

The Future of Higgs

Standard Model at the LHC CERN, April 11- 14, 2022

Laura Reina (FSU)

With highlights from ongoing discussions within the Snowmass Energy Frontier

Snowmass EF wiki: https://snowmass21.org/energy/start

LHC / HL-LHC Plan

- → 2-fold increase in statistics by the end of Run 3
- → 20-fold increase in statistics by the end og HL-LHC!

The LHC era: exploring the TeV scale

- LHC Run 1: the Higgs discovery has been a game changer.
- LHC Run 2: entering the era of Higgs precision physics.
- LHC Run3 and the HL-LHC: will push the Higgs precision program farer.
- Updated scenarios for future colliders are being proposed based on LHC results, HL-LHC projections, and theory recommendations.
- Intriguing results coming from rare processes, flavour physics, cosmology.

Higgs physics has been at the core of the LHC physics program and will continue to be for Run 3 and the HL-LHC upgrade, as well as for all future colliders currently under discussion

Higgs physics to answer key questions of the EF program

What is the origin of the EW scale?

- Can we uncover the nature of UV physics from precision Higgs measurements (mass, width, couplings)?
 How much precision do we need?
 - How accurately do we need to measure?
 - Are existing theoretical predictions sufficient for the comparison?
- Can we measure the shape of the Higgs potential? →Higgs self coupling(s)
- Can the Higgs give us insight into flavor and vice versa?
 - Couplings to **heavy flavors** (top, bottom,...).
 - Couplings to light flavors (charm, strange, ...) and leptons.
- Why M_H<<M_{Planck}? What are the implications for Naturalness?
 - O How to connect precision and direct searches, how to achieve complementarity?
 - \circ Sensitivity to a variety of new physics \rightarrow EFT, inverse Higgs problem, ...

The Higgs discovery has given us a unique handle on BSM physics and any future plan needs to make the most out of it

HL-LHC projections from Run 2 data

$\overline{\kappa_i}$	ATLAS	CMS	HL-LHC
κ_Z	$1.02^{+0.06}_{-0.06}$	$0.96^{+0.07}_{-0.07}$	1.5%
κ_W	$1.05^{+0.06}_{-0.06}$	$-1.11^{+0.14}_{-0.09}$	1.7%
κ_t	$0.96^{+0.08}_{-0.08}$	$1.01^{+0.11}_{-0.11}$	3.4%
κ_b	$0.98^{+0.14}_{-0.13}$	$1.18^{+0.19}_{-0.27}$	3.7%
$\kappa_ au$	$1.06^{+0.15}_{-0.14}$	$0.94^{+0.12}_{-0.12}$	1.9%
κ_{μ}	$1.12^{+0.26}_{-0.32}$	$0.92^{+0.55}_{-0.87}$	4.3%

- HL-LHC projections from YR: **2-5% on most Higgs couplings**
- Larger uncertainties on light flavor Yukawa couplings
- <50% on Higgs self coupling

Being updated for Snowmass 2021

New: improvement from full LHC Run 2 measurements

Full Run 2 measurement drastically improved partial Run 2 results used for YR projections. Need to update HL-LHC projections.

ATLAS+CMS HL-LHC 2022 study

Beyond HL-LHC

LEPTON COLLIDERS

- Circular e+e- (CEPC, FCC-ee)
 - · 90-350 GeV
 - strongly limited by synchrotron radiation above 350–400 GeV
- Linear e+e- (ILC, CLIC, C³)
 - · 250 GeV > 1 TeV
 - Reach higher energies, and can use polarized beams
- · µ+µ-
 - · 3-30 TeV

HADRON COLLIDERS

• **75-200 TeV** (FCC-hh)

Beyond HL-LHC Projections

From C. Vernieri - EF Workshop - Brown U. - March 2022

New: Timelines and complementarities being explored

- Update reach of propose facilities
- Continuity with HL-LHC: ideally no gap
- Energy matters: top-Yukawa, HH, extended Higgs sectors need >500 GeV
 - LC: what energy after 250 GeV?
 - e.g.: e+e- scenarios at 550-600 GeV now being considered (C³, ILC)
 - Muon collider reach: updated projections for low/high energies (250 GeV, 3-10 TeV, 30 TeV)
- Growing interest in light-quarks and lepton couplings
 - New for Snowmass 2021:
 - Access to s-Yukawa
 - Access to e-Yukawa
- BSM Higgs
 - CP properties
 - Rare decays (flavor changing, etc.)

New: ILC reach on Higgs couplings will be updated

	l II	C250	II	C500	IL	C1000
coupling	full	no BSM	full	${\rm no}~{\rm BSM}$	full	no BSM
hZZ	0.49	0.38	0.35	0.20	0.34	0.16
hWW	0.48	0.38	0.35	0.20	0.34	0.16
hbb	0.99	0.80	0.58	0.43	0.47	0.31
h au au	1.1	0.95	0.75	0.63	0.63	0.52
hgg	1.6	1.6	0.96	0.91	0.67	0.59
hcc	1.8	1.7	1.2	1.1	0.79	0.72
$h\gamma\gamma$	1.1	1.0	1.0	0.96	0.94	0.89
$h\gamma Z$	8.9	8.9	6.5	6.5	6.4	6.4
$h\mu\mu$	4.0	4.0	3.8	3.7	3.4	3.4
htt	_	_	6.3	6.3	1.0	1.0
hhh	_	_	20	20	10	10
Γ_{tot}	2.3	1.3	1.6	0.70	1.4	0.50
Γ_{inv}	0.36	_	0.32	_	0.32	

Overall comparison of e⁺e⁻ options: linear vs circular, polarization, etc. \rightarrow e⁺e⁻ forum

New: reach for light-quark and lepton Yukawas

- Studying ZH with Z going to leptons and neutrinos
- κ_s<6.74 at 95% c.l.

- Electron Yukawa at FCC-ee
- κ_{e} < 1.6 at 95% c.l.

arXiv:2107.02686

arXiv:2203.07535

New: updated reach for Higgs self coupling

collider	single-H	HH	combined
HL-LHC	100-200%	50%	50%
CEPC ₂₄₀	49%	_	49%
C^3 ILC ₂₅₀	49%	_	49%
$C^3 ILC_{500}$	38%	27%	22%
ILC_{1000}	36%	10%	10%
CLIC_{380}	50%	_	50%
CLIC_{1500}	49%	36%	29%
CLIC_{3000}	49%	9%	9%
FCC-ee	33%	_	33%
FCC-ee (4 IPs)	24%	_	24%
HE-LHC	-	15%	15%
*FCC-hh	-	5%	5%

- ATLAS and CMS HL-LHC updated
- FCC-hh updated <u>arXiv:2004.03505</u>
- Muon Collider reach:

New: Muon collider reach on Higgs couplings

New: constraining and interpreting BSM signatures

Exploring measurement of high-p_T(H) spectrum

Sensitivity to EFT (BSM grows with E)

Higgs coupling sensitivity to scale of new physics via unitarity bounds

 Model independent indications for future colliders

ATLAS+CMS HL-LHC 2022 study

arXiv:2203.09512

Summary

- The Higgs physics program ahead of us is extremely intriguing and promises to start answering some of the remaining fundamental questions in particle physics.
- Many new directions have been explored during the ongoing Snowmass 2021 exercise, building on previous studies (ESG)
- The upcoming studies will focus on some fundamental questions that we see as challenges and opportunities for Higgs physics:
 - Why exploring the Higgs is important?
 - What do we learn from precision measurements of Higgs couplings?
 - O How do we make connections with BSM models?
 - How can we enhance the complementarity between precision measurement and new physics searches?