at 95% C.L.

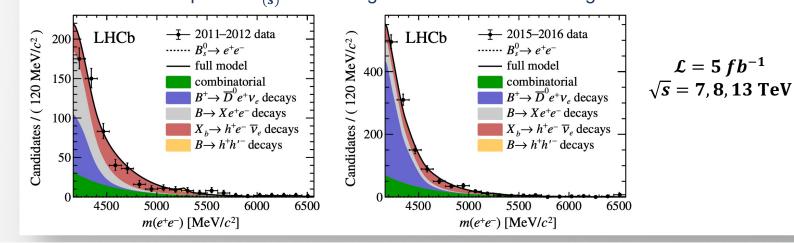
Limited to the range $m_{\mu\mu} > 4.9 \text{ GeV/c}^2$


Results in agreement with SM predictions

Search dominated by *statistical* uncertainty Rare heavy flavour decays – SM@LHC 2022

10% precision expected with ATLAS/CMS Run 2

12 - 04 - 2022


Search for $B^0_{(s)} \rightarrow ee$ and $B^0_{(s)} \rightarrow \tau\tau$ decays

Search for $B_{(s)}^0 \rightarrow ee$ decays

- This search provides an independent test of Lepton Flavor Universality (LFU)
- According to <u>SM predictions</u>:

 $\mathcal{B}(B_s^0 \to e^+e^-) = (8.60 \pm 0.36) \cdot 10^{-14}$ $\mathcal{B}(B^0 \to e^+e^-) = (2.41 \pm 0.13) \cdot 10^{-15}$

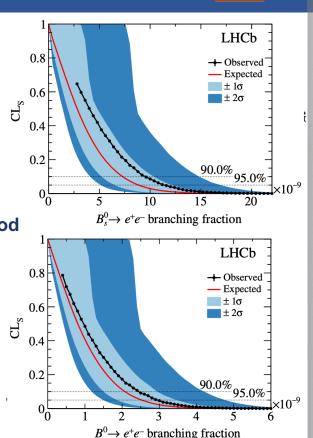
- With <u>BSM contributions</u>:
 - $\mathcal{B}(B_s^0 \to e^+ e^-) = \mathcal{O}(10^{-8})$ $\mathcal{B}(B^0 \to e^+ e^-) = \mathcal{O}(10^{-10})$
- Signal yields determined from fit to data and normalized to B⁺ → J/ψ(e⁺e⁻) K⁺
 BDT used to separate B⁰_(s) → e⁺e⁻ signal from combinatorial bkg

211802

Search for $B^0_{(s)} \rightarrow ee$ decays

- Due to limited mass resolution (due to imperfect bremsstrahlung \geq recovery), line shapes of $B_s^0 \to e^+e^-$ and $B^0 \to e^+e^-$ are overlapping
- \triangleright $\mathcal{B}(B_s^0 \to e^+e^-)$ obtained by performing a simultaneous fit to the dielectron invariant mass distribution while neglecting the contribution from $B^0 \rightarrow e^+e^-$, and viceversa.

No evidence found; upper limits on BR set using the CLs method


 $\mathcal{B}(B^0_s
ightarrow e^+e^-) < 11.2 \cdot 10^{-9}$ at 95% C.L.

assuming no contribution from $B^0 \rightarrow e^+e^-$

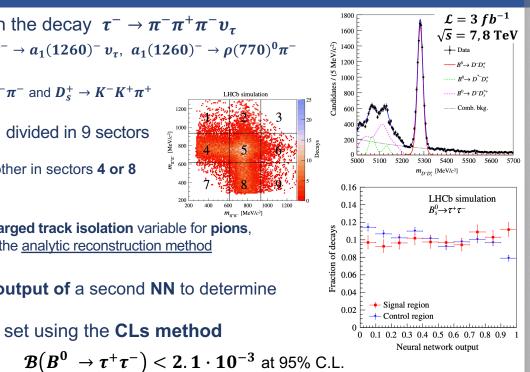
 $\mathcal{B}(B^0 \to e^+e^-) < 3.0 \cdot 10^{-9}$ at 95% C.L.

