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LHC as a precision machine Sensitivity to deviations of Higgs 
interactions from SM predictions 
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Fig. 30: (left) Summary plot showing the total expected ±1� uncertainties in S2 (with YR18 systematic
uncertainties) on the coupling modifier parameters for ATLAS (blue) and CMS (red). The filled coloured
box corresponds to the statistical and experimental systematic uncertainties, while the hatched grey area
represent the additional contribution to the total uncertainty due to theoretical systematic uncertainties.
(right) Summary plot showing the total expected ±1� uncertainties in S2 (with YR18 systematic uncer-
tainties) on the coupling modifier parameters for the combination of ATLAS and CMS extrapolations.
For each measurement, the total uncertainty is indicated by a grey box while the statistical, experimental
and theory uncertainties are indicated by a blue, green and red line respectively.

a simple scaling of the cross sections and luminosities is applied, which is a fair assessment with the
current systematic uncertainties and assuming that the experimental performance and systematic uncer-
tainties are unchanged with respect to the current LHC experiments. Two scenarios are then assumed
for the theoretical and modelling systematic uncertainties on the signal and backgrounds. The first (S2)
is the foreseen baseline scenario at HL-LHC, and the second (S20) is a scenario where theoretical and
modelling systematic uncertainties are halved, which in many cases would correspond to uncertainties
roughly four times smaller than for current Run 2 analyses. It should be noted that HL-LHC measure-
ments, whose precision is limited by systematic uncertainties, would also improve for S2’. The results
of these projections are reported in Table 40.

2.8 Higgs couplings precision overview in the Kappa-framework and the nonlinear EFT24

After the discovery of the Higgs boson at the LHC, the first exploration of the couplings of the new
particle at Run I and Run II has achieved an overall precision at the level of ten percent. One of the main
goals of Higgs studies at the HL-LHC or HE-LHC will be to push the sensitivity to deviations in the
Higgs couplings close to the percent level.

In this section we study the projected precision that would be possible at such high luminosity
and high energy extensions of the LHC from a global fit to modifications of the different single-Higgs
couplings. Other important goals of the Higgs physics program at the HL/HE-LHC, such as extend-
ing/complementing the studies of the total rates with the information from differential distributions, or
getting access to the Higgs trilinear coupling, will be covered in other parts of this document.

In order to study single-Higgs couplings, we introduce a parametrisation, the nonlinear EFT, that
24 Contacts: J. de Blas, O. Catà, O. Eberhardt, C. Krause
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[Higgs Physics Report at HE/HL-LHC 2019]

Luminosity expected to reach 3000 fb-1 at the 
end of the HL-LHC run

Substantial improvement in experimental 
precision with increased statistics and better 
understanding of systematic uncertainties

Precision target (Higgs couplings): 1-3%
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Precision and fiducial acceptances
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Figure 3: The data-driven determination of (a) event yields and (b) event fractions for ��, � j and j j events as a
function of m�� after the final selection outlined in Section 5. The event fractions for two di�erential observables,
(c) p��T and (d) Njets defined for jets with a pT > 30 GeV are shown as well. The shaded regions show the total
uncertainty of the measured yield and fraction, and the error bars show the statistical uncertainties.

fractions are systematically dominated. These results are comparable to previous results at
p

s = 7 and
8 TeV [9, 76]. In addition the purity is shown as a function of the pT of the diphoton system, and the
number of reconstructed jets with pT > 30 GeV.

The functional form used to model the background m�� distribution in the fit to the data is chosen, in
each region, to ensure a small bias in the extracted signal yield relative to its experimental precision,
following the procedure described in Ref. [3]. The potential bias (spurious signal) is estimated as the
maximum of the absolute value of the fitted signal yield, using a signal model with mass between 121
and 129 GeV, in fits to the background control regions described before.

The spurious signal is required, at 95% confidence level (CL), to be less than 10% of the expected SM
signal yield or less than 20% of the expected statistical uncertainty in the SM signal yield. In the case
when two or more functions satisfy those requirements, the background model with the least number
of parameters is chosen.

Prior to the final fit to the data, the selected model is tested against a model from the same family
of functions but with one more degree of freedom (for instance, the exponential of a second-order

19

[ATLAS 1802.04146]

Experimental analyses performed within fiducial 
region corresponding to the phase space of 
experimental apparatuses

Additional selection cuts applied to enhance signal 
or eliminate/reduce experimental background (e.g. 
particles with low- )pT

Data-theory comparison within fiducial 
region is a core principle in the LHC 

precision programme : cuts on final-state photons can improve 
the efficiency of the selection of pure  final state
H → γγ

γγ
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Figure 4: Inclusive two-jet total cross section for E1T > Ecut
T and

E2T > Ecut
T +∆, as a function of ∆, for two different values of Ecut

T .

two other partons). The leading collinear singularity of this contribution is given by

σ(r) =
∫

d2p1T θ(E1T − Ecut
T

)
∫

d2p2T θ(E2T − Ecut
T

−∆)
1

|#p1T + #p2T |
2 + δ

, (2.8)

where δ acts as a collinear cutoff. The integral can be easily computed, and we get

σ(r) = A(∆, δ) +B log δ − C · (∆+ δ) log(∆+ δ), (2.9)

where both A(∆, δ) and its first derivative with respect to ∆ are regular in ∆ = 0

for any δ, including δ = 0, and C is a positive coefficient. The term B log δ is the

genuine collinear singularity, and it is cancelled by the corresponding singular terms

in the two-body contribution. For fixed ∆ "= 0, one can safely take δ = 0 in the

last term. For ∆ → 0 this term vanishes, but its first derivative with respect to

∆ diverges, and this is the origin of the behaviour observed in the full calculation,

shown in fig. 4. Alternatively, one could have started with ∆ = 0, as we did for the

distributions shown in fig. 1. In this case, the last term in eq. (2.9) becomes δ log δ,

which vanishes for δ → 0, although less rapidly than terms linear in δ. Because of this

extra δ dependence, the ∆ = 0 case is a reason of concern [8] when the calculation is

performed with a technique which requires keeping δ "= 0, as for example the slicing

–8–

distribution is slightly stronger for η values which are far from the central region.

This is what we expect, since large η values correspond to small transverse energies,

and therefore to less reliable QCD predictions.

We also computed the same quantities for a cone with an opening angle of R = 0.7.

In this case, the scale dependence of both the pseudorapidity and the invariant mass

distributions is slightly reduced.

The situation is different for the azimuthal correlation ∆φjj between the two jets

with largest transverse momenta, shown in fig. 3. For ∆φjj < π the two sets of

curves corresponding to the different choices of transverse momentum cuts show the

same scale dependence, larger than in the case of pseudorapidity and invariant mass

distributions of fig. 2. This is due to the fact that the ∆φjj correlation is a pure NLO

effect in this region. The scale dependence reduces for ∆φjj ! π, as can be also seen

from the small inserted figure.

The ∆φjj correlation computed with a cone of R = 0.7 shows the same scale

dependence as in the case R = 1 for ∆φjj < π, and a stronger scale dependence for

∆φjj ! π.

We now consider the problem of computing two-jet inclusive quantities for Ecut
1T =

Ecut
2T ≡ Ecut

T
. As far as infrared safeness is concerned, there is nothing special in

this choice. The cross section is well-defined and finite at any order in perturbation

theory. On the other hand, there are quantities which at next-to-leading order display

a pathological behaviour. This can be seen very easily by studying the inclusive two-

jet total cross section

σ2(∆) = σ(E1T > Ecut
T

, E2T > Ecut
T

+∆) (2.7)

for ∆ → 0. The next-to-leading order QCD results are shown in fig. 4, where we have

chosen Ecut
T

= 10 GeV and Ecut
T

= 20 GeV (the curve for Ecut
T

= 20 GeV has been

rescaled by a factor of 11 in order to make both curves visible on the same plot).

Notice that the value of σ2(∆) for ∆ = 0 is finite, as expected for an infrared-safe

quantity. Observe also, on the other hand, that σ2(∆) has an infinite slope in ∆ = 0.

This fact can be understood in the following way. We consider the real emission

contribution when one of the emitted partons is quasi-collinear to one of the initial

state partons (at NLO in QCD this implies that the two jets are identified with the

[Frixione, Ridolfi ’97]

Cut to the chase: fiducial acceptances and perturbative convergence

The definition of fiducial cuts can be delicate 
for configurations with final states with two 
objects in back-to-back configurations

[Klasen, Kramen ’96][Harris, Owen ’97][Frixione, Ridolfi ’97]

Perturbative instability induced by sensitivity to 
soft radiation in configurations close to the 
back-to-back limit 

Some key observations:

• Resummation can be beneficial  

• Choice of cuts has an impact on the 
perturbative convergence 

• Subtraction methods based on slicing 
techniques might require special care with 
certain cuts
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Cuts and linear power corrections

Symmetric and asymmetric cuts induce a linear dependence on the acceptance 

f sym(pT) = f0 + f sym
1 ⋅

pT

M
+ 𝒪2

Final state (e.g. Higgs/Z) with 
zero transverse momentum

Final state with non-zero 
transverse momentum

p1
T

27 GeV

Fails cutsPasses cuts

Coefficients depend on the 
specific choice of cuts

[Tackmann, Ebert ’19][Alekhin, Kardos, Moch, Trócsányi ‘21][Salam, Slade ’21]

27 GeV

p2
T

p1
T

p2
T

Drell-Yan production cuts (ATLAS, CMS, LHCb…)
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Cuts and linear power corrections

Symmetric and asymmetric cuts induce a linear dependence on the acceptance 

Final state (e.g. Higgs/Z) with 
zero transverse momentum

Fails cuts

Final state with non-zero 
transverse momentum

Passes cuts

0.25 ⋅ M

2-body cuts, Snowmass Energy Frontier WorkshopGavin P. Salam

Linear ptH dependence of H acceptance ≡ f(ptH)

7

resonance such as a Z or Higgs boson. Refs. [1–3] noted that the common practice at

the time, of applying identical minimum thresholds on the transverse momenta of the two

objects (“symmetric cuts”), led to sensitivity to configurations with a small transverse

momentum imbalance between the two objects, where perturbative calculations could be

a↵ected by enhanced (though integrable) logarithms of the imbalance. Ultimately, the

discussions in those papers resulted in the widespread adoption of so-called “asymmetric”

cuts whereby one chooses di↵erent transverse-momentum thresholds for the harder and

softer of the two jets.

In recent years, QCD calculations have made amazing strides in accuracy (for a review,

see Ref. [4]), reaching N3LO precision for key 2 ! 1 processes, both inclusively [5–8]

and di↵erential in the rapidity [9, 10] and in the full decay kinematics [11–13]. As the

calculations have moved forwards, an intriguing situation has arisen in the context of gluon-

fusion Higgs production studies, where the calculations are arguably the most advanced.

For this process, inclusive cross sections and cross sections di↵erential in the Higgs boson

rapidity show a perturbative series that converges well at N3LO. However, calculations for

fiducial cross sections, which include asymmetric experimental cuts on the photons from

H ! �� decays, show poorer convergence and significantly larger scale uncertainties [11,

12]. Furthermore, it turns out that to obtain the correct N3LO prediction, it is necessary

to integrate over Higgs boson transverse momenta that are well below a GeV, which is

physically unsettling (albeit reminiscent of the early observations in Ref. [1–3]).

Refs. [12, 14] have noted that such problems (which appear to be present to a lesser

extent also in the context of Drell-Yan studies) are connected with the fact that both

asymmetric and symmetric cuts yield an acceptance for H ! �� decays, f(pt,h), that has

a linear dependence on the Higgs boson transverse momentum pt,h [15, 16]:

f(pt,h) = f0 + f1 ·
pt,h

mh

+O

 
p
2
t,h

m2
h

!
. (1.1)

In section 2, concentrating on the H ! �� case, we will review how this linear depen-

dence arises and we will also examine its impact on the perturbative series with a simple

resummation-inspired toy model for its all-order structure. That model implies that any

power-law dependence of the acceptance for pt,h ! 0 results in a perturbative series for the

fiducial cross section that diverges (�1)n↵n
sn!, i.e. an alternating-sign factorial divergence,

coming predominantly from very low pt,h values.

Factorial growth implies that, however small the value of ↵s, the perturbative series will

never converge. Non-convergence of the series is a well known feature of QCD, notably be-

cause of the same-sign factorial growth induced by infrared QCD renormalons [17]. In that

context, the smallest term in the series is often taken as a fundamental non-perturbative

ambiguity. The alternating-sign factorial growth that we see is di↵erent, in that the sum

of all terms can be made meaningful, with the help of resummation. However, fixed-order

perturbative calculations still cannot reproduce that sum to better than the smallest term

in the series. As is commonly done with infrared renormalon calculations, one can express

the size of the smallest term in the series as a power of (⇤/mh), where ⇤ ⌘ ⇤qcd ⇠ 0.2 GeV

is the fundamental infrared scale of QCD. The power that emerges with standard H ! ��

– 2 –
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See e.g. Frixione & Ridolfi ‘97 
Ebert & Tackmann ’19 

idem + Michel & Stewart ‘20 
Alekhin et al ’20

effect of  cut sets in at  pt,− 0.1mH

 and  are coefficients whose values 
depend on the cuts
f0 f1

0.35 ⋅ M

f asym(pT) = f0 + f asym
1 ⋅

pT

M
+ 𝒪2

[Tackmann, Ebert ’19][Alekhin, Kardos, Moch, Trócsányi ‘21][Salam, Slade ’21]
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σfid = σtot [f0 + f1
∞

∑
n=1

(−1)n+1 (2n)!
2(n!) ( 2CAαs

π )
n

+ ⋯]

dσ
dpT

∼
4CAαsL

πpT
e− 2CAαs

π L2 ∼
σtot

pT
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Linear power corrections and perturbative convergence

What happens at the level of the fiducial cross section?

σfid = ∫
dσ
dpT

f(pT)dpT

Drastic impact on the behaviour of calculations in perturbative QCD

L = ln
pT

2M

Simple double-logarithmic approximation for  distributionpT

Upon integration, pathological perturbative behaviour

(alternating sign) factorial growth
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Figure 2: Acceptance for Higgs to di-photon decays, f(pt,h), as a function of pt,h, for

a symmetric cut on the photons (pt,�, pt,+ > 0.25mh), a cut just on the harder photon

(pt,+ > 0.35mh) and an asymmetric cut, where both conditions are imposed. Points are

Monte Carlo evaluations of the acceptance (whose value is independent of any perturbative

order), while the lines use Eqs. (2.7), (2.14) and (2.17), extended to fourth order in pt,h/mh.

Where a band is visible, its width corresponds to the di↵erence between third and fourth

order expansions.

where we have introduced the function

�(pt,�) =
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2
t
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⇥
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�
� 1

⌘
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which will reappear below when discussing other combinations of cuts. It has the property

that it is 0 for pt  �, it goes as
p
8/9�(pt��)3/2 for pt just above � and as pt�

⇡

2
� for

pt � �. The acceptance for the asymmetric cut is plotted as a function of pt,h in Fig. 2

(the green line), using ATLAS values [42] for the photon thresholds. The figure includes

a comparison to a symmetric cut (in blue), as well as a cut just on the harder photon (in

red). One sees that the asymmetric cut gives identical results to the harder-photon cut

up to pt,h = � = 0.1mh = 12.5 GeV, while it mostly tracks the symmetric cut beyond

that point, a consequence of the fact that for pt � �, �(pt,�) ' pt, e↵ectively replacing
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pt,h/mh in Eq. (2.17).

