Understanding Quark Yukawa Interactions Latest results and prospects

Kajari Mazumdar TIFR, Mumbai, India.

On behalf of ATLAS and CMS Collaborations

Introduction

- Higgs (H) physics continues to play the central role in LHC scientific programme.
- Numerous measurements and theoretical developments
 ⇒ H is standard model (SM)-like
 → lot more needed for pinning it down more precisely.
- Unfinished mandates include understanding in detail the interaction between H and the fermion sector; described by the *Yukawa* coupling in SM.

Hff coupling: $y_f = \sqrt{2} m_f / v$

- Analyses of ATLAS and CMS data have already established that H directly couples to top and bottom quarks as well as to taus and muons in the lepton sector with strengths as envisaged in SM, within uncertainties.
- Very good sensitivity achieved recently for probing H coupling with the 2nd generation quark, charm.

- Extract from data the coupling strength modifiers (κ_i) wrt SM:
- $\kappa_i = 1 \rightarrow SM$
- $\kappa_i \neq 1 \rightarrow \text{BSM}$

ATLAS Preliminary 68% CL V KV Kt.b $\sqrt{s} = 13 \text{ TeV}, 36.1 - 139 \text{ fb}^{-1}$ t.b $m_H = 125.09 \text{ GeV}, |y_{_H}| < 2.5$ 95% CL g cooc KZ KW Signal strengths for individual production and decay channels compared wrt SM for $i \rightarrow H \rightarrow f$ Kt Kb $\mu_{if} = \frac{\sigma_i}{\sigma_i^{\rm SM}} \times \frac{B_f}{B_f^{\rm SM}}$ K_{τ} ATLAS Preliminary served best f ····· Observed 68% CL √s = 13 TeV, 36.1-139 fb¹ Ku Observed 95% CL $m_H = 125.09 \text{ GeV}, |y_u| < 2.5$ Standard Model Kg $p_{_{\rm SM}} = 2.8\%$ 1.05 Ky KZY B_i $B_i = B_{ii} = 0$ 0.95 $p_{\rm SM} = 33\%$ **B**,, BSM effects expected to 0.9 2 2 modify production and decays 0.85 in similar ways $B_i = \mathcal{B}(H \rightarrow BSM)$ 0.8 \rightarrow interaction vertices modified $B_{II} = \mathcal{B}(H \rightarrow undet.)$ 0.95 1.05 1.15 1.1 \rightarrow define coupling modifiers κ_i $\kappa_{\rm V}$ Upper limits on B_i , B_{ii} , when considered as $\kappa_i^2 = \sigma_i^{\text{obs}} / \sigma_i^{\text{SM}}$ free parameters in the fit, with $\kappa_{WZ} \leq 1$

Interplay of 2 types of couplings: $\kappa_v \& \kappa_f$

ATLAS-CONF-2021-053

Direct constraint on Higgs-charm coupling

- Most recent measurements by ATLAS and CMS: upper limit on the signal strength for Hcc coupling.
- Extremely challenging:

i) Br (H→ cc) ~ 3% ⇒ small signal rate, large background due to QCD production
ii) Identification of charm jets in hadronic environment of the LHC is more difficult than b jet
iii) H→bb is an irreducible background (it has higher rate as well)

• New tools developed for jet reconstruction, merged jets, ML-based charm-tagging.

Strategy:

- Exploit associated production: VH (V=W, Z), with leptonic decays of V \Rightarrow 0, 1, 2 leptons in the final state
- Use boosted H to reduce other backgrounds (inclusive production of V+jets, single and pair of top quarks, multi-bosons)
- Veto events with additional jets and leptons.

ATLAS: targets for best constraint on κ_c , κ_b and κ_c/κ_b by combining VH(H \rightarrow bb) and VH(H \rightarrow cc) analyses.

CMS: use of ParticleNet algorithm to identify and measure charm jets efficiently to achieve better sensitivity. Observed VZ, $Z \rightarrow cc$.

W/Z

VH, $H \rightarrow cc$ analysis overview in CMS

• Analysis validated by studying $VZ(Z \rightarrow cc)$

Merged jets:

- Small signal acceptance but high purity
- Better exploits the correlation between 2 charm quarks
- ⇒ require good identification capability

CMS identification of wide jets from boosted $H(\rightarrow cc)$

CMS HIG-21-008 CMS-DP-2020-002

Highlights:

- Charm-tagger using ParticleNet \rightarrow concept of graph NN (considers a jet as an unordered set of particles in η - ϕ space).
- Mass decorrelation to avoid sculpting jet mass shape in background after selection with tagger.
- Charm tagging efficiency derived from data.
- ParticleNet-based regression algorithm to improve the large-R jet mass reconstruction.
- Analysis proceeds in a factorized fashion with independent steps: Kinematic BDT, ParticleNet charm-tagger and Regressed jet mass
 → unbiased and robust method for background estimation and signal extraction.

