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control, reconstruction, simulation, …

Machine Learning 

beyond classification
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AI in HEP

4

LHC Computing Grid  
200k cores pledge to 
CMS over ~100 sites

CMS Detector

1PB/s

CMS L1 & High-
Level Triggers


50k cores, 1kHz

Large Hadron Collider

40 MHz of collision

CERN Tier-0 
 Computing Center


20k cores

CERN Tier-0/Tier-1 
 Tape Storage

200PB total

LHC  Grid  
Remote Access  
to 100PB of data

Rare Signal 
Measurement

~1 out of 106 


AI

AI

AI

AI

AI

AI

Role of AI: accelerator control, data acquisition, 
event triggering, anomaly detection, new physics 
scouting, event reconstruction, event generation, 
detector simulation, LHC grid control, analytics, signal 
extraction, likelihood free inference, background 
rejection, new physics searches, ...

AI AI

Up to date listing of references:

https://github.com/iml-wg/HEPML-LivingReview 

https://github.com/iml-wg/HEPML-LivingReview
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Producing the Data

5

Opportunities in Machine Learning for Particle Accelerators [1811.03172] 

Machine learning for design optimization of storage ring nonlinear dynamics [1910.14220] 

Advanced Control Methods for Particle Accelerators (ACM4PA) 2019 Workshop Report [2001.05461] 

Machine learning for beam dynamics studies at the CERN Large Hadron Collider [2009.08109] 

…

A. Scheinker, C. Emma, A.L. Edelen, S. Gessner  
[2001.05461] 

• Machine learning can be used 
to tune devices, control 
beams, perform analysis on 
accelerator parameters, etc.


• Already successfully deployed 
on accelerator facilities.


• More promising R&D to 
increase beam time.


• Potential for detector control ?

More of the relevant works at:

https://iml-wg.github.io/HEPML-LivingReview/ 

https://arxiv.org/abs/1811.03172
https://arxiv.org/abs/1910.14220
https://arxiv.org/abs/2001.05461
https://arxiv.org/abs/2009.08109
https://arxiv.org/abs/2001.05461
https://iml-wg.github.io/HEPML-LivingReview/
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Compressing Data

6

Deep Auto-Encoders for compression in HEP

http://lup.lub.lu.se/student-papers/record/9004751 

• Rich literature on data 
compression of image with 
neural network.


• Make use of abstract semantic 
space for image compression.


• Image compression can suffer 
some loss of resolution.


• Saving on disk/tape cost. 
Potential in scouting strategies.


• R&D needed to reach the 
necessary level of fidelity.

More of the relevant works at:

https://iml-wg.github.io/HEPML-LivingReview/ 

http://lup.lub.lu.se/student-papers/record/9004751
https://iml-wg.github.io/HEPML-LivingReview/
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Cleaning Data

7

Towards automation of data quality system for CERN CMS experiment [doi:10.1088/1742-6596/898/9/092041] 

LHCb data quality monitoring [doi:10.1088/1742-6596/898/9/092027] 

Detector monitoring with artificial neural networks at the CMS experiment at the CERN Large Hadron Collider [1808.00911] 

Anomaly detection using Deep Autoencoders for the assessment of the quality of the data acquired by the CMS experiment [doi:10.1051/
epjconf/201921406008] 

…

• Data quality is a person power 
intensive task, and crucial for 
swift delivery of Physics


• Machine learning can help 
with automation.


• Learning from operators, 
reducing workload.


• Continued R&D and 
experiment adoption.

A.A. Pol, G. Cerminara, C. Germain, M. Pierini, A. Seth

[doi:10.1007/s41781-018-0020-1] 

More of the relevant works at:

https://iml-wg.github.io/HEPML-LivingReview/ 

https://doi.org/10.1088/1742-6596/898/9/092041
http://dx.doi.org/10.1088/1742-6596/898/9/092027
https://arxiv.org/abs/1808.00911
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1007/s41781-018-0020-1
https://iml-wg.github.io/HEPML-LivingReview/
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Managing Data

8

• The LHC-grid is key to 
success of the LHC 
experiments.


• Complex ecosystem with 
dedicated operation teams.


• Person power demanding, 
and inefficient in some corner 
of the phase space.


• Potential for AI-aided 
operation.


• Lots of modeling and control 
challenges.


• R&D to increase operation 
efficiency.

Operational Intelligence

[cds:2709338] 

Caching suggestions using Reinforcement Learning

LOD 2020, in proceedings

More of the relevant works at:

https://iml-wg.github.io/HEPML-LivingReview/ 

http://cds.cern.ch/record/2709338/
https://lod2020.icas.xyz/program/
https://iml-wg.github.io/HEPML-LivingReview/
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Detecting New Data

9

• Machine learning since long 
deployed in the trigger for 
selected signatures.


• Further potential for 
background trigger rate 
reduction.


• Emerging opportunity for 
triggering on unknown 
signatures : “a la Hotline”.


• More promising R&D and 
experiment adoption.Use of variational auto-encoders directly on data to marginalize 

outlier events, for anomalous event hotline operation.