The next step is to examine how Eq. (2.11) is modified with asymmetric cuts. With

� = 0.1mh, concentrating on the part of the acceptance proportional to f1, we obtain
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Comparing to Eq. (2.11), there is an overall replacement f
sym

! f
asym (recall that they

have opposite signs). The coe�cient of the order ↵s term is somewhat reduced, and the
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FIG. 2. Comparison between inclusive (left) and fiducial (right) predictions for the rapidity distribution of the Higgs boson up
to N3LO. Predictions are shown at LO (grey), NLO (green), NNLO (blue), N3LO (red), and for the NNLO prediction re-scaled
by the inclusive KN3LO-factor (orange).

1. The inclusive calculation at N3LO for the Higgs ra-
pidity distribution yH as computed in Ref. [20] and
implemented in the RapidiX library. This result is
based on techniques developed in Refs. [39, 40] and
is given by analytic formulae for the partonic rapid-
ity distribution computed by means of a threshold
expansion. We supplement this result by exploiting
the fact that the Higgs boson decays isotropically
in its rest frame to generate the inclusive N3LO cal-
culation di↵erential in the Higgs boson decay prod-
ucts.

2. The fully di↵erential NNLO calculation for the
H+jet process. This has been computed in Ref. [29]
using the antenna subtraction method [22, 40] and
is available within the parton-level Monte Carlo
generator NNLOJET.

We have implemented the P2B method for color-neutral
final states within the NNLOJET framework together
with an interface to the RapidiX library to access the
inclusive part of the calculation.

For our phenomenological results, we restrict ourselves
to the decay of the Higgs boson into a pair of photons
and closely follow the corresponding 13 TeV ATLAS
measurement [41] with the following fiducial cuts

p�1

T > 0.35⇥m�� , p�2

T > 0.25⇥m�� , (7)

|⌘� | < 2.37 excluding 1.37 < |⌘� | < 1.52,

where �1 and �2 respectively denote the leading and sub-
leading photon with m�� ⌘ MH = 125 GeV the invari-
ant mass of the photon-pair system. For each photon,

an additional isolation requirement is imposed where the
scalar sum of partons with pT > 1 GeV within a cone of
�R = 0.2 around the photon has to be less than 5% of the
pT of the photon. Note that this setup induces a highly
non-trivial interplay between the final-state photons and
QCD emissions, requiring a fully di↵erential description
of the process. Throughout this letter, we work in the
narrow width approximation to combine the production
and decay of the Higgs boson. To derive numerical pre-
dictions we use PDF4LHC15_nnlo_100 [42] parton distri-
bution functions and choose the value of the top quark
mass in the modified minimal subtraction scheme to be
mt(mt) = 162.7 GeV.

Figure 1 compares predictions for the fiducial rapidity
distribution of the Higgs boson yH based on two di↵er-
ent methods. This comparison serves as the validation
of the P2B implementation up to NNLO against an in-
dependent calculation based on the antenna subtraction
method. The lower panels in Fig. 1 show the ratio of the
two calculations, where the filled band and the error bars
correspond to the uncertainty estimates of the Monte
Carlo integration of the antenna- and P2B-prediction,
respectively. The ratios shown in the bottom two panels
reveal agreement within numerical uncertainties between
the two calculations at the per-mille and sub-per-cent
level for the coe�cients at NLO and NNLO, respectively.

Figure 2 compares the inclusive rapidity distribution of
the Higgs boson to the fiducial rapidity distribution of the
di-photon pair. It was already noted in Refs. [20, 21] that
the N3LO correction to the inclusive rapidity distribu-
tion is remarkably uniform and is well approximated by
rescaling the inclusive NNLO rapidity distribution with
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1. The inclusive calculation at N3LO for the Higgs ra-
pidity distribution yH as computed in Ref. [20] and
implemented in the RapidiX library. This result is
based on techniques developed in Refs. [39, 40] and
is given by analytic formulae for the partonic rapid-
ity distribution computed by means of a threshold
expansion. We supplement this result by exploiting
the fact that the Higgs boson decays isotropically
in its rest frame to generate the inclusive N3LO cal-
culation di↵erential in the Higgs boson decay prod-
ucts.

2. The fully di↵erential NNLO calculation for the
H+jet process. This has been computed in Ref. [29]
using the antenna subtraction method [22, 40] and
is available within the parton-level Monte Carlo
generator NNLOJET.

We have implemented the P2B method for color-neutral
final states within the NNLOJET framework together
with an interface to the RapidiX library to access the
inclusive part of the calculation.

For our phenomenological results, we restrict ourselves
to the decay of the Higgs boson into a pair of photons
and closely follow the corresponding 13 TeV ATLAS
measurement [41] with the following fiducial cuts

p�1

T > 0.35⇥m�� , p�2

T > 0.25⇥m�� , (7)

|⌘� | < 2.37 excluding 1.37 < |⌘� | < 1.52,

where �1 and �2 respectively denote the leading and sub-
leading photon with m�� ⌘ MH = 125 GeV the invari-
ant mass of the photon-pair system. For each photon,

an additional isolation requirement is imposed where the
scalar sum of partons with pT > 1 GeV within a cone of
�R = 0.2 around the photon has to be less than 5% of the
pT of the photon. Note that this setup induces a highly
non-trivial interplay between the final-state photons and
QCD emissions, requiring a fully di↵erential description
of the process. Throughout this letter, we work in the
narrow width approximation to combine the production
and decay of the Higgs boson. To derive numerical pre-
dictions we use PDF4LHC15_nnlo_100 [42] parton distri-
bution functions and choose the value of the top quark
mass in the modified minimal subtraction scheme to be
mt(mt) = 162.7 GeV.

Figure 1 compares predictions for the fiducial rapidity
distribution of the Higgs boson yH based on two di↵er-
ent methods. This comparison serves as the validation
of the P2B implementation up to NNLO against an in-
dependent calculation based on the antenna subtraction
method. The lower panels in Fig. 1 show the ratio of the
two calculations, where the filled band and the error bars
correspond to the uncertainty estimates of the Monte
Carlo integration of the antenna- and P2B-prediction,
respectively. The ratios shown in the bottom two panels
reveal agreement within numerical uncertainties between
the two calculations at the per-mille and sub-per-cent
level for the coe�cients at NLO and NNLO, respectively.

Figure 2 compares the inclusive rapidity distribution of
the Higgs boson to the fiducial rapidity distribution of the
di-photon pair. It was already noted in Refs. [20, 21] that
the N3LO correction to the inclusive rapidity distribu-
tion is remarkably uniform and is well approximated by
rescaling the inclusive NNLO rapidity distribution with
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1. The inclusive calculation at N3LO for the Higgs ra-
pidity distribution yH as computed in Ref. [20] and
implemented in the RapidiX library. This result is
based on techniques developed in Refs. [39, 40] and
is given by analytic formulae for the partonic rapid-
ity distribution computed by means of a threshold
expansion. We supplement this result by exploiting
the fact that the Higgs boson decays isotropically
in its rest frame to generate the inclusive N3LO cal-
culation di↵erential in the Higgs boson decay prod-
ucts.

2. The fully di↵erential NNLO calculation for the
H+jet process. This has been computed in Ref. [29]
using the antenna subtraction method [22, 40] and
is available within the parton-level Monte Carlo
generator NNLOJET.

We have implemented the P2B method for color-neutral
final states within the NNLOJET framework together
with an interface to the RapidiX library to access the
inclusive part of the calculation.

For our phenomenological results, we restrict ourselves
to the decay of the Higgs boson into a pair of photons
and closely follow the corresponding 13 TeV ATLAS
measurement [41] with the following fiducial cuts

p�1

T > 0.35⇥m�� , p�2

T > 0.25⇥m�� , (7)

|⌘� | < 2.37 excluding 1.37 < |⌘� | < 1.52,

where �1 and �2 respectively denote the leading and sub-
leading photon with m�� ⌘ MH = 125 GeV the invari-
ant mass of the photon-pair system. For each photon,

an additional isolation requirement is imposed where the
scalar sum of partons with pT > 1 GeV within a cone of
�R = 0.2 around the photon has to be less than 5% of the
pT of the photon. Note that this setup induces a highly
non-trivial interplay between the final-state photons and
QCD emissions, requiring a fully di↵erential description
of the process. Throughout this letter, we work in the
narrow width approximation to combine the production
and decay of the Higgs boson. To derive numerical pre-
dictions we use PDF4LHC15_nnlo_100 [42] parton distri-
bution functions and choose the value of the top quark
mass in the modified minimal subtraction scheme to be
mt(mt) = 162.7 GeV.

Figure 1 compares predictions for the fiducial rapidity
distribution of the Higgs boson yH based on two di↵er-
ent methods. This comparison serves as the validation
of the P2B implementation up to NNLO against an in-
dependent calculation based on the antenna subtraction
method. The lower panels in Fig. 1 show the ratio of the
two calculations, where the filled band and the error bars
correspond to the uncertainty estimates of the Monte
Carlo integration of the antenna- and P2B-prediction,
respectively. The ratios shown in the bottom two panels
reveal agreement within numerical uncertainties between
the two calculations at the per-mille and sub-per-cent
level for the coe�cients at NLO and NNLO, respectively.

Figure 2 compares the inclusive rapidity distribution of
the Higgs boson to the fiducial rapidity distribution of the
di-photon pair. It was already noted in Refs. [20, 21] that
the N3LO correction to the inclusive rapidity distribu-
tion is remarkably uniform and is well approximated by
rescaling the inclusive NNLO rapidity distribution with

fiducial N3LO uncertainties ~ 2 x inclusive N3LO uncertainties

N3LO inclusive

pp → H( → γγ)

Detailed explanation: Alex Huss’ slides @ Higgs2021

https://indico.cern.ch/event/1030068/contributions/4408795/attachments/2330670/3971655/Higgs2021_Huss.pdf
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FIG. 3. Total fiducial gg ! H ! �� cross section at
fixed N3LO (this work) and including resummation (also this
work), where �resum ⌘ �qT � �' � �match, compared to
preliminary ATLAS measurements [26].

include them in the subtractions (and to resum them).
The remaining nonsingular corrections at ↵

3
s
are about

10 times larger than at ↵
2
s
, and at q

cut

T
= 1–5GeV still

contribute 5%–10% of the total ↵3
s
coe�cient. Together

with the current precision of the nonsingular data, this
makes the above di↵erential subtraction procedure essen-
tial to our results.

Evaluating Eq. (15) either at fixed order or including
resummation, we obtain our final results for the total
fiducial cross section presented in Fig. 3. The poor con-
vergence at fixed order is largely due to the fiducial power
corrections. To see this,

�
FO

incl
= 13.80 [1 + 1.291 + 0.783 + 0.299] pb ,

�
FO

fid
/B�� = 6.928 [1 + (1.300 + 0.129fpc)

+ (0.784� 0.061fpc)

+ (0.331 + 0.150fpc)] pb . (17)

The successive terms are the contributions from each or-
der in ↵s. The numbers with “fpc” subscript are the
contributions of the fiducial power corrections in Eq. (7)
integrated over qT  130GeV. The corrections with-
out them are almost identical to the inclusive case. The
fiducial power corrections break this would-be universal
acceptance e↵ect, causing a 10% correction at NLO and
NNLO and a 50% correction at N3LO and showing no
perturbative convergence.

Integrating W
(0) over qT , all qT logarithms and re-

summation e↵ects formally have to cancel. (Numerically,
this strongly depends on the specific implementation of
resummation and matching. We have verified explicitly
that it is well satisfied in our approach.) For the fiducial
power corrections, the nontrivial qT dependence of the
acceptance spoils this cancellation and induces residual
logarithmic dependence on pL/mH in the integral. This
causes the large corrections in Eq. (17), which get re-
summed using the resummed �

sing in Eq. (15). Together

with timelike resummation, this leads to the excellent
convergence of the resummed results in Fig. 3, very sim-
ilar to the inclusive case [73],

�incl = 24.16 [1 + 0.756 + 0.207 + 0.024] pb ,

�fid/B�� = 12.89 [1 + 0.749 + 0.171 + 0.053] pb . (18)

To conclude, our best result for the fiducial Higgs cross
section at N3LL0+N3LO for the cuts in Eq. (1) reads

�fid/B�� = (25.41± 0.59FO ± 0.21qT ± 0.17'

± 0.06match ± 0.20nons) pb

= (25.41± 0.68pert) pb . (19)

Multiplying by B�� = (2.270± 0.047)⇥ 10�3 [107–109],

�fid = 57.69 (1± 2.7%pert ± 2.1%B (20)

± 3.2%PDF+↵s ± 2%EW ± 2%t,b,c) fb ,

where we also included approximations of additional un-
certainties. The PDF+↵s uncertainty is taken from the
inclusive case [24, 109]. For the inclusive cross section,
NLO electroweak e↵ects give a +5% correction [110],
while the net e↵ect of finite top-mass, bottom, and charm
contributions is�5% (in the pole scheme we use). We can
expect roughly similar acceptance corrections for both,
and therefore keep the central result unchanged but in-
clude a conservative 2% uncertainty (40% of the expected
correction) for each e↵ect. Their proper treatment re-
quires incorporating them into the resummation frame-
work, which we leave for future work.
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inary results of Ref. [26] publicly available. This work
was supported in part by the O�ce of Nuclear Physics of
the U.S. Department of Energy under Contract No. DE-
SC0011090 and within the framework of the TMD Topi-
cal Collaboration, the Deutsche Forschungsgemeinschaft
(DFG) under Germany’s Excellence Strategy – EXC 2121
“Quantum Universe” – 390833306, and the PIER Ham-
burg Seed Project PHM-2019-01.
Note added. While finalizing this work, we became

aware of complementary work computing fiducial ra-
pidity spectra in Higgs production at N3LO using the
Projection-to-Born approach [111]. The perturbative in-
stabilities observed there are avoided here by resumming
the responsible fiducial power corrections.
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Figure 2: Acceptance for Higgs to di-photon decays, f(pt,h), as a function of pt,h, for

a symmetric cut on the photons (pt,�, pt,+ > 0.25mh), a cut just on the harder photon

(pt,+ > 0.35mh) and an asymmetric cut, where both conditions are imposed. Points are

Monte Carlo evaluations of the acceptance (whose value is independent of any perturbative

order), while the lines use Eqs. (2.7), (2.14) and (2.17), extended to fourth order in pt,h/mh.

Where a band is visible, its width corresponds to the di↵erence between third and fourth

order expansions.
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which will reappear below when discussing other combinations of cuts. It has the property

that it is 0 for pt  �, it goes as
p
8/9�(pt��)3/2 for pt just above � and as pt�

⇡

2
� for

pt � �. The acceptance for the asymmetric cut is plotted as a function of pt,h in Fig. 2

(the green line), using ATLAS values [42] for the photon thresholds. The figure includes

a comparison to a symmetric cut (in blue), as well as a cut just on the harder photon (in

red). One sees that the asymmetric cut gives identical results to the harder-photon cut

up to pt,h = � = 0.1mh = 12.5 GeV, while it mostly tracks the symmetric cut beyond

that point, a consequence of the fact that for pt � �, �(pt,�) ' pt, e↵ectively replacing
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The next step is to examine how Eq. (2.11) is modified with asymmetric cuts. With
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Comparing to Eq. (2.11), there is an overall replacement f
sym

! f
asym (recall that they

have opposite signs). The coe�cient of the order ↵s term is somewhat reduced, and the
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contribute 5%–10% of the total ↵3
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coe�cient. Together

with the current precision of the nonsingular data, this
makes the above di↵erential subtraction procedure essen-
tial to our results.

Evaluating Eq. (15) either at fixed order or including
resummation, we obtain our final results for the total
fiducial cross section presented in Fig. 3. The poor con-
vergence at fixed order is largely due to the fiducial power
corrections. To see this,
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der in ↵s. The numbers with “fpc” subscript are the
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integrated over qT  130GeV. The corrections with-
out them are almost identical to the inclusive case. The
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acceptance e↵ect, causing a 10% correction at NLO and
NNLO and a 50% correction at N3LO and showing no
perturbative convergence.