CMS: charm-tagging in the resolved-jet topology

- DeepJet algorithm for 2 efficient charm taggers, to discriminate c jets from i) b jets and ii) light quark jets *separately*.
- Use different physics processes for calibration of c jet discriminators.
- Dedicated c jet regression to improve c jet energy scale and resolution

Extraction of results:

- i) Merged-jet topology: distribution of the Higgs boson candidate mass.
- ii) Resolved-jet topology: ordering of the events by BDT score.

In the combined statistical analysis, merged-jet topology class drives the sensitivity.

CMS-BTV-20-001

VH(H \rightarrow cc) result from CMS

- Observed (expected) σ(VH) 𝔅(H→cc) < 0.94 (0.50^{+0.22}_{-0.15}) pb
- Upper limit (UL) on signal strength at 95% CL: μ < 14 (7.6^{+3.4}_{-2.3})
- ⇒ Strongest limits on VH(H \rightarrow cc) process to date!
- Best fit signal strength: $\mu = 7.7^{+3.8}_{-3.5}$ \Rightarrow Consistent with the SM prediction within 2 s.d.
- Obs. (exp.) UL from each topology:
 - i) Resolved-jet topology: 14 (19) × SM
 - ii) Merged-jet topology: 17 (8.8) × SM
- Observation of Z→cc with significance 5.7 s.d. (exp.: 5.9s.d.)
 → first in a hadron collider!
- Signal strength obsd.: 1.01 ± 0.22 (exp.: 1 ± 0.21)

⇒ 1.1 < $|\kappa_c|$ < 5.5 obs. ($|\kappa_c|$ < 3.4 exp.) assuming all other κ_i =1 → most stringent (better than indirect estimate)

$$\mu_{\rm VH(H\to c\bar{c})} = \frac{\kappa_{\rm c}^2}{1 + \mathcal{B}_{\rm SM} \left(\rm H \to c\bar{c} \right) \times \left(\kappa_{\rm c}^2 - 1 \right)} \,.$$

VH(H \rightarrow cc) result from ATLAS

- Obsd. (exp.) σ (VH) **B**(H \rightarrow cc) < 26 (31) X SM @95% CL $\Rightarrow |\kappa_c| < 8.5$ obs. ($|\kappa_c| < 12.4 \text{ exp.}$)
- Constraint on Yukawa coupling modifier: $|\kappa_c| < 8.5$ (12.4) obs (exp.)

$$\kappa_j^2 = \frac{\Gamma_j}{\Gamma_j^{\text{SM}}} \qquad \sigma_i \times B_f = \frac{\sigma_i(\kappa) \times \Gamma_f(\kappa)}{\Gamma_H}$$

- Combine with $\sigma(VH) \mathcal{B}(H \rightarrow bb)$ to constrain κ_c / κ_b independent of H width
 - → at 95% CL | κ_c / κ_b | < 4.5, smaller than ratio of the b & c quark masses! ⇒ Higgs-charm coupling weaker than the Higgs-bottom coupling.

Further constraint on κ_{c} vs. κ_{b} from ATLAS

Combination of the κ_c / κ_b constraint contour from the interpretation of the search for VH,H \rightarrow bb/cc and from the combination of the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ differential cross-sections as a function of p_T^H

- VH analyses: predictions for σ (VH) and $\mathcal{B}(H\rightarrow$ cc/bb) parameterised as a function of $\kappa_c \& \kappa_b$ assuming no other anomalous contributions to the Higgs boson width.
- Interpretation of the p_T^H distributions only considers the effect of $\kappa_c \& \kappa_b$ but ignores any modification on H decays.

10

Boosted Higgs (H-bb) in STXS analysis: ATLAS

ATLAS HIGG-2021-08

- Binned maximum-likelihood fit to measure μ .
- Analysis validated in the same kinematic region using $Z \rightarrow bb$.

Boosted Higgs (H→bb) STXS analysis: ATLAS results

Higgs to quarkonia decays: CMS

<u>CMS-PAS-HIG-20-008</u>

CMS measurement of cross section for $H \rightarrow \! \tau \tau$

- Several BSM scenarios envisage modification in down-type *Hff* couplings.
- $\mathbf{H} \rightarrow \tau \tau$ allows to measure direct coupling of the H to down-type lepton of 3rd generation (τ).
- Significant improvement for τ performance of CMS in Run 2.
- Both cut-based and NN-based analyses.

CMS result for inclusive $\sigma(H \rightarrow \tau \tau)$

Process

ggH

qqH

Inclusive

Watch out!