assuming no contribution from $B_s^0 \rightarrow e^+e^-$

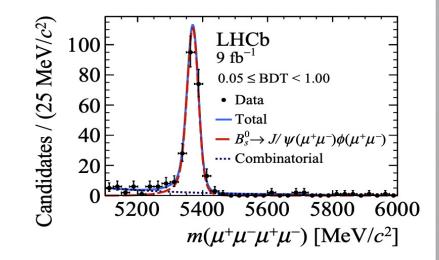
Rare heavy flavour decays – SM@LHC 2022

Search for $B^0_{(s)} \rightarrow \tau \tau$ decays

- The τ leptons are reconstructed through the decay $\tau^- \rightarrow \pi^- \pi^+ \pi^- v_{\tau}$ \geq
 - proceeds predominantly through decay chain: $\tau^- \rightarrow a_1(1260)^- v_{\tau}$, $a_1(1260)^- \rightarrow \rho(770)^0 \pi^-$
 - $\mathcal{B}(\tau^- \to \pi^- \pi^+ \pi^- v_\tau) = (9.31 \pm 0.05)\%$
 - normalization channel: $B^0 \to D^-D^+_s$, $D^- \to K^+\pi^-\pi^-$ and $D^+_s \to K^-K^+\pi^+$
- \succ For each τ candidate, 2D distribution $m_{\pi^+\pi^-}$ divided in 9 sectors
 - signal region: both τ candidates in sector 5
 - control regions: one τ in sectors 4, 5 or 8 and other in sectors 4 or 8
- \geq **NN** trained to discriminate signal from bkg
 - 7 input variables: τ^{\pm} masses and decay times, charged track isolation variable for pions, neutral isolation variable for B, one variable from the analytic reconstruction method
- Binned max likelihood fit performed on output of a second NN to determine \geq the signal yield
- No evidence found; upper limits on BR set using the CLs method


 $\mathcal{B}(B_s^0 o au^+ au^-) < 6.8 \cdot 10^{-3}$ at 95% C.L.

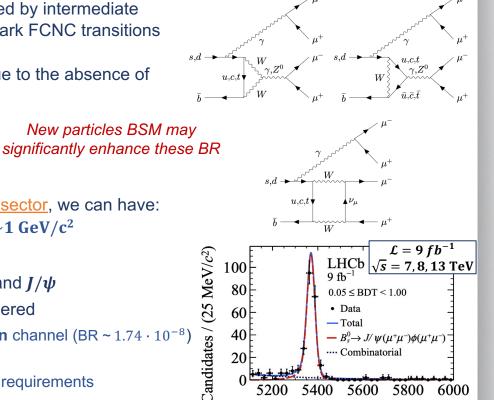
assuming no contribution from $B^0 \rightarrow \tau^+ \tau^-$


assuming no contribution from $B_s^0 \to \tau^+ \tau^-$

 $m_{\pi^+\pi^-}$ [MeV/c²]