Integrating W
(0) over qT , all qT logarithms and re-

summation e↵ects formally have to cancel. (Numerically,
this strongly depends on the specific implementation of
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�incl = 24.16 [1 + 0.756 + 0.207 + 0.024] pb ,

�fid/B�� = 12.89 [1 + 0.749 + 0.171 + 0.053] pb . (18)

To conclude, our best result for the fiducial Higgs cross
section at N3LL0+N3LO for the cuts in Eq. (1) reads

�fid/B�� = (25.41± 0.59FO ± 0.21qT ± 0.17'

± 0.06match ± 0.20nons) pb

= (25.41± 0.68pert) pb . (19)

Multiplying by B�� = (2.270± 0.047)⇥ 10�3 [107–109],
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where we also included approximations of additional un-
certainties. The PDF+↵s uncertainty is taken from the
inclusive case [24, 109]. For the inclusive cross section,
NLO electroweak e↵ects give a +5% correction [110],
while the net e↵ect of finite top-mass, bottom, and charm
contributions is�5% (in the pole scheme we use). We can
expect roughly similar acceptance corrections for both,
and therefore keep the central result unchanged but in-
clude a conservative 2% uncertainty (40% of the expected
correction) for each e↵ect. Their proper treatment re-
quires incorporating them into the resummation frame-
work, which we leave for future work.
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include them in the subtractions (and to resum them).
The remaining nonsingular corrections at ↵

3
s
are about

10 times larger than at ↵
2
s
, and at q

cut

T
= 1–5GeV still

contribute 5%–10% of the total ↵3
s
coe�cient. Together

with the current precision of the nonsingular data, this
makes the above di↵erential subtraction procedure essen-
tial to our results.

Evaluating Eq. (15) either at fixed order or including
resummation, we obtain our final results for the total
fiducial cross section presented in Fig. 3. The poor con-
vergence at fixed order is largely due to the fiducial power
corrections. To see this,
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integrated over qT  130GeV. The corrections with-
out them are almost identical to the inclusive case. The
fiducial power corrections break this would-be universal
acceptance e↵ect, causing a 10% correction at NLO and
NNLO and a 50% correction at N3LO and showing no
perturbative convergence.

Integrating W
(0) over qT , all qT logarithms and re-

summation e↵ects formally have to cancel. (Numerically,
this strongly depends on the specific implementation of
resummation and matching. We have verified explicitly
that it is well satisfied in our approach.) For the fiducial
power corrections, the nontrivial qT dependence of the
acceptance spoils this cancellation and induces residual
logarithmic dependence on pL/mH in the integral. This
causes the large corrections in Eq. (17), which get re-
summed using the resummed �

sing in Eq. (15). Together

with timelike resummation, this leads to the excellent
convergence of the resummed results in Fig. 3, very sim-
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To conclude, our best result for the fiducial Higgs cross
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where we also included approximations of additional un-
certainties. The PDF+↵s uncertainty is taken from the
inclusive case [24, 109]. For the inclusive cross section,
NLO electroweak e↵ects give a +5% correction [110],
while the net e↵ect of finite top-mass, bottom, and charm
contributions is�5% (in the pole scheme we use). We can
expect roughly similar acceptance corrections for both,
and therefore keep the central result unchanged but in-
clude a conservative 2% uncertainty (40% of the expected
correction) for each e↵ect. Their proper treatment re-
quires incorporating them into the resummation frame-
work, which we leave for future work.
Acknowledgments. We are grateful to Xuan Chen for

providing us with the NNLOjet results and for commu-
nication about them. We would also like to thank our
ATLAS colleagues for their e↵orts in making the prelim-
inary results of Ref. [26] publicly available. This work
was supported in part by the O�ce of Nuclear Physics of
the U.S. Department of Energy under Contract No. DE-
SC0011090 and within the framework of the TMD Topi-
cal Collaboration, the Deutsche Forschungsgemeinschaft
(DFG) under Germany’s Excellence Strategy – EXC 2121
“Quantum Universe” – 390833306, and the PIER Ham-
burg Seed Project PHM-2019-01.
Note added. While finalizing this work, we became

aware of complementary work computing fiducial ra-
pidity spectra in Higgs production at N3LO using the
Projection-to-Born approach [111]. The perturbative in-
stabilities observed there are avoided here by resumming
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Figure 2: Acceptance for Higgs to di-photon decays, f(pt,h), as a function of pt,h, for

a symmetric cut on the photons (pt,�, pt,+ > 0.25mh), a cut just on the harder photon

(pt,+ > 0.35mh) and an asymmetric cut, where both conditions are imposed. Points are

Monte Carlo evaluations of the acceptance (whose value is independent of any perturbative

order), while the lines use Eqs. (2.7), (2.14) and (2.17), extended to fourth order in pt,h/mh.

Where a band is visible, its width corresponds to the di↵erence between third and fourth

order expansions.
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FIG. 3. Total fiducial gg ! H ! �� cross section at
fixed N3LO (this work) and including resummation (also this
work), where �resum ⌘ �qT � �' � �match, compared to
preliminary ATLAS measurements [26].

include them in the subtractions (and to resum them).
The remaining nonsingular corrections at ↵

3
s
are about

10 times larger than at ↵
2
s
, and at q

cut

T
= 1–5GeV still

contribute 5%–10% of the total ↵3
s
coe�cient. Together

with the current precision of the nonsingular data, this
makes the above di↵erential subtraction procedure essen-
tial to our results.

Evaluating Eq. (15) either at fixed order or including
resummation, we obtain our final results for the total
fiducial cross section presented in Fig. 3. The poor con-
vergence at fixed order is largely due to the fiducial power
corrections. To see this,

�
FO

incl
= 13.80 [1 + 1.291 + 0.783 + 0.299] pb ,

�
FO

fid
/B�� = 6.928 [1 + (1.300 + 0.129fpc)

+ (0.784� 0.061fpc)

+ (0.331 + 0.150fpc)] pb . (17)

The successive terms are the contributions from each or-
der in ↵s. The numbers with “fpc” subscript are the
contributions of the fiducial power corrections in Eq. (7)
integrated over qT  130GeV. The corrections with-
out them are almost identical to the inclusive case. The
fiducial power corrections break this would-be universal
acceptance e↵ect, causing a 10% correction at NLO and
NNLO and a 50% correction at N3LO and showing no
perturbative convergence.

Integrating W
(0) over qT , all qT logarithms and re-

summation e↵ects formally have to cancel. (Numerically,
this strongly depends on the specific implementation of
resummation and matching. We have verified explicitly
that it is well satisfied in our approach.) For the fiducial
power corrections, the nontrivial qT dependence of the
acceptance spoils this cancellation and induces residual
logarithmic dependence on pL/mH in the integral. This
causes the large corrections in Eq. (17), which get re-
summed using the resummed �

sing in Eq. (15). Together

with timelike resummation, this leads to the excellent
convergence of the resummed results in Fig. 3, very sim-
ilar to the inclusive case [73],

�incl = 24.16 [1 + 0.756 + 0.207 + 0.024] pb ,

�fid/B�� = 12.89 [1 + 0.749 + 0.171 + 0.053] pb . (18)

To conclude, our best result for the fiducial Higgs cross
section at N3LL0+N3LO for the cuts in Eq. (1) reads

�fid/B�� = (25.41± 0.59FO ± 0.21qT ± 0.17'

± 0.06match ± 0.20nons) pb

= (25.41± 0.68pert) pb . (19)

Multiplying by B�� = (2.270± 0.047)⇥ 10�3 [107–109],

�fid = 57.69 (1± 2.7%pert ± 2.1%B (20)

± 3.2%PDF+↵s ± 2%EW ± 2%t,b,c) fb ,

where we also included approximations of additional un-
certainties. The PDF+↵s uncertainty is taken from the
inclusive case [24, 109]. For the inclusive cross section,
NLO electroweak e↵ects give a +5% correction [110],
while the net e↵ect of finite top-mass, bottom, and charm
contributions is�5% (in the pole scheme we use). We can
expect roughly similar acceptance corrections for both,
and therefore keep the central result unchanged but in-
clude a conservative 2% uncertainty (40% of the expected
correction) for each e↵ect. Their proper treatment re-
quires incorporating them into the resummation frame-
work, which we leave for future work.
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the responsible fiducial power corrections.
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NLO electroweak e↵ects give a +5% correction [110],
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quires incorporating them into the resummation frame-
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certainties. The PDF+↵s uncertainty is taken from the
inclusive case [24, 109]. For the inclusive cross section,
NLO electroweak e↵ects give a +5% correction [110],
while the net e↵ect of finite top-mass, bottom, and charm
contributions is�5% (in the pole scheme we use). We can
expect roughly similar acceptance corrections for both,
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It’s the sum that makes up the total

Figure 2: Acceptance for Higgs to di-photon decays, f(pt,h), as a function of pt,h, for

a symmetric cut on the photons (pt,�, pt,+ > 0.25mh), a cut just on the harder photon

(pt,+ > 0.35mh) and an asymmetric cut, where both conditions are imposed. Points are

Monte Carlo evaluations of the acceptance (whose value is independent of any perturbative

order), while the lines use Eqs. (2.7), (2.14) and (2.17), extended to fourth order in pt,h/mh.

Where a band is visible, its width corresponds to the di↵erence between third and fourth

order expansions.

where we have introduced the function

�(pt,�) =

✓q
p
2
t
��2 �� arccos

�

pt

◆
⇥
⇣
pt

�
� 1

⌘
, (2.18)

which will reappear below when discussing other combinations of cuts. It has the property

that it is 0 for pt  �, it goes as
p
8/9�(pt��)3/2 for pt just above � and as pt�

⇡

2
� for

pt � �. The acceptance for the asymmetric cut is plotted as a function of pt,h in Fig. 2

(the green line), using ATLAS values [42] for the photon thresholds. The figure includes

a comparison to a symmetric cut (in blue), as well as a cut just on the harder photon (in

red). One sees that the asymmetric cut gives identical results to the harder-photon cut

up to pt,h = � = 0.1mh = 12.5 GeV, while it mostly tracks the symmetric cut beyond

that point, a consequence of the fact that for pt � �, �(pt,�) ' pt, e↵ectively replacing

f
asym

1
pt,h/mh with �f

asym

1
pt,h/mh in Eq. (2.17).

The next step is to examine how Eq. (2.11) is modified with asymmetric cuts. With

� = 0.1mh, concentrating on the part of the acceptance proportional to f1, we obtain
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.

(2.19)

Comparing to Eq. (2.11), there is an overall replacement f
sym

! f
asym (recall that they

have opposite signs). The coe�cient of the order ↵s term is somewhat reduced, and the

– 10 –
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All cuts are equal but some cuts are more equal than others

[Salam, Slade ’21]

Do we need to abandon the idea of fixed-order accuracy for fiducial cross sections?

For legacy measurements, resummation appears the only viable solution

Simplest options:

Product cuts:

Replace the symmetric/asymmetric cuts on  with a cut on , keeping a cut on the softer final state 

particle 

p(1)
T , p(2)

T p(1)
T ⋅ p(2)

T
min(p(1)

T , p(2)
T ) > pmin

T

Staggered cuts:
Rather than imposing an asymmetric cut on leading/subleading , apply an asymmetric cut on identified 
final state particles (e.g. lepton/antilepton in NC DY production, lepton/neutrino in CC DY, photon with higher/
lower rapidity in  )

p(1)
T , p(2)

T

pp → H( → γγ)

More performing (and refined) choice of cuts possible

Resorting to alternative definition of cuts for future analyses can resolve the issue of linear fiducial 
power corrections altogether

[Orwell, ’45 (possibly apocryphal)]

[Grazzini, Kallweit, Wiesemann ’17][Alekhin, Kardos, Moch, Trócsányi ‘21]

[Salam, Slade ’21]
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Linear power corrections and qT-subtraction

Linear dependence on  affects efficiency and precision of non-local subtraction techniques 
such as -subtraction

pT
qT [Catani, Grazzini ’07]

dσN3LO
V ≡ ℋN3LO

V ⊗ dσLO
V + (dσNNLO

V+jet − [dσN3LL
V ]𝒪(α3

s )) Θ(pT > pcut
T ) + 𝒪((pcut

T /M)n)dσN3LO
V ≡ ℋN3LO

V ⊗ dσLO
V + (dσNNLO

V+jet − [dσN3LL
V ]𝒪(α3

s )) Θ(pT > pcut
T ) + 𝒪((pcut

T /M)n)

For candle processes like Drell-Yan production it would still be desirable to have predictions at 
fixed order (relevant for e.g. parton densities extraction)



SM@LHC 2022, 13 Apr 2022 8

Linear power corrections and qT-subtraction

Linear dependence on  affects efficiency and precision of non-local subtraction techniques 
such as -subtraction

pT
qT [Catani, Grazzini ’07]

dσN3LO
V ≡ ℋN3LO

V ⊗ dσLO
V + (dσNNLO

V+jet − [dσN3LL
V ]𝒪(α3

s )) Θ(pT > pcut
T ) + 𝒪((pcut

T /M)n)dσN3LO
V ≡ ⊗ dσLO

V + (dσNNLO
V+jet − [dσN3LL

V ]𝒪(α3
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T /M)n)

Virtual correction after subtraction 
of IR singularities and contribution 
of soft/collinear origin (beam, soft 
functions)

For candle processes like Drell-Yan production it would still be desirable to have predictions at 
fixed order (relevant for e.g. parton densities extraction)
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dσN3LO
V ≡ ℋN3LO

V ⊗ dσLO
V + (dσNNLO

V+jet − [dσN3LL
V ]𝒪(α3

s )) Θ(pT > pcut
T ) + 𝒪((pcut

T /M)n)dσN3LO
V ≡ ℋN3LO

V ⊗ dσLO
V + ( − [dσN3LL

V ]𝒪(α3
s )) Θ(pT > pcut

T ) + 𝒪((pcut
T /M)n)

8

Linear power corrections and qT-subtraction

Linear dependence on  affects efficiency and precision of non-local subtraction techniques 
such as -subtraction

pT
qT [Catani, Grazzini ’07]

differential  distribution at NNLOpT

For candle processes like Drell-Yan production it would still be desirable to have predictions at 
fixed order (relevant for e.g. parton densities extraction)
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dσN3LO
V ≡ ℋN3LO

V ⊗ dσLO
V + (dσNNLO

V+jet − [dσN3LL
V ]𝒪(α3

s )) Θ(pT > pcut
T ) + 𝒪((pcut

T /M)n)dσN3LO
V ≡ ℋN3LO

V ⊗ dσLO
V + (dσNNLO

V+jet − ) Θ(pT > pcut
T ) + 𝒪((pcut

T /M)n)

8

Linear power corrections and qT-subtraction

Linear dependence on  affects efficiency and precision of non-local subtraction techniques 
such as -subtraction

pT
qT [Catani, Grazzini ’07]

Expansion of the N3LL resummed  
distribution at order 

pT
𝒪(α3

s )

For candle processes like Drell-Yan production it would still be desirable to have predictions at 
fixed order (relevant for e.g. parton densities extraction)
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Linear power corrections and qT-subtraction

Linear dependence on  affects efficiency and precision of non-local subtraction techniques 
such as -subtraction

pT
qT [Catani, Grazzini ’07]

dσN3LO
V ≡ ℋN3LO

V ⊗ dσLO
V + (dσNNLO

V+jet − [dσN3LL
V ]𝒪(α3

s )) Θ(pT > pcut
T ) + 𝒪((pcut

T /M)n)

Finite for : integral over  allows one to obtain N3LO predictions within fiducial cutspT → 0 pT