 $\sigma \mathcal{B}(\mathrm{H} \to \tau \tau)$ (fb)

SM Prediction

 3422^{+172}

3051+160

 $329^{+9.67}_{-9.67}$

-172

-160

Measured

2960+394

 3060^{+}

 221^{+}

-370 -592 -552

ttH(H \rightarrow bb) production in ATLAS

6000

4000

3000

2000

1000

07 0.

Data / Pred. 1.25

5000-

- SM: $\sigma(ttH) = 507^{+35}_{-50}$ fb with accuracy of NLO QCD + EW.
- State-of-the-art generators put to task for modeling $tt+ \ge 1b$ bkg.(biggest source of syst. uncertainty).
- Ample use of machine learning for H candidate identification & classification of ttH signal categories.
- Single lepton (resolved & boosted H using BDT and DNN resp.ly) and dilepton final states.

ATLAS-HIGG-2020-23

ATLAS results for ttH(H \rightarrow bb) production

Events / 0.2 10⁵ ATLAS Data ATLAS √s=13 TeV, 139 fb⁻¹, m_⊥=125 GeV $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ tτ̄H (μ_{SM}=1.0) SM compatibility: 8.5% ttH (μ₆₁=0.35) Background 10 Tot. (Stat. Syst.) - Total -Stat. Bkgd Unc. **+0.43** (+0.22 +0.37) -0.41 (-0.21 -0.34) 10^{3} 0.30 +jets resolved HOH **+0.61** (+0.45 +0.41 -0.57 (-0.42 -0.38) 10 I+jets boosted 0.32 ttH(bb) Combined -----Single lepton and Dilepton Post-Fit +0.69 (+0.40 +0.56) Dilepton 0.60 ----Data / Bkgd - tīH (μ_{SM}=1.0) + Bkgd -0.65 -0.52 1.6E ttH (µ =0.35) + Bkgc 1.2 (+0.20 +0.30 +0.36Inclusive 0.35 HOH 0.8È. -2.6 -0.34 -0.20 -0.28 -22 -1.8 -1.6-2.4 -1.4 -1.2 log (S/B) 2 0 6 8 10 Final result based on discriminator output $\mu_{t\bar{t}H} = \sigma^{t\bar{t}H} / \sigma^{t\bar{t}H}_{SM}$ Signal strength wrt SM: $\mu = 0.35 \pm 0.20 \text{ (stat.)}^{+0.30}_{-0.28} \text{ (syst.)} = 0.35^{+0.36}_{-0.34}$

- Compatibility with SM: ~ 8.5%
- Observed (exp.) signal significance wrt bkg.-only hypothesis: 1.0 (2.0)

Watch out!

17

ATLAS-HIGG-2020-23

Future of probing Yukawa interactions at the LHC

LHC schedule as of January, 2022

Prospects for immediate future: Run 3

- Increased $\sqrt{s} = 13.6 \text{ TeV} \rightarrow \text{ some of the signal rates will increase, but not much effect on trigger$
- Pileup 50-60 \rightarrow higher than in Run 2, but now with luminosity/pileup levelling
- Expected integrated luminosity \mathcal{L} = 300/fb
 - Main factors for improvement of overall precision:

i) better detectors, improved acceptance in some cases, better computing.

ii) larger dataset \Rightarrow better statistical precision \Rightarrow improved treatment of theory systematics and background modelling, object performance and calibration

iii) better estimates of data-driven background, scale factors

iv) several improvements on theoretical aspects: eg., PDF, full usage of higher order simulations, etc.

 Phenomenology: eventual combination of data from Run1, Run2, Run 3 will provide powerful interpretation.

CMS -PAS-FTR-18-011

Recent projections for HL-LHC with Phase-2 upgraded detectors

HL-LHC: $\sqrt{s} = 14$ TeV, $\mathcal{L} = 3000 - 4000$ /fb \rightarrow significant upgrades for experiments.

- Opens up opportunity for several processes not easily accessible with the current data.
- Also gain from enhanced performance of detectors and fiducial coverage. Studies mostly considered Run 2 systematics, will improve substantially in future.