Rare heavy flavour decays – SM@LHC 2022

12 - 04 - 2022


Search for
$$B^0_{(s)} \rightarrow 4\mu$$
 decays

Search for $B^0_{(s)} \rightarrow 4\mu$ decays

- \triangleright Decays of B_s^0 and B^0 into 4μ , that are not mediated by intermediate resonances, proceed through $b \rightarrow s$ and $b \rightarrow d$ quark FCNC transitions
- In the <u>SM</u>, these decays proceed by EW loops, due to the absence of tree-level FCNCs (so, highly suppressed!)
 - $\mathcal{B}(B_s^0 \to \mu^+ \mu^- \mu^+ \mu^-) = (0.9 1.0) \cdot 10^{-10}$
 - $\mathcal{B}(B^0 \to \mu^+ \mu^- \mu^+ \mu^-) = (0.4 4.0) \cdot 10^{-12}$
- In extension of SM with <u>new strongly interacting sector</u>, we can have: $B^0_{(s)} \rightarrow a(\mu^+\mu^-) a(\mu^+\mu^-)$, with $m_a \sim 1 \text{ GeV/c}^2$
- **Direct** decays and decays via light scalar (*a*) and J/ψ \geq resonances $(B^0_{(s)} \rightarrow J/\psi(\mu^+\mu^-) \mu^+\mu^-)$ are considered
 - $B_s^0 \rightarrow J/\psi(\mu^+\mu^-) \phi(\mu^+\mu^-)$ used as normalisation channel (BR ~ 1.74 · 10⁻⁸)
 - Combinatorial bkg suppressed using a BDT
 - Hadronic background suppressed using tight PID requirements

Rare heavy flavour decays – SM@LHC 2022

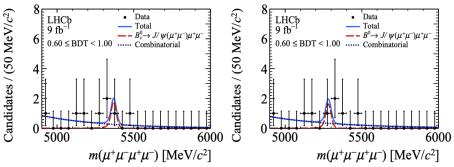
5400

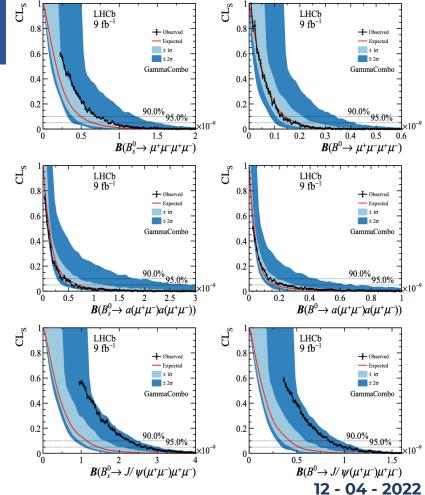
5600 5800

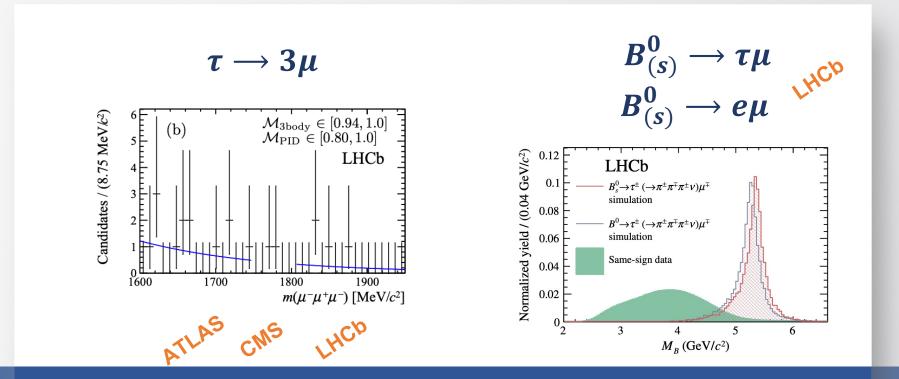
 $m(\mu^{+}\mu^{-}\mu^{+}\mu^{-})$ [MeV/c²]

6000

Search for $B^0_{(s)} \rightarrow 4\mu$ decays: results


> No evidence found for the 6 decays searched for


•


,

${\cal B}\left(B^0_s\! ightarrow\mu^+\mu^-\mu^+\mu^- ight)$	$< 8.6 imes 10^{-10}$,
${\cal B}\left(B^0\! ightarrow\mu^+\mu^-\mu^+\mu^- ight)$	$< 1.8 \times 10^{-10}$,
${\cal B}\left(B^0_s{ ightarrow}a\left(\mu^+\mu^- ight)a\left(\mu^+\mu^- ight) ight)$	$< 5.8 \times 10^{-10}$,
${\cal B}\left(B^0\! ightarrow a\left(\mu^+\mu^- ight)a\left(\mu^+\mu^- ight) ight)$	$< 2.3 \times 10^{-10}$,
${\cal B}\left(B^0_s o J\!/\!\psi\left(\mu^+\mu^- ight)\mu^+\mu^- ight)$	$< 2.6 \times 10^{-9}$,
${\cal B}\left(B^0\! ightarrow J\!/\!\psi\left(\mu^+\mu^- ight)\mu^+\mu^- ight)$	$< 1.0 \times 10^{-9}$.