For candle processes like Drell-Yan production it would still be desirable to have predictions at 
fixed order (relevant for e.g. parton densities extraction)
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dσN3LO
V ≡ ℋN3LO

V ⊗ dσLO
V + ( − [dσN3LL

V ]𝒪(α3
s )) Θ(pT > pcut

T ) + 𝒪((pcut
T /M)n)dσN3LO

V ≡ ℋN3LO
V ⊗ dσLO

V + (dσNNLO
V+jet − ) Θ(pT > pcut

T ) + 𝒪((pcut
T /M)n)dσN3LO

V ≡ ℋN3LO
V ⊗ dσLO

V + ( − ) Θ(pT > pcut
T ) + 𝒪((pcut

T /M)n)

8

Linear power corrections and qT-subtraction

Linear dependence on  affects efficiency and precision of non-local subtraction techniques 
such as -subtraction

pT
qT [Catani, Grazzini ’07]

Both contributions are divergent in the  limit, which requires the introduction of a technical cutoff pT → 0 pcut
T

For candle processes like Drell-Yan production it would still be desirable to have predictions at 
fixed order (relevant for e.g. parton densities extraction)
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Linear power corrections and qT-subtraction

Linear dependence on  affects efficiency and precision of non-local subtraction techniques 
such as -subtraction

pT
qT [Catani, Grazzini ’07]

Missing power corrections 
below the slicing cut-off

dσN3LO
V ≡ ℋN3LO

V ⊗ dσLO
V + (dσNNLO

V+jet − [dσN3LL
V ]𝒪(α3

s )) Θ(pT > pcut
T ) + 𝒪((pcut

T /M)n)

Relative size of power corrections affects stability and performance of non-local subtraction methods

For candle processes like Drell-Yan production it would still be desirable to have predictions at 
fixed order (relevant for e.g. parton densities extraction)
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Δσ(rcut)/Δσexact − 1

0

rcut

𝒪(r2
cut)

0

 correction𝒪(αs)
rcut ∼ pT /Q

Linear power corrections and qT-subtraction

Quadratic 
dependence

-subtraction with 
inclusive cuts
qT
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𝒪(rcut)

-subtraction for 
 processes with 

(a)symmetric cuts

qT
2 → 2

Δσ(rcut)/Δσexact − 1

0

rcut0

 correction𝒪(αs)
rcut ∼ pT /Q

Linear 
dependence

Linear power corrections and qT-subtraction

𝒪(r2
cut)

-subtraction with 
inclusive cuts
qT

Quadratic 
dependence
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Perturbative convergence within fiducial cuts
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FIG. 8: Compilation of the NNLO theory predictions of Figs. 5–7. Only the results with the smallest
slicing cuts are plotted: MATRIX with rcut = 0.15% for W±! l±⌫ and rcut = 0.05% for Z! l+l� production;
MCFM with ⌧cut = 4 ·10�4.

forward Z/�⇤-production. In the first bins of the latter the deviations grow up to O(20%). As
discussed, MCFM uses N-jettiness subtraction and allows for di↵erent ⌧cut choices for the jettiness
slicing parameter. We use the default value, ⌧cut = 6 · 10�3 and two smaller ones, ⌧cut = 1 · 10�3

and ⌧cut = 4 · 10�4, the limitation being here the goal to reach an integration accuracy of a few
units in 10�4 in reasonable time 9 with given computational resources. The decreasing values of
⌧cut display the expected trend clearly in Fig. 7, namely, the smaller the choice of ⌧cut, the closer
the MCFM result to that by FEWZ. Nevertheless, the di↵erences remain. In order to compare those
di↵erences easier, we collect the best prediction for each code at NNLO in a single figure in Fig. 8.

Given the level of agreement among the predictions at NLO accuracy, the deviations observed
in Figs. 5–7 need to be put into perspective by looking at the size of the pure NNLO corrections
alone, which we define bin-by-bin through the deviation of the NNLO K-factor from one, �NNLO =
(�NNLO/�NLO � 1). Typically pure NNLO corrections �NNLO are rather small, and we illustrate
those only in the case of largest corrections. For W+-production �NNLO amounts to a few per mill
for ⌘l . 1 and grows to O(1� 2%) for larger rapidities ⌘l & 1, while instead for W�-production
�NNLO is of the size O(1%) for ⌘l . 1 and increases to a few per cent for larger rapidities. For
the central Z/�⇤-production the NNLO corrections �NNLO are only a few per mill for ⌘ll . 1.5
and grow to O(2� 3%) for larger di-lepton rapidities. Thus, the observed di↵erences between
considered codes are actually similar in size to that of the pure NNLO corrections, even exceeding
them at times. The case of forward Z/�⇤-production features larger higher order corrections and
will be discussed in detail next. The comparable size of the NNLO corrections and di↵erences

9 The required CPU times for the MCFM runs with ⌧cut = 4 ·10�4 were roughly 180.000 hrs for W±-boson, 160.000 hrs
for central and approximately 50.000 hrs for forward Z-boson production.

9
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FIG. 8: Compilation of the NNLO theory predictions of Figs. 5–7. Only the results with the smallest
slicing cuts are plotted: MATRIX with rcut = 0.15% for W±! l±⌫ and rcut = 0.05% for Z! l+l� production;
MCFM with ⌧cut = 4 ·10�4.

forward Z/�⇤-production. In the first bins of the latter the deviations grow up to O(20%). As
discussed, MCFM uses N-jettiness subtraction and allows for di↵erent ⌧cut choices for the jettiness
slicing parameter. We use the default value, ⌧cut = 6 · 10�3 and two smaller ones, ⌧cut = 1 · 10�3

and ⌧cut = 4 · 10�4, the limitation being here the goal to reach an integration accuracy of a few
units in 10�4 in reasonable time 9 with given computational resources. The decreasing values of
⌧cut display the expected trend clearly in Fig. 7, namely, the smaller the choice of ⌧cut, the closer
the MCFM result to that by FEWZ. Nevertheless, the di↵erences remain. In order to compare those
di↵erences easier, we collect the best prediction for each code at NNLO in a single figure in Fig. 8.

Given the level of agreement among the predictions at NLO accuracy, the deviations observed
in Figs. 5–7 need to be put into perspective by looking at the size of the pure NNLO corrections
alone, which we define bin-by-bin through the deviation of the NNLO K-factor from one, �NNLO =
(�NNLO/�NLO � 1). Typically pure NNLO corrections �NNLO are rather small, and we illustrate
those only in the case of largest corrections. For W+-production �NNLO amounts to a few per mill
for ⌘l . 1 and grows to O(1� 2%) for larger rapidities ⌘l & 1, while instead for W�-production
�NNLO is of the size O(1%) for ⌘l . 1 and increases to a few per cent for larger rapidities. For
the central Z/�⇤-production the NNLO corrections �NNLO are only a few per mill for ⌘ll . 1.5
and grow to O(2� 3%) for larger di-lepton rapidities. Thus, the observed di↵erences between
considered codes are actually similar in size to that of the pure NNLO corrections, even exceeding
them at times. The case of forward Z/�⇤-production features larger higher order corrections and
will be discussed in detail next. The comparable size of the NNLO corrections and di↵erences

9 The required CPU times for the MCFM runs with ⌧cut = 4 ·10�4 were roughly 180.000 hrs for W±-boson, 160.000 hrs
for central and approximately 50.000 hrs for forward Z-boson production.
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[Alekhin, Kardos, Moch, Trócsányi ‘21]

Values of  too large, or lack of 
extrapolation to , can lead to 
percent-level effects when compared to 
results obtained with local subtractions

rcut ∼ pT /Q
rcut → 0

rcut ∼ 0.01

rcut ∼ 0.0005 − 0.001

Can this situation be improved?
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Perturbative convergence within fiducial cuts

Values of  too large, or lack of 
extrapolation to , can lead to 
percent-level effects when compared to 
results obtained with local subtractions

rcut ∼ pT /Q
rcut → 0

Yes! For  processes with 
(a)symmetric cuts, fiducial linear 

power corrections can be calculated 
via a simple recoil prescription

2 → 2

Can this situation be improved?

[Catani, de Florian, Ferrera, Grazzini ’15] 
[Ebert, Michel, Stewart, Tackmann ’20]

𝒪(r2
cut)

Δσ(rcut)/Δσexact − 1

0

rcut0

 correction𝒪(αs)
rcut ∼ qT /Q

𝒪(rcut)
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Linear power corrections and qT-subtraction

dσN3LO
V ≡ ℋN3LO

V ⊗ dσLO
V + (dσNNLO

V+jet − [dσN3LL
V ]𝒪(α3

s )) Θ(pT > pcut
T ) + ΔσlinPCs(pcut

T ) + 𝒪((pcut
T /M)2)

Resorting to the recoil prescription allows for the inclusion of all missing fiducial linear power corrections below 
, improving dramatically the efficiency of the non-local subtractionpcut

T

ΔσlinPCs(pcut
T ) = ∫

rcut

0
dr′ [dσN3LL

V ]𝒪(α3
s )

(Θrecoil
cuts − ΘBorn

cuts )

e−

e+

e+

e−

Linear power corrections have a purely kinematical origin and can be predicted by factorisation 

[Buonocore, Kallweit, LR, Wiesemann’21][Camarda, Cieri, Ferrera ’21]
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Linear power corrections and qT-subtraction

[Camarda, Cieri, Ferrera ’21]

1−10 1 10  [GeV]cut
T

q
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20−

10−

0

10
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40 [p
b]

σ

Fiducial power corrections
)  SαO(
)  2

SαO(
)  3

SαO(

Figure 4: Production of l+l� pairs from Z/�⇤ decay at the LHC (
p
s = 13TeV). Power

correction contributions at O(↵S), O(↵2
S
) and O(↵3

S
) at various values of qcut

T

order of 0.1% for qcut
T

⇠ 4GeV.

In order to quantify the impact of the calculated fiducial power corrections, we show in
Fig. (4) the contribution of the FPC (Eq. (10)) as a function of qcut

T
. First of all we observe that

the sign of the FPC contribution changes from O(↵S) to O(↵2
S
) and from O(↵2

S
) to O(↵3

S
).

This behaviour is consistent with the observation that linear power corrections in the small
qT region (produced by the fiducial cuts) results in an alternating-sign factorial growth of the
fixed-order perturbative series [17]. The second observation is that the impact of the FPC is
not numerically reduced at higher orders and it turn out to be particularly sizable at N3LO
up to very small value of qcut

T
: for qcut

T
= 0.05GeV the impact of the N3LO FPC is about

�0.4% and it is the result of a +0.3% contribution at O(↵2
S
) and a �0.7% at O(↵3

S
) (the

O(↵S) FPC contribution turns out to be negligible at qcut
T

= 0.05GeV). This means that when
standard selection cuts are implemented within the original qT subtraction, a permille level
systematic accuracy for NNLO and N3LO fiducial cross sections cannot be easily reached even
with extremely low values of qcut

T
.

In Table 1 we report the predictions for the cross section in the fiducial region at NLO and
NNLO with the qT subtraction method for qcut

T
= 0.5GeV and qcut

T
= 1GeV, with the recoil

qT subtraction for qcut
T

= 1GeV and we compare with the local subtraction results ‡. Errors

‡
Since the numerical code FEWZ does not allow to set µF = µR =

p
M2 + q2T the NNLO local result has been

obtained with µF = µR = M . We have estimated the e↵ect of the di↵erent scales with DYTurbo and it turn out

8

ΔσlinPCs(pcut
T ) = ∫

rcut

0
dr′ [dσN3LL

V ]𝒪(α3
s )

(Θrecoil
cuts − ΘBorn

cuts )

No sign of perturbative convergence 
in the size of linear power corrections

pp → Z/γ* + X → ℓ+ℓ− + X

ATLAS fiducial region
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Linear power corrections for -subtractionqT

Much improved convergence over 
linear power correction case

Accurate computation of the 
NNLO correction without the need 
to push  to very low values rcut

[Buonocore, Kallweit, LR, Wiesemann ’21]

Now available in the new public 
version of MATRIX 2.1

Nice agreement up to NNLO with 
NNLOJET, which uses a local 
subtraction method

Resorting to this prescription 
allows one to obtain predictions 

at N3LO with  slicingqT

[Camarda, Cieri, Ferrera ’21]

10  [GeV]cut
T

q

750

760

770

780

790

800

 [p
b]

σ

N3LO
-subtr.  

T
q

-subtr.  
T

recoil q

Figure 3: Fiducial cross section for the production of l+l� pairs from Z/�⇤ decay at the LHC
(
p
s = 13TeV). NLO results with the qT subtraction method (blue squared points) and the qT

subtraction without FPC (red circled points) at various values of qcut
T

.

FEWZ [32, 33]. Error bars in Fig. (2) indicate the statistical uncertainties from Monte Carlo
numerical integration. Statistical uncertainties are at the level of 0.1% for the local subtraction
results and at the level of 0.1% or larger (smaller) for the qT subtraction results with qcut

T
.

0.1GeV (qcut
T

& 0.1GeV). The qcut
T

systematic uncertainty of the qT subtraction results is
around 0.3% at qcut

T
= 0.5GeV, 0.6% at qcut

T
= 1GeV and 0.7% at qcut

T
= 2GeV and 0.2% at

qcut
T

= 4GeV. As in the case of the NLO results, in order to obtain a systematic uncertainty
below 0.1% level a calculation with qcut

T
. 0.1GeV is necessary. However this is exactly the IR

region where large cancellations give rise to sizable statistical uncertainties due to numerical
integration. Conversely the results obtained with the qT subtraction without FPC have a
systematic uncertainty which is smaller than 0.04% for qcut

T
= 1GeV. As in Fig. (1) also in

Fig. (2) we have shown an interpolation of the qcut
T

dependence of the results.

Finally, in Fig. (3) we show the fiducial cross section at N3LO with the original qT subtraction
method (blue squared points) and with the modified formula in Eq. (10) (red circled points) for
di↵erent values of qcut

T
with the interpolation of the results as in Figs. (1,2). No local subtraction

results are available at this perturbative order. Moreover in this case we are not able to show
results for qcut

T
< 4 GeV. In fact we have checked that our analytic expression for the counter-

term de�CT agrees with the small-qT limit of the NNLO fixed-order results for the production of
a Z/�⇤ boson in association with jets reported in Ref. [29] at permille level down to qT ⇠ 4 GeV
while below that threshold such agreement deteriorates. We observe, in the case of the qT
subtraction without FPC, a reduction of the dependence from qcut

T
which we estimate of the
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Figure 2: Dependence of the NNLO QCD Drell–Yan co-

efficient on rcut for each partonic channel with (orange)

and without (green) linPCs, normalized to the rcut → 0 re-

sult with linPCs. The horizontal lines show the respective

rcut → 0 extrapolations. Errors indicated as in Figure 1.

value renders the numerical integration much more

efficient since the large cancellations between F+jet

cross section and counterterm in Eq. (1) are signifi-

cantly reduced.

Moreover, the rcut → 0 extrapolation is fully com-

patible with the results obtained with a finite value of

rcut in all the range considered in the plot. Whilst the

extrapolated result (and its error) provides a more ro-

bust prediction than those obtained with finite values

of rcut, the consistency of the results across rcut when
linPCs are included is particularly useful for distribu-

tions, for which an automated bin-wise extrapolation

is supported only from version 2.1 of theMatrix code

(although already used before [45–52]).