CMS estimates:

Simultaneous measurement of VH production for H→cc and H→ bb using merg jets (assume mis-id rate of H→ bb as H→ cc to be ~ 20%)
 ⇒ expect about 14% precision in µ_{VH(H→bb}) with £ = 400 /fb

 $\mu_{VH(H \longrightarrow bb)} : 1.00 \pm 0.03(stat) \pm 0.04(sys)$ $\mu_{VH(H \longrightarrow cc)} : 1.00 \pm 0.6(stat) \pm 0.5(sys)$

- 5 sigma discovery of ttH (H \rightarrow bb) anticipated with \mathcal{L} = 500 /fb
- Total uncertainty on cross section in opposite sign dilepton channel: ~12%

FTR-21-002

Summary

- ATLAS and CMS have made various measurements to probe Higgs Yukawa interaction Run 2 data and corresponding to $\mathcal{L} \sim 140$ /fb with improved precision.
- With commendable techniques and efforts some of the difficult and rarer decay modes, like H→ cc, have started to show up.
- This has paved the way to study the Higgs-quark Yukawa coupling structures in production and decay.
- Till now all measurements seem compatible with standard model.
- Several more results from Run 2 data analysis are on the way.
- With imminent LHC restart, there is huge anticipation to close in on the as-yet elusive couplings as well as to constrain the allowed ranges of the couplings already measured.

 \rightarrow Grand time ahead for probing Higgs-fermion Yukawa interactions \rightarrow Stay tuned!

Backup

 $H \rightarrow e^+e^-$

CMS-PAS-HIG-21-015

SM:B(H \rightarrow e⁺e⁻): 5.0 X 10⁻⁹

ATLAS 95% CL on B($H \rightarrow e^+e^-$): 3.6 X 10⁻⁴ (exp.3.5 X 10⁻⁴)

CMS 95% CL on B(H \rightarrow e⁺e⁻): 3.0 X 10⁻⁴ (exp.3.0 X 10⁻⁴) \rightarrow **Best to date !**

Uncertainty break up for ttH(H→bb)

Uncertainty source	$\Delta \mu$	
Process modelling		
tīH modelling	+0.13	-0.05
$t\bar{t} + \ge 1b$ modelling		
$t\bar{t} + \geq 1b$ NLO matching	+0.21	-0.20
$t\bar{t} + \ge 1b$ fractions	+0.12	-0.12
$t\bar{t} + \ge 1b$ FSR	+0.10	-0.11
$t\bar{t} + \ge 1b$ PS & hadronisation	+0.09	-0.08
$t\bar{t} + \ge 1b p_{\rm T}^{bb}$ shape	+0.04	-0.04
$t\bar{t} + \ge 1b$ ISR	+0.04	-0.04
$t\bar{t} + \ge 1c$ modelling	+0.03	-0.04
$t\bar{t}$ + light modelling	+0.03	-0.03
tW modelling	+0.08	-0.07
Background-model statistical uncertainty	+0.04	-0.05
b-tagging efficiency and mis-tag rates		
b-tagging efficiency	+0.03	-0.02
c-mis-tag rates	+0.03	-0.03
<i>l</i> -mis-tag rates	+0.02	-0.02
Jet energy scale and resolution		
b-jet energy scale	+0.00	-0.01
Jet energy scale (flavour)	+0.01	-0.01
Jet energy scale (pile-up)	+0.00	-0.01
Jet energy scale (remaining)	+0.01	-0.01
Jet energy resolution	+0.02	-0.02
Luminosity	+0.01	-0.00
Other sources	+0.03	-0.03
Total systematic uncertainty	+0.30	-0.28
$t\bar{t} + \ge 1b$ normalisation	+0.04	-0.07
Total statistical uncertainty	+0.20	-0.20
Total uncertainty	+0.36	-0.34

Uncertainty components in VHcc signal strength: CMS

Uncertainty source	$\Delta \mu / (\Delta \mu)_{tot}$
Statistical	85%
Background normalizations	37%
Experimental	48%
Sizes of the simulated samples	37%
Charm identification efficiencies	23%
Jet energy scale and resolution	15%
Simulation modeling	11%
Luminosity	6%
Lepton identification efficiencies	4%
Theory	22%
Backgrounds	17%
Signal	15%

ATLAS projection for κ_{c} vs. κ_{b} at HL-LHC

Constraint from combination of the measurements of the VH, $H \rightarrow bb$ and VH, $H \rightarrow cc$ $\Rightarrow |\kappa_c/\kappa_b| < 2.7$ at 95 % confidence level for $\mathcal{L} = 3000$ /fb

Source of uncertainty		$\Delta \mu_{VH}^{car{c}}$		
Total		3.21		
Statistical		1.97		
Systematics		2.53		
Statistical uncertainties				
Data statistics only		1.59		
Floating normalisations		0.95		
Theoretical and modelling uncertainties				
$VH, H \to c\bar{c}$		0.27		
$Z+ ext{jets}$		1.77		
Top-quark		0.96		
W+jets		0.84		
Diboson		0.34		
$VH, H o b\bar{b}$		0.29		
Multi-Jet		0.09		
Experimental uncertainties				
Jets		0.59		
Leptons		0.20		
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.18		
Pile-up and luminosity		0.19		
Flavour tagging	c-jets	0.61		
	b-jets	0.16		
	light-jets	0.51		
	au-jets	0.19		