Presently, the most stringent limits set at 95% CL

Some of last results from direct LFV searches

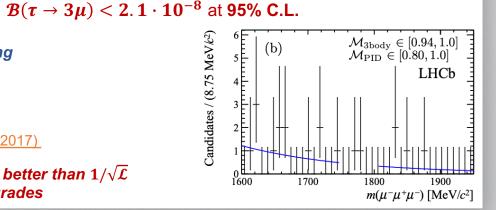
Search for $\tau \rightarrow 3\mu$ decays

> At LHC, two main channels for this search (depending on the source of τ leptons):

- Heavy Flavor: abundant (especially $D_s \rightarrow \tau v$) but challenging because of very low p_T forward muons
- W: 10⁴ time less abundant, but with clear signature
- Results from search @LHC:
 - LHCb: HF channel, $\mathcal{L} = 3 f b^{-1}$
 - ATLAS: W channel, $\mathcal{L} = 20 f b^{-1}$
 - **CMS**: Both **HF and W** channels, $\mathcal{L} = 33 f b^{-1}$

Best UL set by the **Belle** experiment:

Searches with the full Run 2 datasets are ongoing


- HL-LHC projections
 - ATLAS: <u>ATL-PHYS-PUB-2018-032</u>
 - CMS: Phase 2 Muon Upgrade TDR, CMS-TDR-016 (2017)

Sensitivity improvement expected to scale better than $1/\sqrt{\mathcal{L}}$ because of trigger/detector upgrades

ATLAS

 $\mathcal{B}(\tau o 3\mu) < 4.6 \cdot 10^{-8}$ at 95% C.L. $\mathcal{B}(\tau o 3\mu) < 3.8 \cdot 10^{-7}$ at 95% C.L. $\mathcal{B}(\tau o 3\mu) < 8.0 \cdot 10^{-8}$ at 95% C.L.

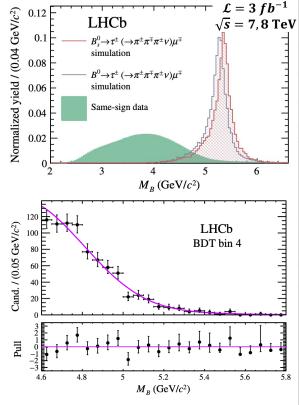
CMS

JHEP 01

(2021) 163

LHCb

JHEP 02


Search for $B^0_{(s)} \rightarrow \tau \mu$ decays \sqrt{r}

- LFV decays of mesons with b quarks are extremely suppressed in SM
 - <u>SM</u>: BR $O(10^{-54})$, because of quantum loops + neutrino oscillations
 - <u>BSM</u>: BR $O(10^{-4} 10^{-8})$
- → τ leptons are reconstructed through the decay $\tau^- \rightarrow \pi^- \pi^+ \pi^- v_{\tau}$
- > neutrino momentum determined from position of PV and τ , \vec{p}_{μ} , $\vec{p}_{3\pi}$
- ▶ BDT trained on same-sign candidates and simulated $B_s^0 \rightarrow \tau^{\pm} \mu^{\mp}$ decays
- signal yield determined by performing an unbinned max likelihood fit to the reconstructed *B* invariant mass in range [4.6-5.8] GeV/c²
 - $B_s^0 \to D^-(\to K^+\pi^-\pi^+)\pi^+$ used as normalization channel