While the NLO QCD results presented so far are

instructive to study the effects of linPCs in compari-

son to a reference prediction, the inclusion of linPCs

in the qT -slicing cutoff becomes much more relevant

at next-to-NLO (NNLO) in QCD perturbation the-

ory. The evaluation of the O(α2
s) coefficient in Ma-

trix relies entirely on the qT -subtraction method, and

no rcut-independent NNLO QCD cross section can be

computed with the code. In Figure 2 we study the

rcut dependence of the NNLO QCD coefficient for dif-

ferent partonic channels, normalized to the respective

rcut → 0 results with linPCs. The symbols for the

partonic channels (qq̄, qg, gg, q(q̄)q′) are defined as

usually, i.e. symmetrically with respect to the beam
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Figure 3: Dependence of the NNLO QCD Drell–Yan coef-

ficient on rcut for different partonic channels with (orange)

and without (green) linPCs, normalized to the NNLOjet

result (purple). The horizontal lines show the respective

rcut → 0 extrapolations. Errors indicated as in Figure 1.

directions: gg for the gluon–gluon channel, qg includ-

ing all (anti-)quark–gluon channels, qq̄ referring to the

diagonal quark–(anti-)quark channels present already

at leading order, and q(q̄)q′ collecting all remaining

(anti-)quark–(anti-)quark channels such that the four

categories sum up to the full result.

In Figure 2 we observe that the NNLO QCD co-

efficient features an analogous reduction in the rcut
dependence when accounting for linPCs by includ-

ing the contribution of Eq. (2). We note that start-

ing from NNLO QCD the linear scaling can be en-

hanced by additional logarithms in rcut (i.e. terms

of order rcut ln
k
(rcut), k ∈ [1, 2]), as can be seen

from the figures. Like at NLO QCD the extrapolated

rcut → 0 results are fully compatible, but the cross

section with linPCs exhibits a considerably reduced

rcut dependence with the advantages discussed above.

In Fig.3 we compare the NNLO correction in different
partonic channels with the NNLOjet results [38, 53],

which are obtained with the rcut–independent antenna
subtraction method [54, 55]. We use the same setup

as discussed above, but we now take µF = µR =&
m2

ℓℓ + q2T . We observe a very good agreement, down

to the O(1%) level of the NNLO coefficient, in all the

partonic channels.

We continue with the discussion of differential dis-
tributions within the fiducial phase-space selection.

Figure 4 shows the rapidity distribution of the pos-

itively charged lepton (yℓ+) at NLO QCD (left) and

at NNLO QCD (right) in the main panel. Results for

the fixed values rcut = 1% (dotted) and rcut = 0.15%
(dashed) with their statistical uncertainties indicated

by error bars are shown with (orange) and without

(green) linPCs in the upper and lower ratio panels,
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rcut → 0 extrapolations. Errors indicated as in Figure 1.

value renders the numerical integration much more

efficient since the large cancellations between F+jet

cross section and counterterm in Eq. (1) are signifi-

cantly reduced.

Moreover, the rcut → 0 extrapolation is fully com-

patible with the results obtained with a finite value of

rcut in all the range considered in the plot. Whilst the

extrapolated result (and its error) provides a more ro-

bust prediction than those obtained with finite values

of rcut, the consistency of the results across rcut when
linPCs are included is particularly useful for distribu-

tions, for which an automated bin-wise extrapolation

is supported only from version 2.1 of theMatrix code

(although already used before [45–52]).

While the NLO QCD results presented so far are
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son to a reference prediction, the inclusion of linPCs

in the qT -slicing cutoff becomes much more relevant

at next-to-NLO (NNLO) in QCD perturbation the-

ory. The evaluation of the O(α2
s) coefficient in Ma-

trix relies entirely on the qT -subtraction method, and

no rcut-independent NNLO QCD cross section can be

computed with the code. In Figure 2 we study the

rcut dependence of the NNLO QCD coefficient for dif-

ferent partonic channels, normalized to the respective

rcut → 0 results with linPCs. The symbols for the

partonic channels (qq̄, qg, gg, q(q̄)q′) are defined as

usually, i.e. symmetrically with respect to the beam
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directions: gg for the gluon–gluon channel, qg includ-

ing all (anti-)quark–gluon channels, qq̄ referring to the

diagonal quark–(anti-)quark channels present already

at leading order, and q(q̄)q′ collecting all remaining

(anti-)quark–(anti-)quark channels such that the four

categories sum up to the full result.

In Figure 2 we observe that the NNLO QCD co-

efficient features an analogous reduction in the rcut
dependence when accounting for linPCs by includ-

ing the contribution of Eq. (2). We note that start-

ing from NNLO QCD the linear scaling can be en-

hanced by additional logarithms in rcut (i.e. terms

of order rcut ln
k
(rcut), k ∈ [1, 2]), as can be seen

from the figures. Like at NLO QCD the extrapolated

rcut → 0 results are fully compatible, but the cross

section with linPCs exhibits a considerably reduced

rcut dependence with the advantages discussed above.

In Fig.3 we compare the NNLO correction in different
partonic channels with the NNLOjet results [38, 53],

which are obtained with the rcut–independent antenna
subtraction method [54, 55]. We use the same setup

as discussed above, but we now take µF = µR =&
m2

ℓℓ + q2T . We observe a very good agreement, down

to the O(1%) level of the NNLO coefficient, in all the

partonic channels.

We continue with the discussion of differential dis-
tributions within the fiducial phase-space selection.

Figure 4 shows the rapidity distribution of the pos-

itively charged lepton (yℓ+) at NLO QCD (left) and

at NNLO QCD (right) in the main panel. Results for

the fixed values rcut = 1% (dotted) and rcut = 0.15%
(dashed) with their statistical uncertainties indicated

by error bars are shown with (orange) and without

(green) linPCs in the upper and lower ratio panels,
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• Exquisite control on the fixed order component 
(from NNLOJET) allows to push to low values of 
the slicing parameter  

• Mandatory to include missing linear power 
corrections to reach a precise control of the 
NkLO correction down to small values of  

• Plateau at small  indicates the desired 
independence of the slicing parameter 

• Result without power correction does not 
converge yet to the correct value at NkLO
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• Improved convergence, result independent of the 
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The Drell-Yan fiducial cross section at N3LO and N3LO+N3LL
3

Order � [pb] Symmetric cuts � [pb] Product cuts

k NkLO NkLO+NkLL NkLO NkLO+NkLL

0 721.16+12.2%
�13.2% — 721.16+12.2%

�13.2% —

1 742.80(1)+2.7%
�3.9% 748.58(3)+3.1%

�10.2% 832.22(1)+2.7%
�4.5% 831.91(2)+2.7%

�10.4%

2 741.59(8)+0.42%
�0.71% 740.75(5)+1.15%

�2.66% 831.32(3)+0.59%
�0.96% 830.98(4)+0.74%

�2.73%

3 722.9(1.1)+0.68%
�1.09% ± 0.9 726.2(1.1)+1.07%

�0.77% 816.8(1.1)+0.45%
�0.73% ± 0.8 816.6(1.1)+0.87%

�0.69%

TABLE I. Fiducial cross sections for the symmetric (2a) and product (2b) cuts both at fixed perturbative order and including
all-order resummation.

dow is 66GeV < m`` < 116GeV and the lepton rapidi-
ties are confined to |⌘`

±
| < 2.5. The transverse momen-

tum of the two leptons is constrained as

Symmetric cuts [113]: |~p `±

T | > 27GeV , (2a)

Product cuts [100]:
q

|~p `+
T | |~p `�

T | > 27GeV ,

min{|~p `±

T |} > 20GeV . (2b)

The central factorisation and renormalisation scales

are chosen to be µR = µF =
q

m``
2 + p``T

2
and the cen-

tral resummation scale is set to Q = m``/2. In the results
presented below, the theoretical uncertainty is estimated
by varying the µR and µF scales by a factor of two about
their central value, while keeping 1/2  µR/µF  2. In
addition, for the resummed results, for central µR = µF

scales we vary Q by a factor of two around its central
value. Moreover, a matching-scheme uncertainty is esti-
mated by including the full scale variation of the additive
matching scheme of Ref. [59] (27 variations that comprise
the one of the central matching scale v0 introduced in
Eq. (5.2) of that article). The final uncertainty is ob-
tained as the envelope of all the above variations, corre-
sponding to 7 and 36 curves for the fixed-order and re-
summed computations, respectively. In the fiducial cross
sections quoted below at N3LO and N3LO+N3LL, we do
not consider the uncertainty related to the missing N3LO
parton distributions, which are currently unavailable.

In Fig. 1, we start by showing the transverse-
momentum distribution of the Drell–Yan lepton pair in
the fiducial volume (2a), obtained with Eq. (1), compared
to experimental data [113]. In the figure we label the
distributions by the perturbative accuracy of their inclu-
sive integral over p``T . Our state-of-the-art N3LO+N3LL
prediction provides an excellent description of the data
across the spectrum, with the exception of the first bin at
small p``T which is susceptible to non-perturbative correc-
tions not included in our calculation. We point out that
the term d�NNLO

DY+jet
�
⇥
d�N

3
LL

DY

⇤
O(↵3

s)
in Eq. (1) gives a non-

negligible contribution even for p``T  15GeV. The resid-
ual theoretical uncertainty in the intermediate p``T region
is at the few-percent level, and it increases to about 5%
for p``T & 50GeV. A more accurate description of the

large-p``T region requires the inclusion of EW corrections,
which we neglect in our calculation.
We now consider the fiducial cross section with sym-

metric cuts (2a). In order to gain control over the slicing
systematic error, we choose pcutT as low as 0.81GeV. In
the first column of Tab. I, denoted as NkLO, we show the
fixed-order results toO(↵k

s ). The second column of Tab. I
displays the result obtained including resummation ef-
fects. In the fixed-order case, the theoretical uncertainty
at N3LO, estimated as discussed above, is supplemented
with an estimate of the slicing uncertainty obtained by
varying pcutT in the range [0.45, 1.48]GeV and taking the
average di↵erence from the result with pcutT = 0.81GeV.
In the resummed case, we quote the total theoretical un-
certainty including also the matching scheme variation.
In both cases the statistical uncertainty is reported in
parentheses.
We observe that the new N3LO corrections decrease

the fiducial cross section by about 2.5%, and the final
prediction at N3LO has larger theoretical errors than
the NNLO counterpart, whose uncertainty band does not
capture the N3LO central value. This indicates a poor
convergence of the fixed-order perturbative series for this
process, which is consistent with what has been observed
in the inclusive case in Refs. [10–12]. In the resummed
case, the theoretical uncertainty is more reliable and
within errors the convergence of the perturbative series
is improved. The presence of linear power corrections is
also responsible for the moderate di↵erence between the
fixed-order and the resummed prediction for the symmet-
ric cuts (2a), which in turn indicates a sensitivity of the
cross section to the infrared region of small p``T . This ul-
timately worsens further the perturbative convergence of
the fixed-order series thereby challenging the perspectives
to reach percent-accurate theoretical predictions within
symmetric cuts.
A possible solution to this problem [100] is to slightly

modify the definition of the fiducial cuts as in Eq. (2b)
in order to reduce such a sensitivity to infrared physics.
We present for the first time theoretical predictions up
to N3LO and N3LO+N3LL for this set of cuts, reported
in the third and fourth column of Tab. I. The relative
di↵erence between the fixed-order and resummed calcu-
lations for the fiducial cross section never exceeds the

• 2.5% negative correction at N3LO in the ATLAS fiducial region. N3LO larger than the 
NNLO correction and outside its error band 

• More robust estimate of the theory uncertainty when resummation effects are included 

• Slicing error computed conservatively by considering the cutoff within the [0.45-1.5] GeV 
interval 

qcut
T = 0.8 GeV
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Includes resummation of linear power corrections

LO
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[Chen, Gehrmann, Glover, Huss, Monni, Re, LR, Torrielli ’22]
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The Drell-Yan fiducial cross section at N3LO and N3LO+N3LL
3

Order � [pb] Symmetric cuts � [pb] Product cuts

k NkLO NkLO+NkLL NkLO NkLO+NkLL

0 721.16+12.2%
�13.2% — 721.16+12.2%

�13.2% —

1 742.80(1)+2.7%
�3.9% 748.58(3)+3.1%

�10.2% 832.22(1)+2.7%
�4.5% 831.91(2)+2.7%
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�2.66% 831.32(3)+0.59%
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3 722.9(1.1)+0.68%
�1.09% ± 0.9 726.2(1.1)+1.07%

�0.77% 816.8(1.1)+0.45%
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TABLE I. Fiducial cross sections for the symmetric (2a) and product (2b) cuts both at fixed perturbative order and including
all-order resummation.

dow is 66GeV < m`` < 116GeV and the lepton rapidi-
ties are confined to |⌘`

±
| < 2.5. The transverse momen-

tum of the two leptons is constrained as

Symmetric cuts [113]: |~p `±

T | > 27GeV , (2a)

Product cuts [100]:
q

|~p `+
T | |~p `�

T | > 27GeV ,

min{|~p `±

T |} > 20GeV . (2b)

The central factorisation and renormalisation scales

are chosen to be µR = µF =
q

m``
2 + p``T

2
and the cen-

tral resummation scale is set to Q = m``/2. In the results
presented below, the theoretical uncertainty is estimated
by varying the µR and µF scales by a factor of two about
their central value, while keeping 1/2  µR/µF  2. In
addition, for the resummed results, for central µR = µF

scales we vary Q by a factor of two around its central
value. Moreover, a matching-scheme uncertainty is esti-
mated by including the full scale variation of the additive
matching scheme of Ref. [59] (27 variations that comprise
the one of the central matching scale v0 introduced in
Eq. (5.2) of that article). The final uncertainty is ob-
tained as the envelope of all the above variations, corre-
sponding to 7 and 36 curves for the fixed-order and re-
summed computations, respectively. In the fiducial cross
sections quoted below at N3LO and N3LO+N3LL, we do
not consider the uncertainty related to the missing N3LO
parton distributions, which are currently unavailable.

