Observation of VBS production in opposite-sign WW events @ CMS

Bianca Sofia Pinolini on behalf of the CMS collaboration

Standard Model at the LHC 2022

Thu, 12th Apr 2022

Introduction

"First observation of the electroweak production of a leptonically decaying W+W- pair in association with two jets in $\sqrt{s} = 13$ TeV pp collisions".

<u>CDS</u>

Why VBS \rightarrow W+W-?

- A rare ... :
 - ~ fb cross section
- ... and challenging process due to bkgs:
 - ttbar + tW production
 - ο DY events (mostly in ee-μμ)
- Never been observed before

 \rightarrow First observation and first cross section measurement

 $VBS \rightarrow W^*W^-$

Typical leptonic signature

- 2 highly energetic jets (VBS jets) :
 - Large gap in $\mathbf{\eta}$ and high m_{ii}
 - No QCD activity between them
- 2 charged leptons and neutrinos p_T^{miss}
 Central with respect to the VBS jets

Main backgrounds

- ttbar tW ~ 10^6 fb
- QCD WW ~ 10^5 fb -
- Drell-Yan ~ 10⁷ fb
- Nonprompt -

W VBS jeta 91 ¥/Z J' tu

Deep Neural Network

5/12

Variable	Description
m _{ii}	Invariant mass of the two VBS jets pair
$\Delta \eta_{ii}$	Pseudorapidity gap between the two VBS jets
p_{Ti_1}	$p_{\rm T}$ of the highest- $p_{\rm T}$ jet
$p_{T_{i_2}}$	$p_{\rm T}$ of the second highest $p_{\rm T}$ jet
PTEE	$p_{\rm T}$ of the lepton pair
$\Delta \phi_{\ell\ell}$	Azimuthal angle between the two leptons
Z_{ℓ_1}	Zeppenfeld variable of the highest- p_{T} lepton
Z_{ℓ_2}	Zeppenfeld variable of the second highest p_{T} lepton
m_{TW_1}	Transverse mass of the $(p_{T\ell_1}, p_T^{miss})$ system

Deep neural network to disentangle signal from top and QCD-WW background :

- Different flavour final state (**eµ**)
- 2 models implemented:
 - \circ Z_{ll} < 1 phase space
 - $Z_{ll} \ge 1$ phase space

Systematic and statistical uncertainties

Systematic uncertainties

- Nuisance parameters with log-normal • distribution in the fit for signal extraction
- Could affect
 - Normalization of signal and Ο backgrounds
 - Shape of the predictions across the Ο distributions of the observables
- Correlations taken into account

Dominated by statistical uncertainty

	Uncertainty source	Impact
Theoretical	QCD-induced W^+W^- normalisation	5.3%
unacriatica	$t\bar{t}$ QCD scale	5.1%
uncertainties	QCD factorisation scale for VBS signal	5.0%
	$t\bar{t}$ normalisation	4.9%
b togging	b tagging	3.5%
blagging	Prefiring corrections	3.3%
uncertainty	DY normalisation	2.9%
,	Jet energy scale $+$ resolution	2.6%
	p_T^{miss} energy scale	2.4%
	QCD -induced W^+W^- QCD scale	2.1%
	Luminosity	2.1%
	Muon efficiency	2.0%
	Pileup	1.8%
	Electron efficiency	1.5%
	Underlying event	1.3%
	Parton shower	1.0%
	Other	< 1%
Dominated by		
Jorninaled by	Total systematic uncertainty	13.1%
statistical	Total statistical uncertainty	14.9%
uncertainty		
anoontainty	Total uncertainty	19.8%

Signal extraction

All categories are included simultaneously in the fit

- Combined binned maximum likelihood fit of the most discriminating variable distributions with signal and background templates
- Performed simultaneously in all signal region categories $(z_{p} \ge 1)$:
 - SF divided into $4 m_{jj} \Delta \eta_{jj}$ bins:
 - 2.5 < $\Delta \eta_{jj}$ < 3.5 and $300 < m_{jj} < 500$
 - 2.5 < Δη_{jj} < 3.5 and m_{jj} > 500 GeV

Number of events

- $\Delta \eta_{ij} > 3.5$ and 300 GeV < $m_{ij} < 500$ GeV
- $\Delta \eta_{ij} > 3.5$ and $m_{ij} > 500$ GeV \rightarrow purest region $\rightarrow m_{ij}$ distribution
- DF DNN score
- Control regions: single bin categories \rightarrow To constraint DY and top normalizations

Signal regions eµ

Signal regions ee-µµ

Control regions

Results

- Observed (expected) significance w.r.t. the background-only hypothesis is 5.6 σ (5.2 σ)
- The cross section measurement of the W⁺W⁻ EW production is performed in two fiducial volumes:

Future developments

- Analysis statistically limited \rightarrow expected to benefit from the larger RUN III dataset
- Global fit of relevant EFT operators of dimensions 6 and dimension 8 @ reco-level, to get a more complete understanding of the SM validity range
 - EFT dim6 study @ lhe-level arXiv: 2108.03199 [hep-ph]
- Polarization studies to investigate the EWSB mechanism and test models of physics BSM

Backup

VBS processes @LHC

The two massive bosons may decay hadronically or leptonically, leading to <u>3</u> possible final states:

1. leptonic $\forall \forall \rightarrow l \mathbf{v} \ l \mathbf{v}$ (this talk)

- 2. semileptonic VV \rightarrow l**v** q'q''
- 3. hadronic VV \rightarrow qq' q''q'''
- Production of a pair of W+W- bosons from a purely electroweak process @LO $O(\alpha^6_{EWK} \alpha^0_S)$
- Diagrams where an on-shell Higgs boson is exchanged (VBF) are considered as backgrounds and modeled with dedicated MC samples
- The interference with the QCD-induced WW background $O(\alpha^4_{\rm EWK} \alpha^2_{\rm S})$ is negligible

Main backgrounds

QCD WW

Strong interaction between the initial state quarks

Same final state, but different kinematic.

