High precision measurement of the W boson mass with the CDF II detector

Chris Hays, Oxford University
SM@LHC '22
13 April 2022

Overview

Muon momentum calibration

First step is the alignment of the drift chamber (the "central outer tracker" or COT)
Two degrees of freedom (shift \& rotation) for each of 2520 cells made up of twelve sense wires constrained using hit residuals from cosmic-ray tracks

Two parameters for the electrostatic deflection of the wire within the chamber constrained using difference between fit parameters of incoming and outgoing cosmic-ray tracks

Muon momentum calibration

Second step is the scale calibration from J / ψ decays to muons
Model lineshape using hit-level simulation and NLO form factor for QED radiation
Apply correct the length scale of the tracker with mass measurement as a function of $\Delta \cot \theta$
Correct the amount of upstream material with mass measurement as a function of p_{T}^{-1}

Third step is the scale calibration from Υ decays to muons

Compare fit results with and without constraining the track to the collision point

Muon momentum calibration

Final step is the measurement of the \mathbf{Z} boson mass

$$
M_{Z}=91192.0 \pm 6.4_{\text {stat }} \pm 4.0_{\text {sys }} \mathrm{MeV}
$$

Result blinded with $[-50,50] \mathrm{MeV}$ offset until previous steps were complete
Then combine all measurements into a final charged-track momentum scale

Electron momentum calibration

First step is the correction for response variations in space and time

Second step is the calibration of the energy scale using E/p

AVK \& CH, 1308.2025 \& NIM A 729, 25 (2013)
Custom parameterized GEANT simulation of calorimeter Use E/p and tail fits to simulate osmall non-linear energy response and variations in calorimeter thickness

Electron momentum calibration

Final step is the measurement of the \mathbf{Z} boson mass

$$
M_{Z}=91194.3 \pm 13.8_{\text {stat }} \pm 7.6_{\text {sys }} \mathrm{MeV}
$$

As a consistency check measure mass using only track information
e.g. $M_{Z}=91215.2 \pm 22.4 \mathrm{MeV}$ for non-radiative electrons $(\mathrm{E} / \mathrm{p}<1.1)$

Same blinding used as for muon channel

W boson selection

Triggers with low momentum thresholds (18 GeV) and very loose lepton id

Offline id also loose, efficiencies vary by 2% as hadronic recoil direction changes
No lepton isolation requirement in trigger or offline selection

Background suppressed by stringent hadronic recoil requirement: $u_{T}<15 \mathrm{GeV}$

Other kinematic requirements: lepton and missing p_{T} in the range $30-55 \mathrm{GeV}$ Transverse mass in the range $60-100 \mathrm{GeV}$
2.4 $\mathrm{M} W \rightarrow \mu \nu$ candidates
1.8 M $W \rightarrow e \nu$ candidates

M boson orckorouncs

Electroweak backgrounds modelled with fast parameterized simulation tuned with data and full simulation Cross-checked with full simulation tuned to data

Largest background is $Z \rightarrow \mu \mu$ with one unreconstructed muon: 7.4% of data sample $W \rightarrow \tau \nu$ background is $\sim 1 \%$ in each channel: largest background in electron sample

Background from hadrons misreconstructed as leptons estimated using data: 0.2-0.3\%

W boson production

Boson p_{T} impacts the p_{T} distributions of the decay leptons

Resbos used to generate events with non-perturbative parameters and NNLL resummation to model the region of low boson P_{T}

Z boson p_{T} used to constrain the non-perturbative parameter g_{2} and the perturbative coupling α_{s}
Resbos models W boson pt well
uncertainty estimated using DYQT and constrained with data

Recoin ceiloretion

First step is the alignment of the calorimeters
Misalignments relative to the beam axis cause a modulation in the recoil direction
Alignment performed separately for each run period using min bias data

Second step is the reconstruction of the recoil
Remove towers traversed by identified leptons
Remove corresponding recoil energy in simulation using towers rotated by 90° validate using towers rotated by 180°

Recoil calibration

Third step is the calibration of the recoil response Use ratio of recoil magnitude to p^{2} along direction of p^{2}

Fourth step is the calibration of the recoil resolution
Includes jet-like energy and angular resolution, additional dijet fraction term, and pileup

Recoil validation

W boson recoil distributions validate the model
Most important is the recoil projected along the charged-lepton's momentum ($u_{\| \mid}$)