In Fig. 1, we start by showing the transverse-
momentum distribution of the Drell–Yan lepton pair in
the fiducial volume (2a), obtained with Eq. (1), compared
to experimental data [113]. In the figure we label the
distributions by the perturbative accuracy of their inclu-
sive integral over p``T . Our state-of-the-art N3LO+N3LL
prediction provides an excellent description of the data
across the spectrum, with the exception of the first bin at
small p``T which is susceptible to non-perturbative correc-
tions not included in our calculation. We point out that
the term d�NNLO

DY+jet
�
⇥
d�N

3
LL

DY

⇤
O(↵3

s)
in Eq. (1) gives a non-

negligible contribution even for p``T  15GeV. The resid-
ual theoretical uncertainty in the intermediate p``T region
is at the few-percent level, and it increases to about 5%
for p``T & 50GeV. A more accurate description of the

large-p``T region requires the inclusion of EW corrections,
which we neglect in our calculation.
We now consider the fiducial cross section with sym-

metric cuts (2a). In order to gain control over the slicing
systematic error, we choose pcutT as low as 0.81GeV. In
the first column of Tab. I, denoted as NkLO, we show the
fixed-order results toO(↵k

s ). The second column of Tab. I
displays the result obtained including resummation ef-
fects. In the fixed-order case, the theoretical uncertainty
at N3LO, estimated as discussed above, is supplemented
with an estimate of the slicing uncertainty obtained by
varying pcutT in the range [0.45, 1.48]GeV and taking the
average di↵erence from the result with pcutT = 0.81GeV.
In the resummed case, we quote the total theoretical un-
certainty including also the matching scheme variation.
In both cases the statistical uncertainty is reported in
parentheses.
We observe that the new N3LO corrections decrease

the fiducial cross section by about 2.5%, and the final
prediction at N3LO has larger theoretical errors than
the NNLO counterpart, whose uncertainty band does not
capture the N3LO central value. This indicates a poor
convergence of the fixed-order perturbative series for this
process, which is consistent with what has been observed
in the inclusive case in Refs. [10–12]. In the resummed
case, the theoretical uncertainty is more reliable and
within errors the convergence of the perturbative series
is improved. The presence of linear power corrections is
also responsible for the moderate di↵erence between the
fixed-order and the resummed prediction for the symmet-
ric cuts (2a), which in turn indicates a sensitivity of the
cross section to the infrared region of small p``T . This ul-
timately worsens further the perturbative convergence of
the fixed-order series thereby challenging the perspectives
to reach percent-accurate theoretical predictions within
symmetric cuts.
A possible solution to this problem [100] is to slightly

modify the definition of the fiducial cuts as in Eq. (2b)
in order to reduce such a sensitivity to infrared physics.
We present for the first time theoretical predictions up
to N3LO and N3LO+N3LL for this set of cuts, reported
in the third and fourth column of Tab. I. The relative
di↵erence between the fixed-order and resummed calcu-
lations for the fiducial cross section never exceeds the

• 2.5% negative correction at N3LO in the ATLAS fiducial region. N3LO larger than the 
NNLO correction and outside its error band 

• More robust estimate of the theory uncertainty when resummation effects are included 

• Slicing error computed conservatively by considering the cutoff within the [0.45-1.5] GeV 
interval 

• Central value very similar at NkLO and NkLO+NkLL for product cuts, compatible with the 
absence of linear power corrections
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�4.5% 831.91(2)+2.7%

�10.4%

2 741.59(8)+0.42%
�0.71% 740.75(5)+1.15%

�2.66% 831.32(3)+0.59%
�0.96% 830.98(4)+0.74%

�2.73%

3 722.9(1.1)+0.68%
�1.09% ± 0.9 726.2(1.1)+1.07%

�0.77% 816.8(1.1)+0.45%
�0.73% ± 0.8 816.6(1.1)+0.87%

�0.69%

TABLE I. Fiducial cross sections for the symmetric (2a) and product (2b) cuts both at fixed perturbative order and including
all-order resummation.

dow is 66GeV < m`` < 116GeV and the lepton rapidi-
ties are confined to |⌘`

±
| < 2.5. The transverse momen-

tum of the two leptons is constrained as

Symmetric cuts [113]: |~p `±

T | > 27GeV , (2a)

Product cuts [100]:
q

|~p `+
T | |~p `�

T | > 27GeV ,

min{|~p `±

T |} > 20GeV . (2b)

The central factorisation and renormalisation scales

are chosen to be µR = µF =
q

m``
2 + p``T

2
and the cen-

tral resummation scale is set to Q = m``/2. In the results
presented below, the theoretical uncertainty is estimated
by varying the µR and µF scales by a factor of two about
their central value, while keeping 1/2  µR/µF  2. In
addition, for the resummed results, for central µR = µF

scales we vary Q by a factor of two around its central
value. Moreover, a matching-scheme uncertainty is esti-
mated by including the full scale variation of the additive
matching scheme of Ref. [59] (27 variations that comprise
the one of the central matching scale v0 introduced in
Eq. (5.2) of that article). The final uncertainty is ob-
tained as the envelope of all the above variations, corre-
sponding to 7 and 36 curves for the fixed-order and re-
summed computations, respectively. In the fiducial cross
sections quoted below at N3LO and N3LO+N3LL, we do
not consider the uncertainty related to the missing N3LO
parton distributions, which are currently unavailable.

In Fig. 1, we start by showing the transverse-
momentum distribution of the Drell–Yan lepton pair in
the fiducial volume (2a), obtained with Eq. (1), compared
to experimental data [113]. In the figure we label the
distributions by the perturbative accuracy of their inclu-
sive integral over p``T . Our state-of-the-art N3LO+N3LL
prediction provides an excellent description of the data
across the spectrum, with the exception of the first bin at
small p``T which is susceptible to non-perturbative correc-
tions not included in our calculation. We point out that
the term d�NNLO

DY+jet
�
⇥
d�N

3
LL

DY

⇤
O(↵3

s)
in Eq. (1) gives a non-

negligible contribution even for p``T  15GeV. The resid-
ual theoretical uncertainty in the intermediate p``T region
is at the few-percent level, and it increases to about 5%
for p``T & 50GeV. A more accurate description of the

large-p``T region requires the inclusion of EW corrections,
which we neglect in our calculation.
We now consider the fiducial cross section with sym-

metric cuts (2a). In order to gain control over the slicing
systematic error, we choose pcutT as low as 0.81GeV. In
the first column of Tab. I, denoted as NkLO, we show the
fixed-order results toO(↵k

s ). The second column of Tab. I
displays the result obtained including resummation ef-
fects. In the fixed-order case, the theoretical uncertainty
at N3LO, estimated as discussed above, is supplemented
with an estimate of the slicing uncertainty obtained by
varying pcutT in the range [0.45, 1.48]GeV and taking the
average di↵erence from the result with pcutT = 0.81GeV.
In the resummed case, we quote the total theoretical un-
certainty including also the matching scheme variation.
In both cases the statistical uncertainty is reported in
parentheses.
We observe that the new N3LO corrections decrease

the fiducial cross section by about 2.5%, and the final
prediction at N3LO has larger theoretical errors than
the NNLO counterpart, whose uncertainty band does not
capture the N3LO central value. This indicates a poor
convergence of the fixed-order perturbative series for this
process, which is consistent with what has been observed
in the inclusive case in Refs. [10–12]. In the resummed
case, the theoretical uncertainty is more reliable and
within errors the convergence of the perturbative series
is improved. The presence of linear power corrections is
also responsible for the moderate di↵erence between the
fixed-order and the resummed prediction for the symmet-
ric cuts (2a), which in turn indicates a sensitivity of the
cross section to the infrared region of small p``T . This ul-
timately worsens further the perturbative convergence of
the fixed-order series thereby challenging the perspectives
to reach percent-accurate theoretical predictions within
symmetric cuts.
A possible solution to this problem [100] is to slightly

modify the definition of the fiducial cuts as in Eq. (2b)
in order to reduce such a sensitivity to infrared physics.
We present for the first time theoretical predictions up
to N3LO and N3LO+N3LL for this set of cuts, reported
in the third and fourth column of Tab. I. The relative
di↵erence between the fixed-order and resummed calcu-
lations for the fiducial cross section never exceeds the

[Chen, Gehrmann, Glover, Huss, Monni, Re, LR, Torrielli ’22]
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Transverse momentum resummation and power corrections

Figure 19. Predictions for the normalized Drell-Yan fiducial qT spectrum without (left) and with
(right) resummed fiducial power corrections compared to CMS 13 TeV measurements [15]. The top
panels show the spectrum, with the theory predictions drawn as smooth curves for better visibility.
The bottom panels show the percent di↵erences to the respective highest-order prediction central
value.
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Figure 20. Same as the bottom row of figure 19, but without including power corrections from
the fixed-order matching.
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Figure 19. Predictions for the normalized Drell-Yan fiducial qT spectrum without (left) and with
(right) resummed fiducial power corrections compared to CMS 13 TeV measurements [15]. The top
panels show the spectrum, with the theory predictions drawn as smooth curves for better visibility.
The bottom panels show the percent di↵erences to the respective highest-order prediction central
value.
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Figure 20. Same as the bottom row of figure 19, but without including power corrections from
the fixed-order matching.
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Resummation of linear power corrections captures the bulk of the non-singular component at low values of pT
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However, effect of higher-order power 
correction from fixed-order corrections 
has 1-3% effect even at low values of 
the transverse momentum 

Fixed order matching at small values of 
transverse momentum essential for 
applications in Drell-Yan precision 
physics (PDF,  extraction, …)αs

 [Ebert, Michel, Stewart, Tackmann ’20]

[Chen, Gehrmann, Glover, Huss, Monni, Re, LR, Torrielli ’22]
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Transverse momentum resummation at NNLO+N3LL
NNLO+N3LL description allows for a very 
precise description of experimental data across 
the whole transverse momentum spectrum both 
in Drell-Yan and Higgs production
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Figure 8. ATLAS data [98] against matched predictions at N
3
LL+NNLO (red) and N

3
LL

′
+NNLO (blue)

for the fiducial pγγt spectrum. Theoretical predictions are rescaled by KrEFT = 1.06584. The x axis is linear

up to pγγt = 50 GeV and logarithmic above.

distortion with respect to N3LL predictions is more modest in the Higgs case with respect to Drell-
Yan production, partly owing to the chosen central-scale setup; moreover, the induced K-factor is
fairly close to unity at this order, which is sign of a good perturbative convergence. Overall, N3LL′

predictions feature a significant reduction in theoretical uncertainty in comparison to N3LL ones,
especially in the low-pγγt region dominated by resummation. Residual uncertainty is as low as 5 - 7%
below 10 GeV, and in the matched case it never exceeds 10% below 40 GeV.

Finally, in Figure 8 we show a comparison of theoretical predictions for the fiducial pγγt spec-
trum at N3LL +NNLO (red) and N3LL′+NNLO (blue) level, with recoil effects, against ATLAS
preliminary data [98]. Theoretical predictions, based on central scales κR = κF = κQ = 1/2, have
been rescaled by a factor KrEFT = 1.06584 to account for the exact top-quark mass dependence at
LO.

6 Conclusion

In this article we have presented state-of-the-art differential predictions relevant for colour-singlet
hadro-production at the LHC within the RadISH framework, up to N3LL′+NNLO order. Such a
level of accuracy in the resummed component is reached by supplementing the previously available
N3LL result with the complete set of constant terms of relative order O(α3

s) with respect to the Born
level. We have documented in detail how the inclusion of such terms is achieved in RadISH, as well
as the validation we have performed to confirm the correctness of their numerical implementation.
In this article we have focused on neutral Drell-Yan and Higgs production, although we stress that
the formalism used here can be straightforwardly applied to the charged Drell-Yan case as well.

We have assessed the behaviour of ‘primed’ predictions in inclusive Drell-Yan and Higgs produc-
tion in a comparison of two different NNLL′ prescriptions (including or not higher-order running-
coupling effects, respectively) with N3LL. This has given us confidence on the mutual consistency
of the two ‘primed’ results, and on the reliability of their quoted uncertainty bands, in view of
comparing results based on N3LL′ predictions with experimental data. In particular, in all consid-
ered cases are the NNLL′ uncertainty bands capable of encompassing the N3LL central prediction,

– 29 –

3

group equations. The exact solution for the qT distribu-
tion is formally equivalent [67] to the canonical solution
in conjugate (bT ) space, which is the approach we follow
here; see Refs. [46, 67, 68] for details. At N3LL0 (N3LL)
we require the N3LO (NNLO) boundary conditions for
the hard [69–73] and beam and soft functions [49, 74–78],
the 3-loop noncusp anomalous dimensions [49, 74, 75, 79–
82], and the 4-loop � function [83–86] and gluon cusp
anomalous dimension [87–93]. At NNLL, all ingredients
enter at one order lower than at N3LL.

The 3-loop beam function boundary terms have been
computed only recently [77, 78]. They involve a plethora
of harmonic polylogarithms up to weight five with non-
trivial rational prefactors, which must be convolved
against the PDFs. This makes a naive implementation
too slow and numerically unstable. Instead, we obtain
fast numerical implementations for all kernels at close to
double precision using a dedicated algorithm that sepa-
rates an entire kernel into pieces with only single branch
cuts, which then admit suitable, fast-converging logarith-
mic expansions around z = 0 and z = 1.

The hard function H contains timelike logarithms
ln[(�m

2

H
� i0)/µ2)], which are resummed by using an

imaginary boundary scale µH = �imH . This signifi-
cantly improves the perturbative convergence compared
to the spacelike choice µH = mH [94–98]. It is advan-
tageous to apply this timelike resummation not just to
W

(0), which contains H naturally, but also to the full
W (qT , Y ), as demonstrated for the rapidity spectrum in
Ref. [73], or equivalently the nonsingular corrections, as
in similar contexts [81, 99]. To do so, we take [73]

W (qT , Y ) = H(m2

H
, µFO)


W (qT , Y )

H(m2

H
, µFO)

�

FO

, (11)

and analogously for d�nons
/dqT . The ratio in square

brackets is expanded to fixed order in ↵s(µFO), while
H(m2

H
, µFO) in front is evolved from µH to µFO at the

same order as in Eq. (10). This yields substantial im-
provements up to qT ⇠ 200GeV, which is not unex-
pected, as W

(2) will contain H in parts of its factor-
ization. (Beyond qT

>
⇠ 200GeV, a dynamic hard scale

⇠ qT becomes more appropriate and the heavy-top limit
breaks down, indicating that the hard interaction has be-
come completely unrelated to the H+0-parton process.)

The fixed-order coe�cients of d�nons
/dqT for qT > 0

are obtained as

d�nons

FO

dqT
=

d�FO1

dqT
�

d�sing

FO

dqT
. (12)

At NnLO (⌘ NnLO0), or O(↵n

s
) relative to the LO Born

cross section, we need the full spectrum at Nn�1LO1. At
LO1 and NLO1, we integrate our own analytic imple-
mentation of W (qT , Y ) against A(qT , Y ;⇥), allowing us
to reach 10�4 relative precision down to qT = 0.1GeV
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FIG. 1. The gg ! H qT spectrum up to N3LL0+N3LO com-
pared to preliminary ATLAS measurements [26].

at little computational cost. At NLO1, we implement re-
sults from Ref. [100] after performing the necessary renor-
malization. The implementation is checked against the
numerical code from Ref. [29]. At NNLO1, we use exist-
ing results [41, 42] from NNLOjet [30, 34] (see below).
The final resummed qT spectrum is then given by

d�

dqT
=

d�sing

dqT
+

d�nons

dqT
. (13)

While for qT ⌧ mH , the singular and nonsingular con-
tributions can be considered separately, this separation
becomes meaningless for qT ⇠ mH . To obtain a valid pre-
diction there, the qT resummation is switched o↵, only
keeping the timelike resummation, by choosing common
boundary scales µS,B = ⌫S,B = iµH = µFO, such that
singular and nonsingular exactly recombine at fixed or-
der into the full result. We use qT -dependent profile
scales [46, 99, 101] to enforce the correct qT resummation
for qT ⌧ mH and smoothly turn it o↵ toward qT ⇠ mH .
We identify several sources of perturbative uncertain-

ties, namely fixed-order (�FO), qT resummation (�qT ),
timelike resummation (�'), and matching uncertainties
(�match), which are estimated via appropriate scale vari-
ations as detailed in Refs. [46, 73]. They are consid-

[Chen, Gehrmann, Glover, Huss, Monni, Re, LR, Torrielli ’22]

[Re, LR, Torrielli ’21]

[Billis, Dehnadi, Ebert, Michel, Stewart, Tackmann ’21]
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Fiducial distributions and transverse momentum resummation
• Transverse momentum resummation affects observables sensitive to 

soft gluon emission as the lepton transverse momentum in Drell-Yan 

• Leptonic transverse momentum is a particularly relevant observable 
due to its importance in the extraction of the W mass 

• Inclusion of resummation effects necessary to cure (integrable) 
divergences due to the presence of a Sudakov shoulder at  mℓℓ /2

See A. Vicini’s and C. Schwan talks
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Figure 10. Lepton transverse momentum spectrum for on-resonance W+ production at the LHC
at fixed order (left) and including the resummation of fiducial power corrections to N3LL (right).
The horizontal axes shows the distance to the Jacobian peak at p`T = mW /2.

Thus, the leptonic power corrections in this case scale as qT /(Q � 2pmin

T
), and so as long

as pmin

T
⌧ Q/2, the e↵ect of pmin

T
can be treated as a linear fiducial power correction as

discussed for the qT spectrum with fiducial cuts in section 4.2.

