# High precision measurement of the W boson mass with the CDF II detector



Chris Hays, Oxford University

SM@LHC '22 13 April 2022

# Overview



**Muon momentum calibration** 

**Electron momentum calibration** 



### W selection & background



![](_page_2_Figure_0.jpeg)

20

Two parameters for the electrostatic deflection of the wire within the chamber constrained using difference 150 200 between fit parameters of incoming and outgoing cosmic-ray tracks

SL3

![](_page_2_Figure_2.jpeg)

# Muon momentum calibration

#### Second step is the scale calibration from $J/\psi$ decays to muons

Model lineshape using hit-level simulation and NLO form factor for QED radiation Apply correct the length scale of the tracker with mass measurement as a function of  $\Delta \cot \theta$ Correct the amount of upstream material with mass measurement as a function of  $p_T^{-1}$ 

![](_page_3_Figure_3.jpeg)

### Muon momentum calibration

Final step is the measurement of the Z boson mass

 $M_Z = 91\ 192.0 \pm 6.4_{stat} \pm 4.0_{sys} \text{ MeV}$ 

Result blinded with [-50,50] MeV offset until previous steps were complete Then combine all measurements into a final charged-track momentum scale

![](_page_4_Figure_4.jpeg)

### **Electron momentum calibration**

#### First step is the correction for response variations in space and time

Fit ratio of calorimeter energy to track momentum to correct each tower in  $\eta$ Use mean E/p to remove time dependence & response variations in tower

#### Second step is the calibration of the energy scale using E/p

#### Custom parameterized GEANT simulation of calorimeter

Use E/p and tail fits to simulate osmall non-linear energy response and variations in calorimeter thickness

![](_page_5_Figure_6.jpeg)

#### AVK & CH, 1308.2025 & NIM A 729, 25 (2013)

![](_page_5_Figure_8.jpeg)

### **Electron momentum calibration**

Final step is the measurement of the Z boson mass

 $M_Z = 91\ 194.3 \pm 13.8_{stat} \pm 7.6_{sys}$  MeV

As a consistency check measure mass using only track information

e.g.  $M_Z = 91\ 215.2 \pm 22.4$  MeV for non-radiative electrons (E/p<1.1) Same blinding used as for muon channel

![](_page_6_Figure_5.jpeg)

![](_page_7_Figure_0.jpeg)

 $u_{\parallel}$ 

 $\vec{u}_T$ 

 $\vec{p}_T^l$ 

 $\vec{p}_T^{\nu}$ 

Triggers with low momentum thresholds (18 GeV) and very loose lepton id

Offline id also loose, efficiencies vary by 2% as hadronic recoil direction changes

No lepton isolation requirement in trigger or offline selection

![](_page_7_Figure_4.jpeg)

![](_page_8_Figure_0.jpeg)

Largest background is  $Z \rightarrow \mu\mu$  with one unreconstructed muon: 7.4% of data sample  $W \rightarrow \tau\nu$  background is ~1% in each channel: largest background in electron sample

Background from hadrons misreconstructed as leptons estimated using data: 0.2-0.3%

![](_page_8_Figure_3.jpeg)

# W boson production

#### Boson $p_T$ impacts the $p_T$ distributions of the decay leptons

Resbos used to generate events with non-perturbative parameters and NNLL resummation to model the region of low boson  $p_T$ 

Z boson p<sub>T</sub> used to constrain the non-perturbative parameter g<sub>2</sub> and the perturbative coupling  $\alpha_s$ 

#### Resbos models W boson $p_T$ well

uncertainty estimated using DYQT and constrained with data

![](_page_9_Figure_6.jpeg)

### **Recoil calibration**

#### First step is the alignment of the calorimeters

Misalignments relative to the beam axis cause a modulation in the recoil direction Alignment performed separately for each run period using min bias data

#### Second step is the reconstruction of the recoil

Remove towers traversed by identified leptons Remove corresponding recoil energy in simulation using towers rotated by 90° validate using towers rotated by 180°

![](_page_10_Figure_5.jpeg)

![](_page_10_Figure_6.jpeg)

### **Recoil calibration**

![](_page_11_Figure_1.jpeg)