Strategy: VBS selections.

Drell-Yan Mainly affecting the ee-µµ final state.

Strategy:

- selections on *m* and p_T of lepton pair - tighter selections on p_T^{miss}

Nonprompt

Mainly W+Jet : jet misidentified as lepton (*fake lepton*)

ttbar - tW

analysis.

 $\sigma_{_{\rm H}}$ ~ 1 nb – Main

background of the

Strategy: b jets veto

$DY \rightarrow ll$ treatment

- In DY CRs 2 different contributions are clearly visible and much sensitive to the $\Delta \eta_{ii}$ distribution: •
 - Ο
 - "Hard" DY events populate the low $\Delta \eta_{jj}$ region DY process + at least 1 PU jet peaks around $\Delta \eta_{jj} \sim 5$ Ο
- 3 contributions in total with different control regions
- Their normalisations are free to float in the fit and mainly driven by dedicated CRs $\Delta \eta_{ii} \ge 5$

Post-fit (pre-fit) yields table

Process	VBS eµ	VBS $ee - \mu\mu$
WWewk	$238.9 \pm 21.9 \ (209.0 \pm 5.4)$	$132.6 \pm 6.9 \ (115.5 \pm 2.2)$
top	$3081.9 \pm 99.7~(2998.0 \pm 189.3)$	$1152.3 \pm 18.3 \ (1073.7 \pm 33.7)$
WW	$736.3 \pm 98.8 \ (1086.8 \pm 89.0)$	$201.1 \pm 22.6 \ (405.6 \pm 22.0)$
DY no PU jets	-	$594.7 \pm 19.9~(417.6 \pm 25.9)$
DY + 1 PU jet	-	$436.1 \pm 43.5 \ (370.4 \pm 120.4)$
$DY \tau \tau$	$171.2 \pm 7.4 \ (195.9 \pm 6.2)$	-
Non-prompt leptons	$216.8 \pm 24.6 \ (242.5 \pm 31.7)$	$51.8 \pm 6.1 \ (58.0 \pm 7.8)$
Multiboson	$143.3 \pm 9.8 \ (141.0 \pm 15.9)$	$96.0 \pm 6.0 (89.2 \pm 7.8)$
Higgs	$46.6 \pm 1.8 \ (43.2 \pm 2.9)$	
Zjj	$1.3 \pm 0.2 \; (1.3 \pm 0.3)$	$59.1 \pm 4.3 (50.4 \pm 6.5)$

Selections

Categories selections

VBS	eμ/μe	$Z_{\ell\ell} < 1$	$m_{ m T} > 60 { m ~GeV}$ $m_{\ell\ell} > 50 { m ~GeV}$	
		$Z_{\ell\ell} \geq 1$	no bjet with $p_{\rm T} > 20 { m ~GeV}$	
	ee	$Z_{\ell\ell} < 1$		
		$Z_{\ell\ell} \ge 1$	$m_{\ell\ell} > 120 \mathrm{GeV}$	
		$Z_{\ell\ell} < 1$	$p_{\rm T}^{\rm miss} > 60 { m ~GeV}$	
	$\mu\mu$	$Z_{\ell\ell} \ge 1$	no bjet with $p_{\rm T} > 20~{\rm GeV}$	
$\ensuremath{\mathrm{t}\bar{\mathrm{t}}}\xspace$ and $\ensuremath{\mathrm{t}W}\xspace$	$e\mu/\mu e$	$m_{\ell\ell} > 50~{\rm GeV}$ no b-jet with $p_{\rm T} > 20~{\rm GeV}$		
	ee	$m_{\ell\ell} > 120 \text{ GeV}$ $p_{\mathrm{T}}^{\mathrm{miss}} > 60 \text{ GeV}$		
	μμ	at least one b-jet with $p_{\rm T} > 20~{\rm GeV}$		
DY		$m^T < 60 \mathrm{GeV}$		
	$e\mu/\mu e$	$50 \text{ GeV} < m_{\ell\ell} < 80 \text{ GeV}$		
		no b-jet with $p_{\rm T} > 20~{\rm GeV}$		
	ee	$\Delta \eta_{\rm jj} < 5$	$ m_{\ell\ell} - m_Z < 15 \text{ GeV}$	
		$\Delta \eta_{\rm ij} \ge 5$	$p_{\rm T}^{\rm miss} > 60 { m ~GeV}$	
	μμ	$\Delta \eta_{\rm ii} < 5$	no b-jet with $p_{\rm T} > 20 {\rm ~GeV}$	
		$\Delta \eta_{\rm ii} > 5$		