As the separation btw $B_s^0 \to \tau^{\pm} \mu^{\mp}$ and $B^0 \to \tau^{\pm} \mu^{\mp}$ is limited, **2 independent fits** are performed while assuming the contribution of either the B_s^0 or the B^0 signal only

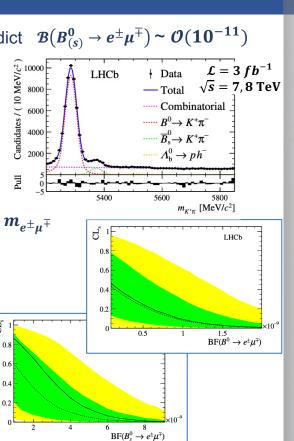
> No evidence found $\mathcal{B}(B_s^0 \to \tau^{\pm}\mu^{\mp}) < 4.2 \cdot 10^{-5}$ $\mathcal{B}(B^0 \to \tau^{\pm}\mu^{\mp}) < 1.4 \cdot 10^{-5}$ @95% C.L.

assuming no contribution from $B^0 \rightarrow \tau^{\pm} \mu^{\mp}$ assuming no contribution from $B_s^0 \to \tau^{\pm} \mu^{\mp}$

Fit in B_s^0 signal only hypothesis

<u>PRL 123</u>

Search for $B^0_{(s)} \rightarrow e\mu$ decays \mathcal{M}^{o}


- ▶ BSM scenarios like models with a <u>new gauge Z' boson</u> or <u>leptoquarks</u> predict $\mathcal{B}(B_{(s)}^0 \to e^{\pm}\mu^{\mp}) \sim \mathcal{O}(10^{-11})$
- > In this analysis, two **normalization channels** are used:
 - $B^0 \to K^+\pi^-$ topology similar to signal one
 - $B^0 \rightarrow J/\psi(\mu^+\mu^-) K^+$ abundant yield, similar purity and trigger selection
- A BDT is used to separate signal from combinatorial bkg
 - trained using MC for signal and data with same-sign $e^{\pm}\mu^{\pm}$ for the combinatorial bkg
- Signal yields obtained from an unbinned extended max likelihood fit to $m_{e^{\pm}\mu^{\mp}}$
- No evidence found
 - The two B_s^0 mass eigenstates are characterized by large lifetime difference
 - UL for $B_s^0 \to e^{\pm} \mu^{\mp}$ evaluated both in hp of **amplitude completely dominated** by **heavy** eigenstate and by **light eigenstate**

$$\mathcal{B}ig(B^0_s o e^{\pm}\mu^{\mp}ig) < 6.3 \cdot 10^{-9} @95\% ext{ C.L} \ \mathcal{B}ig(B^0_s o e^{\pm}\mu^{\mp}ig) < 7.2 \cdot 10^{-9} @95\% ext{ C.L}$$

 $\mathcal{B}(B^0 \to e^{\pm}\mu^{\mp}) < 1.3 \cdot 10^{-9}$ @95% C.L.

assuming no contribution from $B^0 o e^\pm \mu^\mp$

assuming no contribution from $B^0_s o e^{\pm} \mu^{\mp}$

JHEP 03

Summary

- Rare decays provide a very clean way of probing the SM
 - in particular, purely leptonic decays have small bkg and predictions of their BR are very precise
- ▶ In the context of $B^0_{(s)} \rightarrow l^+ l^-$ decays:
 - $B^0_s
 ightarrow \mu^+ \mu^-$ is the only one observed so far
 - UL on the BR of the other decays are set, constraining the phase space of BSM theories
- LFV searches are a complementary way to test BSM theories predicting LFU violation
 - They are further suppressed in the SM due to the neutrino oscillation
 - No observation of charged LFV so far
- Analysis on full Run 2 data, as well as detector and trigger upgrades to enhance the sensitivity of these searches @LHC, are ongoing

Exciting time for (B)physics is coming soon, stay tuned!