### **Recoil validation**

#### W boson recoil distributions validate the model

Most important is the recoil projected along the charged-lepton's momentum  $(u_{||})$ 

$$m_T \approx 2p_T \sqrt{1 + u_{||}/p_T} \approx 2p_T + u_{||}$$

![](_page_12_Figure_4.jpeg)

![](_page_13_Figure_0.jpeg)

### W boson mass measurement

| Combination                | $m_T$ fit    |              | $p_T^\ell$ fit |              | $p_T^{ u}$ fit |              | Value (MeV)          | $\chi^2/dof$ | Probability |
|----------------------------|--------------|--------------|----------------|--------------|----------------|--------------|----------------------|--------------|-------------|
|                            | Electrons    | Muons        | Electrons      | Muons        | Electrons      | Muons        |                      |              | (%)         |
| $\overline{m_T}$           | $\checkmark$ | $\checkmark$ |                |              |                |              | $80\ 439.0\pm9.8$    | 1.2 / 1      | 28          |
| $p_T^\ell$                 |              |              | $\checkmark$   | $\checkmark$ |                |              | $80\ 421.2 \pm 11.9$ | 0.9 / 1      | 36          |
| $p_T^{ u}$                 |              |              |                |              | $\checkmark$   | $\checkmark$ | $80\ 427.7 \pm 13.8$ | 0.0 / 1      | 91          |
| $m_T \ \& \ p_T^\ell$      | $\checkmark$ | $\checkmark$ | $\checkmark$   | $\checkmark$ |                |              | $80435.4\pm9.5$      | 4.8 / 3      | 19          |
| $m_T \ \& \ p_T^{\nu}$     | $\checkmark$ | $\checkmark$ |                |              | $\checkmark$   | $\checkmark$ | $80437.9\pm9.7$      | 2.2 / 3      | 53          |
| $p_T^\ell \ \& \ p_T^{ u}$ |              |              | $\checkmark$   | $\checkmark$ | $\checkmark$   | $\checkmark$ | $80\ 424.1 \pm 10.1$ | 1.1 / 3      | 78          |
| Electrons                  | $\checkmark$ |              | $\checkmark$   |              | $\checkmark$   |              | $80\ 424.6 \pm 13.2$ | 3.3 / 2      | 19          |
| Muons                      |              | $\checkmark$ |                | $\checkmark$ |                | $\checkmark$ | $80\ 437.9 \pm 11.0$ | 3.6 / 2      | 17          |
| All                        | $\checkmark$ | $\checkmark$ | $\checkmark$   | $\checkmark$ | $\checkmark$   | $\checkmark$ | $80\ 433.5 \pm 9.4$  | 7.4 / 5      | 20          |

| Fit difference                                        | Muon channel                              | Electron channel                                                                                |
|-------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------|
| $M_W(\ell^+) - M_W(\ell^-)$                           | $-7.8\pm18.5_{\rm stat}\pm12.7_{\rm COT}$ | $14.7 \pm 21.3_{\text{stat}} \pm 7.7_{\text{stat}}^{\text{E/p}} (0.4 \pm 21.3_{\text{stat}})$   |
| $M_W(\phi_\ell > 0) - M_W(\phi_\ell < 0)$             | $24.4\pm18.5_{\rm stat}$                  | $9.9 \pm 21.3_{ m stat} \pm 7.5_{ m stat}^{ m E/p} \ (-0.8 \pm 21.3_{ m stat})$                 |
| $M_Z(\text{run} > 271100) - M_Z(\text{run} < 271100)$ | $5.2 \pm 12.2_{\mathrm{stat}}$            | $63.2 \pm 29.9_{\text{stat}} \pm 8.2_{\text{stat}}^{\text{E/p}} (-16.0 \pm 29.9_{\text{stat}})$ |

# Summary

Measurement of W boson mass with <10 MeV precision achieved with complete CDF data set

Result of >20 years of experience with the CDF II detector

Achieved precision required flexibility: all experimental aspects controlled by the analysis team *Reconstruction, alignment, calibration, simulation, analysis* 

Analysis procedures approved pre-blinding and frozen

Surprising result motivates expanded study of m<sub>W</sub> measurements and procedures

