

Flavour Tagging with Jet Substructure

In collaboration with: Simone Marzani, Oleh Fedkevych, Daniel Reichelt,

Steffen Schumann, Gregory Soyez

Based on: 2104.06920 [hep-ph]

2108.10024 [hep-ph]

Simone Caletti SM@LHC YSF 12 April 2022

Initial-gluon purity

Purity

$$f_g = \frac{\sigma_{qg}}{\sigma_{qq} + \sigma_{qg}}$$

- Initial gluon = final quark at LO
- Initial gluon contribution dominates the process

Can we use JSS to build a different* observable with an even more dominant contribution from the initial gluon?

Which JSS observable?

Jet Angularities

$$\lambda_{\alpha}^{\kappa} = \sum_{j \in \text{Jet}} \left(\frac{p_{T,j}}{\sum_{j \in \text{Jet}} p_{T,j}} \right)^{\kappa} \left(\frac{\Delta_{j}}{R} \right)^{\alpha}$$
$$\simeq \sum_{j \in \text{Jet}} z_{j}^{\kappa} \theta_{j}^{\alpha}$$

$$\Delta_j \equiv \sqrt{(\phi - \phi_j)^2 + (\eta - \eta_j)^2}$$

- IRC safe (κ =1, α >0)
- Angularity distribution available at NLL' logarithmic accuracy
- Measured at the LHC

We want to use jet angularities as a tagger to select only final quark-jets.

↑ Diagram adapted from: 1704.03979v2, P. Gras et al.

The ROC curves

$$arepsilon_k = rac{1}{\sigma_{ij}} \int_0^{\lambda_{
m cut}} rac{d\sigma_{ij}}{d\lambda} d\lambda \quad {
m with} \quad i\, j o Z\, k$$

- $lacksymbol{arepsilon}_q$: true-positive rate (efficiency) of final quark-jets
- $lacksymbol{arepsilon}_g$: false-positive rate of final quark-jets

$$\tilde{f}_g = \frac{\varepsilon_q \sigma_{qg}}{\varepsilon_g \sigma_{qq} + \varepsilon_q \sigma_{qg}} = \left(1 + \frac{1 - f_g}{f_g} \frac{\varepsilon_g}{\varepsilon_q}\right)^{-1}$$

$$\varepsilon_g = \frac{f_g(1 - \tilde{f}_g)}{\tilde{f}_g(1 - f_g)} \varepsilon_q$$

We use the ROC curve to determine the value of the cut.

Initial-gluon purity (after tagging)

$$arepsilon_k = rac{1}{\sigma_{ij}} \int_0^{\lambda_{
m cut}} rac{d\sigma_{ij}}{d\lambda} d\lambda \quad {
m with} \quad i\, j o Z\, k$$

- $lacksquare arepsilon_q$: true-positive rate (efficiency) of final quark-jet
- $lacksquare \mathcal{E}_g$: false-positive rate of final quark-jet

$$\tilde{f}_g = \frac{\varepsilon_q \sigma_{qg}}{\varepsilon_g \sigma_{qq} + \varepsilon_q \sigma_{qg}} = \left(1 + \frac{1 - f_g}{f_g} \frac{\varepsilon_g}{\varepsilon_q}\right)^{-1}$$

$$\varepsilon_g = \frac{f_g(1 - \tilde{f}_g)}{\tilde{f}_g(1 - f_g)} \varepsilon_q$$

We have a gain of about 10% in the initial-gluon purity.

Conclusions and outlook

- JSS can be successfully applied to probe the SM.
- We computed and studied the differential distribution in the transverse momentum of the Z boson with a cut on the angularity and with NLL' resummation of $log(\lambda)$.
- The Z boson pT distribution (on the right) could be more interesting for gluon PDFs determination than standard pT distribution (but the cut discards some events = less statistics)
- Our NLL' calculations are implemented in the SHERPA code as a plugin based upon the CAESAR framework.
- Unfortunately, we note increased sensitivity to NP effects at low pT (compared to standard Z pT).

Can we <u>efficiently</u> use jet angularities to constrain gluon PDFs?

Thank you for your attention!

ROC curves for Thrust and the LHA

Jet pT distrib.

Jet pT distribution is more sensitive to NP effects.

Matching to NLO

$$\Sigma_{\mathrm{match,mult}}(\lambda_{\alpha}) = \sum_{\delta} \Sigma_{\mathrm{match, mult}}^{\delta}(\lambda_{\alpha})$$

$$\Sigma_{\text{match, mult}}^{\delta}(\lambda_{\alpha}) = \Sigma_{\text{res}}^{\delta}(\lambda_{\alpha}) \left[1 + \frac{\Sigma_{\text{fo}}^{\delta,(1)}(\lambda_{\alpha}) - \Sigma_{\text{res}}^{\delta,(1)}(\lambda_{\alpha})}{\sigma^{\delta,(0)}} + \frac{1}{\sigma^{\delta,(0)}} \left(-\bar{\Sigma}_{\text{fo}}^{\delta,(2)}(\lambda_{\alpha}) - \Sigma_{\text{res}}^{\delta,(2)}(\lambda_{\alpha}) - \Sigma_{\text{res}}^{\delta,(1)}(\lambda_{\alpha}) \frac{\Sigma_{\text{fo}}^{\delta,(1)}(\lambda_{\alpha}) - \Sigma_{\text{res}}^{\delta,(1)}(\lambda_{\alpha})}{\sigma^{\delta,(0)}} \right] \right]$$

$$\begin{cases} \sigma = \Sigma(1) \\ \Sigma^{(k)} \propto \alpha_{\rm EW}^2 \alpha_S^{1+k} \\ \bar{\Sigma} = \sigma - \Sigma \end{cases} \qquad \frac{\alpha_S}{2\pi} C^{\delta,(1)} \equiv \lim_{\lambda \to 0} \frac{\Sigma_{\rm fo}^{\delta,(1)}(\lambda_\alpha) - \Sigma_{\rm res}^{\delta,(1)}(\lambda_\alpha)}{\sigma^{\delta,(0)}}$$