

Christoph Englert

Extracting κ_{λ} and κ_{2V} from all angles

SM@LHC `22

14/04/22

Fingerprinting the lack of new physics

coupling/scale separated BSM physics

Effective Field Theory

[Grzadkowski, Iskrzynski, Misiak, Rosiek `10] ...

 $\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \sum \frac{c_i}{\Lambda^2} \mathcal{O}_i$

- benchmarking as part of WGR 4
- limitations known and tackled
- limits on ad-hoc EFT deformations
 HXSWG benchmarks e.g. [CMS `18]

- concrete models
- extended SMEFT
- (\mathbb{C}) Higgs portals
- 2HDMs
- simplified models
- compositeness....

 $\mathcal{L}_{\rm SM} \supset |D_{\mu}\Phi|^2 - V($

Trilinear and Quartic Couplings: SM expectation trilinear couplings directly sensitive to the Higgs potential

 (Φ)

extensions to quartic Higgs couplings

[Borowka et al. `18] [Bizón et al. `18] [Liu et al. `18]

κ_{λ} : indirect vs direct sensitivity

[McCullough `13]

[Maltoni et al. `17]

[Kribs et al. `17]

 κ_{λ} enters (with theoretical assumptions) in loop corrections to Higgs and EW precision measurements [Degrassi et al. `16, `21]

κ_{λ} : looking into the future

Theoretical consistency

significant work devoted to constraining VVhh interactions

 e.g. [ATLAS 2001.05178]

- κ_V sensitive in the electroweak fit, suppressed κ_{2V} impact
- nature preserves probability \Rightarrow is the constraint relevant, or do we just map something obvious (unitarity) onto something opaque (κ_{2V})?

Theoretical consistency

• longitudinal gauge boson polarisations scale ~ E(W), growth of amplitude ~ $E^2(W) \implies \kappa_{2V} \neq 1$: loss of unitarity at a critical scale Λ

maximum energy correlates with critical $\kappa_{2V}=1+c_{2V}$, analysis needs to perform better than that has to be larger than maximum energy probed in analysis

checking this for [ATLAS 2001.05178]

 $\kappa_{2V} < -0.76$ and $\kappa_{2V} > 2.90$

 $\max E \sim 800 \text{ GeV}$

Theoretical consistency

• checking this for 2001.05178:

 $\kappa_{2V} < -0.76$ and $\kappa_{2V} > 2.90$

Phenomenological situation qualitatively similar to run-1 k Higgs framework: sensitivity to low to theoretically critical deviations.

 $\max E \sim 800 \text{ GeV}$

Weak boson fusion: Looking to the future

 interplay with gluon fusion in finite top mass critical to evaluate sensitivity yield see also [Bishra, Contino, Rojo `17] [Arganda, Garcia-Garcia, Herrero`18] [Killian et al. `21]

 potential improvements through traditional techniques (jet vetos, etc.) and machine learning
 [Killian et al. `21] [Diaz et al. `22]

κ_{2V} informing concrete scenarios?

W boson mass

- SM-likeness of 125 GeV selects alignment limit, κ_λ and κ_{2V}
 suppressed
- heavy exotics and allignment
 WBF plays an essential role!

...good coverage of searches for SMlike Higgs and SM HH channels...

Proof-of-principle analyses

 Searches for concrete exotics can provide superior sensitivity for current constraints scan over singlet parameter space, taking into account constraints from electroweak precision data, etc.

Proof-of-principle analysis

- WBF has significant overlap with "ordinary" HH searches: adds global sensitivity/exclusion potential
- more relevant: WBF only sensitive channel for the heavy Higgs partner mass region, when 125 GeV is consistent with the SM

- Sensitivity to κ_{λ} and κ_{2V} provide important tools to analyse the mechanism of electroweak symmetry breaking
- Large progress in obtaining sensitivity from a range of observables

- indirect searches based ad-hoc assumptions, difficult to motivate but good progress in EFT precision calculation to partially address these
- improve direct sensitivity: more data, less background, etc.