

Parton showers and matching (review?)

Core concepts

Wilson line) states

Fixed-order calculation

well-defined power counting ≈ independent of kinematics
quantum interference
fails to describe free asymptotic (aka. Faddeev Kulish, coherent,

- Parton shower
- well-defined multiplicity counting, kinematics-dependent
- logarithmic order counting for some observables
- aims at modeling asymptotic states differentially

Matching: Consistent event-by-event combination of both

Why? Produce improved calculations, learn more about differential aspects of (IR) renormalization.

Core concepts

Questions for a matching/merging method

- 1) What is the "shower accuracy"? And is it preserved?
- 2) What is the fixed-order-dominated region? And is it retained?

Opinion: One should strive to answer 1) better than a simple "keep LL accuracy". Aim for a self-consistent showered calculation.

e.g. from arXiv:2106.03206: "The all-order factors of the parton-shower should be reproduced exactly, such that no measurement could distinguish the parton-shower and the matched prediction if all fixed-order cross section were calculated using the same approximations employed to derive parton-shower splitting kernels."

Core concepts

More opinions:

- We should be critical of using auxiliary jet algorithms
 - since the PS does not use such tricks
- We should be critical of employing approximated versions of showers
 - since PS would not be used that way
- We should use the PS to produce PS resummation
 - if the PS is not good enough, then work on PS.

State-of-the-art

The current status is well-described in the whitepaper arXiv:2203.11110: Three main NNLO+PS avenues capable of handling LHC:

Direct-QCD resummation-based

methods as part of POWHEGBOX + PYTHIA (NNLOPS, MINNLOPS).

SCET resummationbased

methods using τ and q_{\perp} resolution implemented in Geneva + Pythia.

Shower-unitarity based

method using q_{\perp} subtraction implemented in Sherpa (UN 2 LOPS)

State-of-the-art: UN²LOPS

Unitarized N²LO+PS in SHERPA

- Requires hand-crafted NNLO calculation
- Resummation purely supplied by shower
- 3 processes & not actively pursued (last paper arXiv:1809.04192)
- not obvious if unitarization introduces a "projection bias"

State-of-the-art: MINNLO $_{PS}$

dQCD resummation-based NNLO+PS in POWHEGBOX (+ PYTHIA)

- \circ Employs ingredients of NNLL q_{\perp} resummation
- \circ NNLOPS and MINNLO $_{PS}$. MINNLO $_{PS}$ employs hand-crafted NNLO
- see arXiv:2203.07240 for excellent summary
- in principle requires "truncated showering" when using PYTHIA.

State-of-the-art: GENEVA

SCET resummation-based in GENEVA (+ PYTHIA)

- \circ Employs ingredients of NNLL τ_0 or N³LL dQCD q_{\perp} resummation. Requires hand-crafted NNLO calculation
- o Impact of multiparton interactions also studied.
- see arXiv:2203.11110 for recent summary
- additional global shower vetoes required

Taken from Marius Wiesemann's talk, SM@LHC 2022

State-of-the-art: Opportunities

If PS sequence is divided between two codes with different ordering variables, then "[..] it does not seem possible to implement the soft radiation of a collinear bunch of partons without truncated showers."

(arXiv:hep-ph/0409146)

No two "transverse momenta" are the same!

Truncated PS mandatory, but impossible in PYTHIA. (cf. S. Höche, MCnet school 2017)

State-of-the-art: Opportunities

Missing higher orders in showers, i.e. no fully differential[†] matching; missing local PS counterterms

Non-unique association radiative event \leftrightarrow underlying Born leads to projection/mapping bias[‡]

 \Rightarrow Still ample opportunities to improve.

 $^{^{\}dagger}$ no separation of multiplicities with parameters other than PS cut-off. All states required for calculation have a fully differential representation that can be corrected numerically by matching or improving PS.

[‡] cf. arXiv:0801.4026 and arXiv:2106.03206, or arXiv:1506.02660

Recent developments: N3LO+PS

...recently became possible (TOMTE, arXiv:2106.03206, arXiv:2202.01082)

- \circ Projection bias (e.g. for V+j @ NNLO) addressed. Allows consistent combination of N3LO and showers.
- Proof-of-principle code using Pythia+Dire+Apfel available.
- Not fully differential, treatment of non-PS states subject to choices.

Recent developments: Fully differential NNLO+PS

An extension of the Powhed philosophy to NNLO requires

- 1) Born-local NNLO K-factor
- 2) Hardest-emission spectrum of PS given by NLO result, i.e. with real-virtual and double-real corrections.

...sounds easy, but subtle in practice. arXiv:2108.07133:

- fully differential NNLO+PS by implementing 1st emission of NLO PS
- \circ proof-of-concept worked out for $e^+e^- \rightarrow 2j$

Summary

- HL-LHC set to rely on precision calculations
- Matching fixed-order calculations with showers is a mature field.
- Tougher at higher orders; focus shifted to (PS) resummation parts.
- Efficient "production-grade" NNLO+PS codes emerging
- o Old problems remain
 - ...we should present conclusive evidence that this is acceptable

some honorable mentions should also go to:

- CKKW-L merging with sector showers arXiv:2008.09468
- o Constructing matched-shower surrogates using autoencoders arXiv:1807.03685
- Matching high-energy and DGLAP evolution arXiv:1712.00178
- Jet matching with TMD evolution arXiv:2107.01224
- Work towards NLO showers for matching arXiv:1606.00355, arXiv:1705.00742, arXiv:1805.03757, arXiv:2110.05964, arXiv:2112.14454