### Backup

![](_page_16_Picture_1.jpeg)

### CDF Components

![](_page_16_Figure_3.jpeg)

![](_page_16_Picture_4.jpeg)

$$\xi = m(\phi) \left[ 0.29(1 - |Z|) + (1 - Z^2) \right]$$

 $m(\phi) = a\cos\phi_{\rm wp} + o$ 

![](_page_17_Figure_0.jpeg)

| Source of systematic       | $m_T$ fit |       |        | $p_T^\ell$ fit |       |        | $p_T^{ u}$ fit |       |        |
|----------------------------|-----------|-------|--------|----------------|-------|--------|----------------|-------|--------|
| uncertainty                | Electrons | Muons | Common | Electrons      | Muons | Common | Electrons      | Muons | Common |
| Lepton energy scale        | 5.8       | 2.1   | 1.8    | 5.8            | 2.1   | 1.8    | 5.8            | 2.1   | 1.8    |
| Lepton energy resolution   | 0.9       | 0.3   | -0.3   | 0.9            | 0.3   | -0.3   | 0.9            | 0.3   | -0.3   |
| Recoil energy scale        | 1.8       | 1.8   | 1.8    | 3.5            | 3.5   | 3.5    | 0.7            | 0.7   | 0.7    |
| Recoil energy resolution   | 1.8       | 1.8   | 1.8    | 3.6            | 3.6   | 3.6    | 5.2            | 5.2   | 5.2    |
| Lepton $u_{  }$ efficiency | 0.5       | 0.5   | 0      | 1.3            | 1.0   | 0      | 2.6            | 2.1   | 0      |
| Lepton removal             | 1.0       | 1.7   | 0      | 0              | 0     | 0      | 2.0            | 3.4   | 0      |
| Backgrounds                | 2.6       | 3.9   | 0      | 6.6            | 6.4   | 0      | 6.4            | 6.8   | 0      |
| $p_T^Z$ model              | 0.7       | 0.7   | 0.7    | 2.3            | 2.3   | 2.3    | 0.9            | 0.9   | 0.9    |
| $p_T^W/p_T^Z$ model        | 0.8       | 0.8   | 0.8    | 2.3            | 2.3   | 2.3    | 0.9            | 0.9   | 0.9    |
| Parton distributions       | 3.9       | 3.9   | 3.9    | 3.9            | 3.9   | 3.9    | 3.9            | 3.9   | 3.9    |
| QED radiation              | 2.7       | 2.7   | 2.7    | 2.7            | 2.7   | 2.7    | 2.7            | 2.7   | 2.7    |
| Statistical                | 10.3      | 9.2   | 0      | 10.7           | 9.6   | 0      | 14.5           | 13.1  | 0      |
| Total                      | 13.5      | 11.8  | 5.8    | 16.0           | 14.1  | 7.9    | 18.8           | 17.1  | 7.4    |

### Initial state LO & NLO

| W <sup>+</sup> initial | Туре | Pythia LO | Madgraph LO | Madgraph NLO |
|------------------------|------|-----------|-------------|--------------|
| u dbar                 | V-V  | 81.7%     | 82.0%       | 82.7%        |
| dbar u                 | S-S  | 8.9%      | 9.0%        | 8.8%         |
| u sbar                 | V-S  | 1.6%      | 1.9%        | 1.8%         |
| sbar u                 | S-S  | 0.3%      | 0.3%        | 0.3%         |
| c sbar                 | S-S  | 2.9%      | 2.9%        | -            |
| sbar c                 | S-S  | 2.9%      | 2.9%        | -            |
| c dbar                 | S-V  | 0.7%      | 0.7%        | -            |
| dbar c                 | S-S  | 0.2%      | 0.2%        | -            |
| u g                    | v-g  |           | -           | 3.7%         |
| g dbar                 | g-v  |           | -           | 1.8%         |
| g u                    | g-s  |           | -           | 0.4%         |
| dbar g                 | s-g  |           | -           | 0.5%         |
| g sbar                 | g-s  |           | -           | 0.02%        |
| sbar g                 | s-g  |           | -           | 0.02%        |