4.3.2 Numerical results

There are two key insights from our analysis of the di↵erential p`
T
phase space. First, the

p`
T
spectrum near the Jacobian peak is directly sensitive to the small transverse momentum

qT of the decaying vector boson. This causes fixed-order predictions to become unreliable

in this region, which is a well-known e↵ect. Second, the strict qT ! 0 limit by itself cannot

describe the p`
T
spectrum in this region, which means the strict LP qT resummation is also

insu�cient. Both problems are cured simultaneously by combining the exact leptonic ten-

sor, which encodes the exact decay kinematics and automatically retains all leptonic power

corrections, with the qT -resummed hadronic tensor, thus allowing us to obtain physical

predictions around the Jacobian peak.

We illustrate this in figure 10 for the p`
T
spectrum in W+

! `+⌫` decays, where we

show the spectrum both at fixed order (left) and after resummation including fiducial

power corrections (right). In both panels, the horizontal axis shows the distance of p`
T

to the Jacobian peak at p`
T

= mW /2, and to avoid smearing out the peak we consider

the spectrum at a fixed point Q = mW . The fixed-order spectrum (left) is shown at LO0

(green dotted), NLO0 (blue dashed), and NNLO0 (red solid). The LO0 result corresponds

to Born kinematics and clearly shows the kinematic edge at p`
T
= Q/2. Starting at NLO0,

the W boson can have nonvanishing qT , which opens up the phase space beyond the edge.

However, in the vicinity of the edge, the fixed-order predictions become unstable due to the

sensitivity to small qT , which is clearly visible by the diverging NLO0 and NNLO0 curves,

and in particular by the sign change between NLO0 and NNLO0 at p`
T
⇡ Q/2.

In the right panel in figure 10, we show the resummed p`
T

spectrum at NLL(0+L)

(green dotted), NNLL(0+L)+NLO0 (blue dashed), and N3LL(0+L)+NNLO0 (red solid). The

resummation including leptonic power corrections cures the unphysical behaviour of the

fixed-order results, yielding a well-behaved spectrum in the full p`
T
range, with a resummed
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[Chen, Gehrmann, Glover, Huss, Monni, Re, LR, Torrielli ’22]
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Figure 10. Lepton transverse momentum spectrum for on-resonance W+ production at the LHC
at fixed order (left) and including the resummation of fiducial power corrections to N3LL (right).
The horizontal axes shows the distance to the Jacobian peak at p`T = mW /2.

Thus, the leptonic power corrections in this case scale as qT /(Q � 2pmin

T
), and so as long

as pmin

T
⌧ Q/2, the e↵ect of pmin

T
can be treated as a linear fiducial power correction as

discussed for the qT spectrum with fiducial cuts in section 4.2.

4.3.2 Numerical results

There are two key insights from our analysis of the di↵erential p`
T
phase space. First, the

p`
T
spectrum near the Jacobian peak is directly sensitive to the small transverse momentum

qT of the decaying vector boson. This causes fixed-order predictions to become unreliable

in this region, which is a well-known e↵ect. Second, the strict qT ! 0 limit by itself cannot

describe the p`
T
spectrum in this region, which means the strict LP qT resummation is also

insu�cient. Both problems are cured simultaneously by combining the exact leptonic ten-

sor, which encodes the exact decay kinematics and automatically retains all leptonic power

corrections, with the qT -resummed hadronic tensor, thus allowing us to obtain physical

predictions around the Jacobian peak.

We illustrate this in figure 10 for the p`
T
spectrum in W+

! `+⌫` decays, where we

show the spectrum both at fixed order (left) and after resummation including fiducial

power corrections (right). In both panels, the horizontal axis shows the distance of p`
T

to the Jacobian peak at p`
T

= mW /2, and to avoid smearing out the peak we consider

the spectrum at a fixed point Q = mW . The fixed-order spectrum (left) is shown at LO0

(green dotted), NLO0 (blue dashed), and NNLO0 (red solid). The LO0 result corresponds

to Born kinematics and clearly shows the kinematic edge at p`
T
= Q/2. Starting at NLO0,

the W boson can have nonvanishing qT , which opens up the phase space beyond the edge.

However, in the vicinity of the edge, the fixed-order predictions become unstable due to the

sensitivity to small qT , which is clearly visible by the diverging NLO0 and NNLO0 curves,

and in particular by the sign change between NLO0 and NNLO0 at p`
T
⇡ Q/2.

In the right panel in figure 10, we show the resummed p`
T

spectrum at NLL(0+L)

(green dotted), NNLL(0+L)+NLO0 (blue dashed), and N3LL(0+L)+NNLO0 (red solid). The

resummation including leptonic power corrections cures the unphysical behaviour of the

fixed-order results, yielding a well-behaved spectrum in the full p`
T
range, with a resummed
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 [Ebert, Michel, Stewart, Tackmann ’20]

[Catani, de Florian, Ferrera, Grazzini ’15][Balázs, Yuan ’97]

NB: EW corrections also relevant for correct shape
[Catani, Webber ’97]
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Summary

• Fiducial cuts currently applied in experimental analyses in two-body final states (Drell-Yan, Higgs to 
diphotons) cause undesired instabilities in fixed-order perturbation theory 

• Resummation provides a viable solution for legacy measurements. Robust physical results also require 
fixed order predictions for practical applications (e.g. PDF extraction) 

• Sensitivity to unresolved region challenges non-local subtraction methods, which are widely used in 
data-theory comparison at NNLO (e.g. MATRIX, MCFM) or are currently the only viable method to get to 
N3LO accuracy for key processes (e.g. fiducial DY production) 

• Reliable results up to N3LO can be obtained using -subtraction methods by computing fiducial linear 
power corrections 

• Resummation of linear fiducial power corrections can be performed alongside -resummation to 
provide reliable all-order results for legacy measurements 

• Robustness of data-theory comparison within fiducial regions require rethinking of fiducial 
acceptances for future LHC measurements in run 3 

qT

qT
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Resummation of transverse momentum is delicate because pt is a vectorial quantity

n

∑
i=1

⃗k t,i ≃ 0cross section naturally 
suppressed as there is 
no phase space left for 
gluon emission 
(Sudakov limit)

Large kinematic cancellations 

pt ~0 far from the Sudakov limit

p2
t ∼ k2

t,i ≪ m2
H

Exponential 
suppression Power suppression

Resummation of the transverse momentum spectrum

Singlet

Singlet

Two concurring mechanisms leading to a system with small pt
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n

∑
i=1

⃗k t,i ≃ 0cross section naturally 
suppressed as there is 
no phase space left for 
gluon emission 
(Sudakov limit)

Large kinematic cancellations 

pt ~0 far from the Sudakov limit

p2
t ∼ k2

t,i ≪ m2
H

Exponential 
suppression Power suppression

Dominant at small  pt

Resummation of the transverse momentum spectrum

Singlet

Singlet

[Parisi, Petronzio, ’79] 

Two concurring mechanisms leading to a system with small pt

Resummation of transverse momentum is delicate because pt is a vectorial quantity
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Resummation of the transverse momentum spectrum in b space

δ(2) ( ⃗p t −
n

∑
i=1

⃗k t,i) = ∫ d2b
1

4π2
ei ⃗b ⋅ ⃗p t

n

∏
i=1

e−i ⃗b ⋅ ⃗k t,i

Exponentiation in conjugate space

two-dimensional momentum conservation

σ = σ0 ∫ d2 ⃗p H
⊥ ∫

d2 ⃗b
4π2

e−i ⃗b ⋅ ⃗p H
⊥

∞

∑
n=0

1
n!

n

∏
i=1

∫ [dki] |M(ki) |2 (ei ⃗b ⋅ ⃗k t,i − 1) = σ0 ∫ d2 ⃗p H
⊥ ∫

d2 ⃗b
4π2

e−i ⃗b ⋅ ⃗p H
⊥e−RNLL(L)

virtual corrections

RNLL(L) = − Lg1(αsL) − g2(αsL) L = ln(mHb/b0)

NLL formula with scale-independent PDFs

Logarithmic accuracy defined in terms of ln(mHb/b0) Talk by Ignazio Scimemi
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dΣ(v)
dΦB

= ∫𝒞1

dN1

2πi ∫𝒞2

dN2

2πi
x−N1

1 x−N2
2 ∑

c1,c2

d |MB |2
c1c2

dΦB
fT
N1

(μ0)Σ̂
c1,c2
N1,N2

(v)fN2
(μ0),

All-order formula in Mellin space at N3LL

Now include effect of collinear radiation and terms beyond NLL accuracy

[Bizon, Monni, Re, LR, Torrielli ’17]

Σ̂c1,c2
N1,N2

(v) = [Cc1;T
N1

(αs(μ0))H(μR)Cc2
N2

(αs(μ0))] ∫
M

0

dkt1

kt1 ∫
2π

0

dϕ1

2π
e−R(ϵkt1)

× exp {−
2

∑
ℓ=1 (∫

μ0

ϵkt1

dkt

kt

αs(kt)
π

ΓNℓ
(αs(kt)) + ∫

μ0

ϵkt1

dkt

kt
Γ(C)

Nℓ
(αs(kt)))}

×
2

∑
ℓ1=1

(R′ ℓ1 (kt1) +
αs(kt1)

π
ΓNℓ1

(αs(kt1)) + Γ(C)
Nℓ1

(αs(kt1)))
×

∞

∑
n=0

1
n!

n+1

∏
i=2

∫
1

ϵ

dζi

ζi ∫
2π

0

dϕi

2π
Θ (v − V({p̃}, k1, …, kn+1)),

×
2

∑
ℓi=1

(R′ ℓi (kti) +
αs(kti)

π
ΓNℓi

(αs(kti)) + Γ(C)
Nℓi

(αs(kti)))

Unresolved

Resolved

v = pt /M

[Re, LR, Torrielli ’21]
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dΣ(v)
dΦB

= ∫𝒞1

dN1

2πi ∫𝒞2

dN2

2πi
x−N1

1 x−N2
2 ∑

c1,c2

d |MB |2
c1c2

dΦB
fT
N1

(μ0)Σ̂
c1,c2
N1,N2

(v)fN2
(μ0),

Now include effect of collinear radiation and terms beyond NLL accuracy

Σ̂c1,c2
N1,N2

(v) = [Cc1;T
N1

(αs(μ0))H(μR)Cc2
N2

(αs(μ0))] ∫
M

0

dkt1

kt1 ∫
2π

0

dϕ1

2π
e−R(ϵkt1)

× exp {−
2

∑
ℓ=1 (∫

μ0

ϵkt1

dkt

kt

αs(kt)
π

ΓNℓ
(αs(kt)) + ∫

μ0

ϵkt1

dkt

kt
Γ(C)

Nℓ
(αs(kt)))}

×
2

∑
ℓ1=1

(R′ ℓ1 (kt1) +
αs(kt1)

π
ΓNℓ1

(αs(kt1)) + Γ(C)
Nℓ1

(αs(kt1)))
×

∞

∑
n=0

1
n!

n+1

∏
i=2

∫
1

ϵ

dζi

ζi ∫
2π

0

dϕi

2π
Θ (v − V({p̃}, k1, …, kn+1)),

×
2

∑
ℓi=1

(R′ ℓi (kti) +
αs(kti)

π
ΓNℓi

(αs(kti)) + Γ(C)
Nℓi

(αs(kti)))

R′ ℓ1 (kt1)

R′ ℓi (kti)

e−R(ϵkt1)
Sudakov radiator

R(kt1) = − log
M
kt1

g1 − g2 − ( αs

π ) g3 − ( αs

π )
2

g4 − ( αs

π )
3

g5

ln
M
kt1

→ ln
Q
kt1

+ ln
M
Q

Constant terms expanded in  and included in αs H

Resummation scale Q ∼ M

[Bizon, Monni, Re, LR, Torrielli ’17] [Re, LR, Torrielli ’21]

All-order formula in Mellin space at N3LL



SM@LHC 2022, 13 Apr 2022 

H(αs) = 1 + ( αs

2π ) H1 + ( αs

2π )
2

H2 + ( αs

2π )
3

H3

Three-loop hard-virtual coefficient
Σ̂c1,c2

N1,N2
(v) = [Cc1;T

N1
(αs(μ0))H(μR)Cc2

N2
(αs(μ0))] ∫

M

0

dkt1

kt1 ∫
2π

0

dϕ1

2π
e−R(ϵkt1)

× exp {−
2

∑
ℓ=1 (∫

μ0

ϵkt1

dkt

kt

αs(kt)
π

ΓNℓ
(αs(kt)) + ∫

μ0

ϵkt1

dkt

kt
Γ(C)

Nℓ
(αs(kt)))}

×
2

∑
ℓ1=1

(R′ ℓ1 (kt1) +
αs(kt1)

π
ΓNℓ1

(αs(kt1)) + Γ(C)
Nℓ1

(αs(kt1)))
×

∞

∑
n=0

1
n!

n+1

∏
i=2

∫
1

ϵ

dζi

ζi ∫
2π

0

dϕi

2π
Θ (v − V({p̃}, k1, …, kn+1)),

×
2

∑
ℓi=1

(R′ ℓi (kti) +
αs(kti)

π
ΓNℓi

(αs(kti)) + Γ(C)
Nℓi

(αs(kti)))

H(μR)

( αs

2π )
3

H3

… + + …

2

[Gehrmann et al. ’10]

dΣ(v)
dΦB

= ∫𝒞1

dN1

2πi ∫𝒞2

dN2

2πi
x−N1

1 x−N2
2 ∑

c1,c2

d |MB |2
c1c2

dΦB
fT
N1

(μ0)Σ̂
c1,c2
N1,N2

(v)fN2
(μ0),

Now include effect of collinear radiation and terms beyond NLL accuracy

[Bizon, Monni, Re, LR, Torrielli ’17] [Re, LR, Torrielli ’21]

All-order formula in Mellin space at N3LL
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Σ̂c1,c2
N1,N2

(v) = [Cc1;T
N1

(αs(μ0))H(μR)Cc2
N2

(αs(μ0))] ∫
M

0

dkt1

kt1 ∫
2π

0

dϕ1

2π
e−R(ϵkt1)

× exp {−
2

∑
ℓ=1 (∫

μ0

ϵkt1

dkt

kt

αs(kt)
π

ΓNℓ
(αs(kt)) + ∫

μ0

ϵkt1

dkt

kt
Γ(C)

Nℓ
(αs(kt)))}

×
2

∑
ℓ1=1

(R′ ℓ1 (kt1) +
αs(kt1)

π
ΓNℓ1

(αs(kt1)) + Γ(C)
Nℓ1

(αs(kt1)))
×

∞

∑
n=0

1
n!

n+1

∏
i=2

∫
1

ϵ

dζi

ζi ∫
2π

0

dϕi

2π
Θ (v − V({p̃}, k1, …, kn+1)),

×
2

∑
ℓi=1

(R′ ℓi (kti) +
αs(kti)

π
ΓNℓi

(αs(kti)) + Γ(C)
Nℓi

(αs(kti)))

Cc1;T
N1

(αs(μ0)) Cc2
N2

(αs(μ0))

∫
μ0

ϵkt1

dkt

kt
Γ(C)

Nℓ
(αs(kt))

Γ(C)
Nℓ1

(αs(kt1))

Γ(C)
Nℓi

(αs(kti))

Now include effect of collinear radiation and terms beyond NLL accuracy

dΣ(v)
dΦB

= ∫𝒞1

dN1

2πi ∫𝒞2

dN2

2πi
x−N1

1 x−N2
2 ∑

c1,c2

d |MB |2
c1c2

dΦB
fT
N1

(μ0)Σ̂
c1,c2
N1,N2

(v)fN2
(μ0),

Three-loop coefficient functions 
and their evolution

C(αs, z) = δ(1 − z) + ( αs

2π ) C1(z) + ( αs

2π )
2

C2(z) + ( αs

2π )
3

C3(z)( αs

2π )
3

C3(z)