Rare heavy flavour decays – SM@LHC 2022

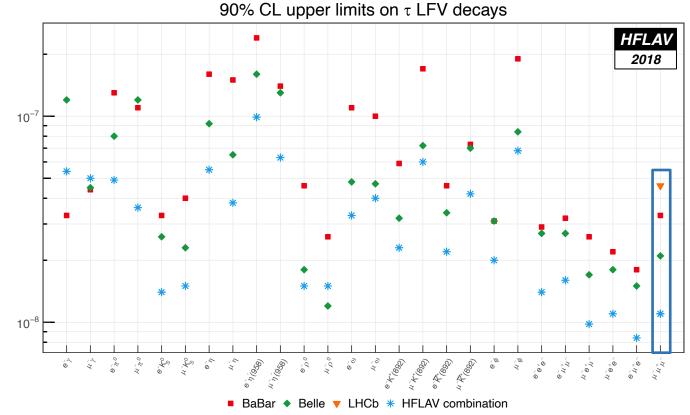
12 - 04 - 2022

Backup slides

Search for $B^0_{(s)} \rightarrow \mu\mu$ decays - normalisation

> Yield of $B_s^0 \rightarrow \mu^+ \mu^-$ candidates converted into its BR by normalising to $B^+ \rightarrow J/\psi K^+$ decay

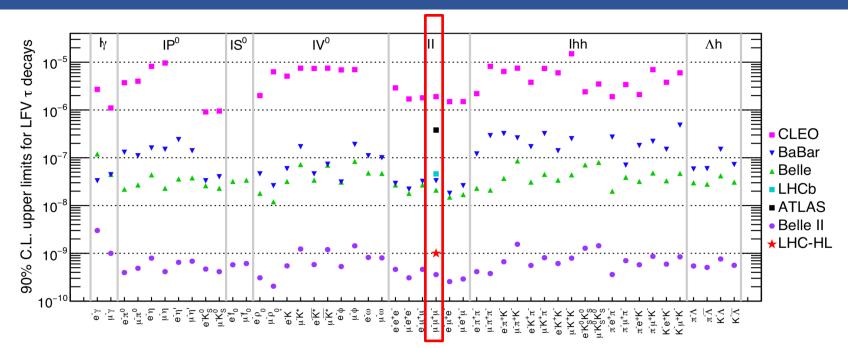
$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \frac{f_d}{f_s} \frac{\varepsilon_{B^+ \to J/\psi K^+}}{\varepsilon_{B_s^0 \to \mu^+ \mu^-}} \frac{N_{B_s^0 \to \mu^+ \mu^-}}{N_{B^+ \to J/\psi K^+}} \mathcal{B}(B^+ \to J/\psi K^+)$$


known with limited precision, largest systematic uncertainty on $\mathcal{B}(B_s^0 \rightarrow \mu^+ \mu^-)$

• **N** : yield

- E: efficiency (determined using simulation and corrected with data-driven methods)
- f_d : fragmentation fraction of a *b* quark to a B^0 meson
- f_s : fragmentation fraction of a *b* quark to a B_s^0 meson
- Normalisation of B^0 is similar but without $\frac{f_d}{f_s}$ term

It's assumed that the fragmentation fractions of B⁰ and B⁺mesons are equal due to isospin symmetry to a good accuracy Rare heavy flavour decays – SM@LHC 2022 12 - 04 - 2022


Future perspectives for LFV search in τ decays

Rare heavy flavour decays – SM@LHC 2022

12 - 04 - 2022

Future perspectives for LFV search in τ decays

Bounds on Tau Lepton Flavour Data from the existing experiments are compiled by HFLAV; projections of the Belle-II bounds were performed by the Belle-II collaboration assuming 50 ab⁻¹ of integrated luminosity.