$$
m_{T} \approx 2 p_{T} \sqrt{1+u_{\|} / p_{T}} \approx 2 p_{T}+u_{\|}
$$

W boson mass measurement

W boson mass measurement

Combination	$m_{T} \text { fit }$ Electrons Muons	p_{T}^{ℓ} fit Electrons Muons	p_{T}^{ν} fit Electrons Muons	Value (MeV)	$\chi^{2} /$ dof	Probability (\%)
m_{T}	$\checkmark \quad \checkmark$			80439.0 ± 9.8	$1.2 / 1$	28
p_{T}^{ℓ}		$\checkmark \quad \checkmark$		80421.2 ± 11.9	0.9 / 1	36
p_{T}^{ν}			$\checkmark \quad \checkmark$	80427.7 ± 13.8	0.0 / 1	91
$m_{T} \& p_{T}^{\ell}$	$\checkmark \quad \checkmark$	$\checkmark \quad \checkmark$		80435.4 ± 9.5	$4.8 / 3$	19
$m_{T} \& p_{T}^{\nu}$	$\checkmark \quad \checkmark$		$\checkmark \quad \checkmark$	80437.9 ± 9.7	$2.2 / 3$	53
$p_{T}^{\ell} \& p_{T}^{\nu}$		$\checkmark \quad \checkmark$	$\checkmark \quad \checkmark$	80424.1 ± 10.1	$1.1 / 3$	78
Electrons	\checkmark	\checkmark	\checkmark	80424.6 ± 13.2	$3.3 / 2$	19
Muons	\checkmark	\checkmark	\checkmark	80437.9 ± 11.0	$3.6 / 2$	17
All	$\checkmark \quad \checkmark$	$\checkmark \quad \checkmark$	$\checkmark \quad \checkmark$	80433.5 ± 9.4	$7.4 / 5$	20

Fit difference	Muon channel	Electron channel
$M_{W}\left(\ell^{+}\right)-M_{W}\left(\ell^{-}\right)$	$-7.8 \pm 18.5_{\text {stat }} \pm 12.7_{\text {COT }}$	$14.7 \pm 21.3_{\text {stat }} \pm 7.7_{\text {stat }}^{\mathrm{E} / \mathrm{p}}\left(0.4 \pm 21.3_{\text {stat }}\right)$
$M_{W}\left(\phi_{\ell}>0\right)-M_{W}\left(\phi_{\ell}<0\right)$	$24.4 \pm 18.5_{\text {stat }}$	$9.9 \pm 21.3_{\text {stat }} \pm 7.5_{\text {stat }}^{\mathrm{E} / \mathrm{p}}\left(-0.8 \pm 21.3_{\text {stat }}\right)$
$M_{Z}($ run $>271100)-M_{Z}($ run $<271100)$	$5.2 \pm 12.2_{\text {stat }}$	$63.2 \pm 29.9_{\text {stat }} \pm 8.2_{\text {stat }}^{\mathrm{E} / \mathrm{p}}\left(-16.0 \pm 29.9_{\text {stat }}\right)$

Summary

Measurement of W boson mass with <10 MeV precision achieved with complete CDF data set

Result of >20 years of experience with the CDF II detector

Achieved precision required flexibility: all experimental aspects controlled by the analysis team
Reconstruction, alignment, calibration, simulation, analysis

Analysis procedures approved pre-blinding and frozen

Surprising result motivates expanded study of m_{w} measurements and procedures

Backup

$$
\xi=m(\phi)\left[0.29(1-|Z|)+\left(1-Z^{2}\right)\right]
$$

$$
m(\phi)=a \cos \phi_{\mathrm{wp}}+o
$$

Uncertainties

Source of systematic uncertainty	Electrons	m_{T} fit Muons	Common	Electrons	p_{T}^{ℓ} fit Muons	Common	Electrons	p_{T}^{ν} fit Muons	Common	
Lepton energy scale	5.8	2.1	1.8	5.8	2.1	1.8	5.8	2.1	1.8	
Lepton energy resolution	0.9	0.3	-0.3	0.9	0.3	-0.3	0.9	0.3	-0.3	
Recoil energy scale	1.8	1.8	1.8	3.5	3.5	3.5	0.7	0.7	0.7	
Recoil energy resolution	1.8	1.8	1.8	3.6	3.6	3.6	5.2	5.2	5.2	
Lepton $u_{\\| \mid}$efficiency	0.5	0.5	0	1.3	1.0	0	2.6	2.1	0	
Lepton removal	1.0	1.7	0	0	0	0	2.0	3.4	0	
Backgrounds	2.6	3.9	0	6.6	6.4	0	6.4	6.8	0	
p_{T}^{Z} model	0.7	0.7	0.7	2.3	2.3	2.3	0.9	0.9	0.9	
p_{T}^{W} / p_{T}^{Z} model	0.8	0.8	0.8	2.3	2.3	2.3	0.9	0.9	0.9	
Parton distributions	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	
QED radiation	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	
Statistical	10.3	9.2	0	10.7	9.6	0	14.5	13.1	0	
Total	13.5	11.8	5.8	16.0	14.1	7.9	18.8	17.1	7.4	

Initial state LO \& NLO

W+ initial	Type	Pythia LO	Madgraph LO	Madgraph NLO
u dbar	v-v	81.7\%	82.0\%	82.7\%
dbar u	s-s	8.9\%	9.0\%	8.8\%
u sbar	v-s	1.6\%	1.9\%	1.8\%
sbar u	s-s	0.3\%	0.3\%	0.3\%
c sbar	s-s	2.9\%	2.9\%	-
sbar c	s-s	2.9\%	2.9\%	-
c dbar	s-v	0.7\%	0.7\%	-
dbar c	s-s	0.2\%	0.2\%	-
ug	v-g		-	3.7\%
g dbar	$\mathrm{g}-\mathrm{v}$		-	1.8\%
gu	g-s		-	0.4\%
dbar 9	s-9		-	0.5\%
g sbar	g-s		-	0.02\%
sbar 9	s-g		-	0.02\%