[Li, Zhu ’16][Vladimirov ’16][Luo et al. ’19][Ebert et al. ’20]

[Bizon, Monni, Re, LR, Torrielli ’17] [Re, LR, Torrielli ’21]

All-order formula in Mellin space at N3LL



SM@LHC 2022, 13 Apr 2022 

All-order formula in Mellin space at N3LL

Σ̂c1,c2
N1,N2

(v) = [Cc1;T
N1

(αs(μ0))H(μR)Cc2
N2

(αs(μ0))] ∫
M

0

dkt1

kt1 ∫
2π

0

dϕ1

2π
e−R(ϵkt1)

× exp {−
2

∑
ℓ=1 (∫

μ0

ϵkt1

dkt

kt

αs(kt)
π

ΓNℓ
(αs(kt)) + ∫

μ0

ϵkt1

dkt

kt
Γ(C)

Nℓ
(αs(kt)))}

×
2

∑
ℓ1=1

(R′ ℓ1 (kt1) +
αs(kt1)

π
ΓNℓ1

(αs(kt1)) + Γ(C)
Nℓ1

(αs(kt1)))
×

∞

∑
n=0

1
n!

n+1

∏
i=2

∫
1

ϵ

dζi

ζi ∫
2π

0

dϕi

2π
Θ (v − V({p̃}, k1, …, kn+1)),

×
2

∑
ℓi=1

(R′ ℓi (kti) +
αs(kti)

π
ΓNℓi

(αs(kti)) + Γ(C)
Nℓi

(αs(kti)))

∫
μ0

ϵkt1

dkt

kt

αs(kt)
π

ΓNℓ
(αs(kt))

αs(kt1)
π

ΓNℓ1
(αs(kt1))

αs(kti)
π

ΓNℓi
(αs(kti))

DGLAP evolution

dΣ(v)
dΦB

= ∫𝒞1

dN1

2πi ∫𝒞2

dN2

2πi
x−N1

1 x−N2
2 ∑

c1,c2

d |MB |2
c1c2

dΦB
fT
N1

(μ0)Σ̂
c1,c2
N1,N2

(v)fN2
(μ0),

Now include effect of collinear radiation and terms beyond NLL accuracy

[Bizon, Monni, Re, LR, Torrielli ’17] [Re, LR, Torrielli ’21]
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dΣ(v)
dΦB

= ∫
dkt1

kt1

dϕ1

2π
∂L (−e−R(kt1)ℒN3LL′ (kt1))∫ d𝒵Θ (v − V({p̃}, k1, …, kn+1))

+∫
dkt1

kt1

dϕ1

2π
e−R(kt1) ∫ d𝒵∫

1

0

dζs

ζs

dϕs

2π {(R′ (kt1)ℒNNLL(kt1) − ∂LℒNNLL(kt1))

+
α2

s (kt1)
π2

̂P(0) ⊗ ̂P(0) ⊗ ℒNLL′ (kt1) − β0
α3

s (kt1)
π2 ( ̂P(0) ⊗ Ĉ(1) + Ĉ(1) ⊗ ̂P(0)) ⊗ ℒNLL(k(t1) +

α3
s (kt1)
π2

2β0 ln
1
ζs

̂P(0) ⊗ ̂P(0) ⊗ ℒNLL(k(t1)

+
1
2 ∫

dkt1

kt1

dϕ1

2π
e−R(kt1) ∫ d𝒵∫

1

0

dζs1

ζs1

dϕs1

2π ∫
1

0

dζs2

ζs2

dϕs2

2π
R′ (kt1){ℒNLL(kt1)(R′ ′ (kt1))2 ln

1
ζs1

ln
1

ζs2
− ∂LℒNLL(kt1)R′ ′ (kt1)(ln

1
ζs1

+ ln
1

ζs2 )
+

α2
s (kt1)
π2

̂P(0) ⊗ ̂P(0) ⊗ ℒNLL(kt1) +
α2

s (kt1)
π2 (ln

1
ζs1

+ ln
1

ζs2 ) R′ ′ (kt1) ̂P(0) ⊗ ̂P(0) ⊗ ℒNLL(k(t1) − ln
1

ζs1
ln

1
ζs2

(R′ ′ (kt1)2∂LℒNLL(k(t1)

+
α2

s (kt1)
π3

̂P(0) ⊗ ̂P(0) ⊗ ̂P(0) ⊗ ℒNLL(kt1)} × {Θ (v − V({p̃}, k1, …, kn+1, ks1, ks2)) − Θ (v − V({p̃}, k1, …, kn+1, ks1))−

Θ (v − V({p̃}, k1, …, kn+1, ks2)) + Θ (v − V({p̃}, k1, …, kn+1))} + 𝒪 (αn
s ln2n−7 1

v )

+
α3

s (kt1)
2π2 ( ̂P(0) ⊗ ̂P(1) + ̂P(1) ⊗ ̂P(0)) ⊗ ℒNLL(k(t1)} × {Θ (v − V({p̃}, k1, …, kn+1, ks)) − Θ (v − V({p̃}, k1, …, kn+1))}

ℒN3LL′ (kt1)
Luminosity factor: contains the three 
loop collinear coefficient functions  
and the three loop hard function 

C3
H3

NNLL corrections

𝒪 (αn
s ln2n−7 1

v ) Subleading terms

× (R′ ′ (kt1)ln
1
ζs

+
1
2

R′ ′ ′ (kt1)ln2 1
ζs ) − R′ (kt1)(∂LℒNNLL(kt1) − 2

β0

π
α2

s (kt1) ̂P(0) ⊗ ℒNLL(kt1)ln
1
ζs )

All-order formula in Mellin space at N3LL [Bizon, Monni, Re, LR, Torrielli ’17] [Re, LR, Torrielli ’21]

N3LL corrections

[Gehrmann et al. ’10]
[Li, Zhu ’16][Vladimirov ’16][Luo et al. ’19][Ebert et al. ’20]

{
{
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Inclusion of transverse recoil effects

e−

e+

Born matrix element 
evaluated at qT = 0

[Catani, de Florian, Ferrera, Grazzini ’15]
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Inclusion of transverse recoil effects

e−

e+

Generate singlet  by 
QCD radiation

qT

[Catani, de Florian, Ferrera, Grazzini ’15]
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Inclusion of transverse recoil effects

e−

e+

Generate singlet  by 
QCD radiation

qT

[Catani, de Florian, Ferrera, Grazzini ’15]
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Inclusion of transverse recoil effects

e−

e+qT

[Catani, de Florian, Ferrera, Grazzini ’15]

Generate singlet  by 
QCD radiation

qT
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Inclusion of transverse recoil effects

e−

e+

qT boost Born kinematics from boson rest frame 
(e.g. CS) to lab frame with that qT

[Catani, de Florian, Ferrera, Grazzini ’15]

qT
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Inclusion of transverse recoil effects

e−

e+

qT

[Catani, de Florian, Ferrera, Grazzini ’15]

qT

apply fiducial cuts on boosted Born kinematics 
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Inclusion of transverse recoil effects

e−

e+

qT

Sufficient to capture the full linear fiducial power correction for qT

apply fiducial cuts on boosted Born kinematics 

[Ebert, Michel, Stewart, Tackmann ’20]

[Catani, de Florian, Ferrera, Grazzini ’15]

qT
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Transverse recoil effects in fiducial DY setup
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At the pure resummed level recoil prescription captures whole linear power corrections from fiducial cuts

Effect reduce at 1-2% level after matching to fixed order (effect becomes )𝒪(α4
s )

Pure resummed: band widening due to power corrections due to modified logs 

ln(Q/kt1) → 1/p ln(1 + (Q/kt1)p)

∫
M

0

dkt1

kt1
→ ∫

∞

0

dkt1

kt1

(Q/kt1)p

1 + (Q/kt1)p

[Re, LR, Torrielli ’21]
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V ]𝒪(αk
s )

Transverse momentum spectrum at N3LO+N3LL

• Non-singular (matching) correction non-
negligible even below  GeV 

• Fixed order matching crucial to get correct shape 

qT ≲ 15

[Chen, Gehrmann, Glover, Huss, Monni, Re, LR, Torrielli ’22]

No fixed order component below 30 GeV
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Transverse recoil effects in fiducial DY setup
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Recoil effectively captures the full linear fiducial power correction for pt

Symmetric cuts on the dileptons induce linear power corrections in the fiducial spectrum
[Salam, Slade ’21]Can be avoided by suitable choice of cuts 
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Comparison with previous N3LO estimates
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T > 25 GeV |ηℓ±
| < 2.5Symmetric cuts

• Omission of linear power corrections leads to 
incorrect estimate of NkLO corrections 

• Data at N3LO not of sufficient quality to observe 
a stable plateau, inducing larger systematic 
uncertainties

[Camarda, Cieri, Ferrera ’21]



SM@LHC 2022, 13 Apr 2022 

Inclusion of linear power corrections in differential distributions
8
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Figure 7: Distribution in the rapidity of the lepton
pair for rcut = 0.15% without linPCs (green, dash-double-
dotted) and its extrapolation rcut → 0 (red, dash-dotted)
as well as with linPCs for rcut = 0.15% (orange, dashed) in
the setup presented in Ref. [7]. For reference, we compare
against an rcut-independent result by FEWZ (blue, solid)
and against ATLAS 7TeV data [57] (black data points).
The first ratio panel shows all results in the main frame
normalized to FEWZ, while in the second we show the
same ratios, but for results with rcut = 0.5% with (purple,
dashed) and without (brown, dash-double-dotted) linPCs.

symmetric cuts the inclusion of recoil-driven linPCs
does actually even slightly increase the rcut depen-
dence, whereas the opposite behaviour is found when
considering asymmetric cuts on leading and sublead-
ing photon (not shown here). This shows that a re-
coil prescription is not suitable to account for the
dominant rcut dependence in processes with isolated
photons, which was also observed in Ref. [37] in the
context of transverse-momentum resummation of the
diphoton pair in a different fiducial region.
Nevertheless, it is interesting to notice that the ob-

served behaviour for γγ production depends on the
partonic channel under consideration. In the qq̄ chan-
nel, including recoil effects through Eq. (2) is sufficient
to account for the linPCs, as shown in Figure 9, which
is true both at NLO QCD and NNLO QCD. For all
other partonic channels this is not the case and the
qualitative behaviour is similar to that observed for
their sum in Figure 8 (right). The fact that the re-
coil prescription is sufficient to include the linPCs for
the qq̄ channel at NLO can be understood as follows:
Problematic configurations in the photon smooth-cone
isolation are those where a light quark is close to
a photon, as collinear photon emissions from quarks

lead to QED singularities. Such effects do not ap-
pear in the qq̄ channel up to NLO QCD. On the other
hand, at NNLO QCD the only configurations that lead
to QED singularities and contribute at small qT are
double-real corrections in which both extra emissions
become collinear to the emitted photons balancing
each other. A possible explanation for the absence
of linear power corrections at NNLO when including
the recoil can be related to the fact that these config-
urations are however particularly symmetric. The in-
terplay between the recoil procedure and the isolation
requirements is therefore intrinsically different in this
channel with respect to the others. Moreover, those
configurations could simply be sufficiently suppressed
by phase space, and, in fact, such configurations are
removed below rcut in a qT -subtraction computation
for any process. A rigorous explanation of this inter-
esting feature characterising the qq̄ channel requires
further studies, which we leave to future work.
In this letter, we have presented a relatively sim-

ple approach to include linear power corrections in
fixed-order calculations obtained with slicing meth-
ods. This is the first time such corrections are in-
cluded in qT subtraction for general colour-singlet pro-
cesses. Our approach is applicable whenever the lin-
ear power corrections are of kinematical origin and
can thus be captured through an appropriate recoil
prescription. This is the case if a common transverse-
momentum requirement is applied on each particle of
a process with (effective) two-body kinematics, or if
different transverse-momentum requirements are ap-
plied, but on the undistinguished particles ordered in
transverse momentum. We have shown for the case of
neutral-current Drell–Yan production that such sym-
metric or asymmetric cuts applied on the leptons lead
to a linear dependence on the qT -slicing cutoff, and
that by following the approach suggested in this let-
ter those linear power corrections are accounted for,
both at the level of fiducial cross sections and differ-
ential distributions.
We have also addressed the concerns raised in

Ref. [7] about the intrinsic uncertainties of differential
Drell–Yan predictions in qT subtraction. Given the
enormous precision of Drell–Yan studies at the LHC,
these concerns are justified when predictions with only
a fixed qT -slicing cut are used. Our suggested ap-
proach to include the linear power corrections allevi-
ates these issues even when a fixed value of the cutoff
is used. We also observed that it is sufficient to per-
form a suitable extrapolation of the qT -slicing cutoff
to zero with Matrix. The latter, however, requires
considerably more computing resources to reach an
analogous numerical precision.
Finally, we have considered both ZZ and γγ

production with symmetric transverse-momentum
thresholds on the vector bosons and showed that for
ZZ production the resulting linear power corrections
are fully captured by our approach. On the contrary,
for γγ production such procedure is insufficient, since
the need for isolating the photons yields an additional
source of linear power corrections, which can not be
captured through recoil effects.
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FIG. 8: Compilation of the NNLO theory predictions of Figs. 5–7. Only the results with the smallest
slicing cuts are plotted: MATRIX with rcut = 0.15% for W±! l±⌫ and rcut = 0.05% for Z! l+l� production;
MCFM with ⌧cut = 4 ·10�4.

forward Z/�⇤-production. In the first bins of the latter the deviations grow up to O(20%). As
discussed, MCFM uses N-jettiness subtraction and allows for di↵erent ⌧cut choices for the jettiness
slicing parameter. We use the default value, ⌧cut = 6 · 10�3 and two smaller ones, ⌧cut = 1 · 10�3

and ⌧cut = 4 · 10�4, the limitation being here the goal to reach an integration accuracy of a few
units in 10�4 in reasonable time 9 with given computational resources. The decreasing values of
⌧cut display the expected trend clearly in Fig. 7, namely, the smaller the choice of ⌧cut, the closer
the MCFM result to that by FEWZ. Nevertheless, the di↵erences remain. In order to compare those
di↵erences easier, we collect the best prediction for each code at NNLO in a single figure in Fig. 8.

Given the level of agreement among the predictions at NLO accuracy, the deviations observed
in Figs. 5–7 need to be put into perspective by looking at the size of the pure NNLO corrections
alone, which we define bin-by-bin through the deviation of the NNLO K-factor from one, �NNLO =
(�NNLO/�NLO � 1). Typically pure NNLO corrections �NNLO are rather small, and we illustrate
those only in the case of largest corrections. For W+-production �NNLO amounts to a few per mill
for ⌘l . 1 and grows to O(1� 2%) for larger rapidities ⌘l & 1, while instead for W�-production
�NNLO is of the size O(1%) for ⌘l . 1 and increases to a few per cent for larger rapidities. For
the central Z/�⇤-production the NNLO corrections �NNLO are only a few per mill for ⌘ll . 1.5
and grow to O(2� 3%) for larger di-lepton rapidities. Thus, the observed di↵erences between
considered codes are actually similar in size to that of the pure NNLO corrections, even exceeding
them at times. The case of forward Z/�⇤-production features larger higher order corrections and
will be discussed in detail next. The comparable size of the NNLO corrections and di↵erences

9 The required CPU times for the MCFM runs with ⌧cut = 4 ·10�4 were roughly 180.000 hrs for W±-boson, 160.000 hrs
for central and approximately 50.000 hrs for forward Z-boson production.
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considered codes are actually similar in size to that of the pure NNLO corrections, even exceeding
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