arXiv:1812.07638

Rare heavy flavour decays – SM@LHC 2022

12 - 04 - 2022

Search for $\tau \rightarrow 3\mu$ @ATLAS during HL-LHC

W channel				HF channel				
Scenario	$\mathcal{A} imes \epsilon$ [%]	$N_{ m bkg}^{ m exp}$	90% CL UL on BR($\tau \to 3\mu$) [10 ⁻⁹]	Scenario	$\mathcal{A} \times \epsilon \ [\%]$	$N_{ m bkg}^{ m exp}$	90% CL UL on BR($\tau \rightarrow 3\mu$) [10 ⁻⁹]	
Run 1 result Non-improved	2.31 2.31	0.19 50.71	276 13.52	High background	0.88	507.05	6.40	
Intermediate Improved	5.01 5.01	50.71 40.06	6.23 5.36	Medium background Low background	0.88 0.88	152.12 50.71	2.31 1.03	

Summary of inputs to the limit calculation for each scenario as well as the expected 90% CLs UL on the LFV BR for an assumed lumi of 3000 fb⁻¹

- 1. Non-improved scenario: Most conservative approach: no analysis or detector improvements are considered and the sensitivity is extrapolated scaling for the integrated lumi. Bkg yield of the Run 1 is scaled by a factor **260**, while $A \times \varepsilon$ considered the same as in Run 1.
- 2. Intermediate scenario: Improvements in triggering and reco of low pT muons estimated from Run 2 MC included in the projection, while no effects on further impacts of the ML selection or better resolution are considered. The net effect is an increase of a factor 2.2 in the signal yield relative to Run 1 + applied extrapolation factor of 260 accounting for the increased cross-section and integrated lumi.
- Improved scenario: Signal search window is tightened, taking into account expected improvements in mass resolution. The combined fit has a width 20% smaller than the Run 1 counterpart. This reflects in a 25% improvement in the S/B ratio which is applied to the projection. Improvements of previous scenarios are applicable as well.

- 1. High background scenario: Most conservative approach taking the bkg level one order of magnitude larger than in the Run 1 W-channel analysis. The bkg estimated in the Run 1 analysis is scaled by the increase in luminosity and data and an additional penalty factor of **10** is applied on top.
- 2. Medium background scenario: Bkg level in HF channel considered is a factor of 3 larger than in the W one. The scaling according to the increase in luminosity is applied.
- **3.** Low background scenario: Most aggressive scenario: bkg level assumed to be the same as in the W-channel, still taking into account the increase in luminosity. This scenario provides a reference for the effect of potential analysis improvements.

12 - 04 - 2022

Search for $\tau \rightarrow 3\mu$ @CMS during HL-LHC

	Category 1	Category 2
Number of background events	2.4×10^{6}	2.6×10^{6}
Number of signal events	4580	3640
Trimuon mass resolution	18 MeV	31 MeV
$\mathcal{B}(au ightarrow 3\mu)$ limit per event category	4.3×10^{-9}	7.0×10^{-9}
$\mathcal{B}(\tau \to 3\mu)$ 90% C.L. limit	$(3.7 \times$	10^{-9}
$\mathcal{B}(au ightarrow 3\mu)$ for 3- σ evidence	6.7 imes	10^{-9}
$\mathcal{B}(au ightarrow 3\mu)$ for 5- σ observation	$1.1 \times$	10^{-8}

(Top) The expected numbers of signal and background events in the mass window 1.55 -2.0 GeV for CMS. An integrated luminosity of **3000 fb⁻¹** and a signal $B(\tau \rightarrow 3\mu) = 2 \times 10^{-8}$ is assumed.

(Bottom) The search sensitivities for the combined categories.

- **Category 1** for events with all three muons reconstructed only with the Phase-1 detectors, and
- Category 2 for events with at least one muon reconstructed by the new triple Gas Electron Multiplier (GEM) detectors.

Rare heavy flavour decays – SM@LHC 2022

12 - 04 - 2022