[doi:0.1007/JHEP05(2019)036] 

More of the relevant works at:

https://iml-wg.github.io/HEPML-LivingReview/ 

https://doi.org/10.1007/JHEP05(2019)036
https://iml-wg.github.io/HEPML-LivingReview/
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Data Triggering and Scouting

10

Phase-2 upgrade of the CMS L1-Trigger 

[cds:2714892]

Vertex reconstruction at L1

Anomaly detection at L1

• Trigger benefit from fast 
reconstruction algorithms


• L1 needs FPGA implementation. 
hls4ml-enabled algorithms.


• Quality of selection increases 
with refinement of object 
reconstruction


• Having the best reconstruction 
is particularly important in 
scouting


• Balance between speed and 
accuracy

https://cds.cern.ch/record/2714892
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Reconstructing Data

11

• Event reconstruction is pattern 
recognition to a large extend. 
Advanced machine learning 
techniques can help.


• Learn from the simulation, and/
or data.


• Learn from existing “slow 
reconstruction” or simulation 
ground truth.


• Automatically adapt algorithm to 
new detector design.


• Image base methods evolving 
towards graph-based methods.


• Accelerating R&D to exploit full 
potential.More of the relevant works at:


https://iml-wg.github.io/HEPML-LivingReview/ 

Learning graphs from sets, applied to vertexing

[2002.08772] 

GNN applied to charged particle tracking

[2007.00149] 

https://iml-wg.github.io/HEPML-LivingReview/
https://arxiv.org/abs/2002.08772
https://arxiv.org/abs/2007.00149
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Simulating Data

12

• Fully detailed simulation is 
computing intensive.


• Fast and approximate 
simulators already in operation.


• Applicable at many levels : 
sampling, generator, detector 
model, analysis variable, etc


• Generative models can provide 
multiple 1000x speed-up.


• Careful study of statistical power 
of learned models over training 
samples.


• Many R&D, experiment adoption 
starting.

More of the relevant works at:

https://iml-wg.github.io/HEPML-LivingReview/ 

Generative Adversarial Networks for LHCb Fast Simulation [2003.09762]

https://iml-wg.github.io/HEPML-LivingReview/
https://arxiv.org/abs/2003.09762
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Calibrating Data

13

• Energy regression is the most 
obvious use case.


• Learning calibrating models 
from simulation and data.


• Parametrization of scale 
factors using neural networks.


• Reducing data/simulation 
dependency using domain 
adaptation.


• Continued R&D

A deep neural network for simultaneous estimation of b jet 
energy and resolution [1912.06046] More of the relevant works at:


https://iml-wg.github.io/HEPML-LivingReview/ 

https://arxiv.org/abs/1912.06046
https://iml-wg.github.io/HEPML-LivingReview/
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Analyzing Data

14

• Machine learning has long 
infiltrated analysis for signal/bkg 
classification.


• Increasing number of analysis 
with more complex DNN.


• Application to signal 
categorization, bkg modeling, 
kinematics reconstruction, decay 
product assignment, object 
identification, …


• Breadth of new model agnostic 
methods for NP searches.


• Continued R&D and experiment 
adoption initiated.

Use of masked autoregressive density estimator with normalizing 
flow as model-agnostic signal enhancement mechanism.


[doi:10.1103/PhysRevD.101.075042] 

More of the relevant works at:

https://iml-wg.github.io/HEPML-LivingReview/ 

https://doi.org/10.1103/PhysRevD.101.075042
https://iml-wg.github.io/HEPML-LivingReview/
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Theory Behind the Data

15

• Hypothesis testing is the core 
of HEP analysis.


• Intractable likelihood hinders 
solving the inverse problem.


• Going beyond the standard 
approach using machine 
learning and additional 
information from the simulator.


• More precise evaluation of the 
priors on theory's parameters.


• May involve probabilistic 
programming instrumentation 
of HEP simulator.


• R&D to bring this in the 
experiment.

The frontiers of simulation-based inference

[1911.01429] 

https://github.com/probprog/pyprob

Constraining EFT with ML

[1805.00013] 

More of the relevant works at:

https://iml-wg.github.io/HEPML-LivingReview/ 

https://arxiv.org/abs/1911.01429
https://github.com/probprog/pyprob
https://arxiv.org/abs/1805.00013
https://iml-wg.github.io/HEPML-LivingReview/
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Graph Neural Network …

Geometric Deep Learning
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Hits in calorimeter detector

Hits in tracking detector Objects in an event

Object sub-structure in an event

Graph Representation

17

Heterogenous data fits well in graph/set representation. 

Graph Neural Networks for Particle Physics reconstruction 

[2007.13681], [2012.01249] 

Multiple CMS ML Forum presentations on GNN applications [Sept 30, 2020] , [Oct 20, 
2021],  [Nov 3, 2021] and reconstruction with ML  [Feb 21, 2021], [Mar 10, 2021].

https://arxiv.org/abs/2007.13681
https://arxiv.org/abs/2012.01249
https://indico.cern.ch/event/952419/
https://indico.cern.ch/event/1051967/
https://indico.cern.ch/event/1051967/
https://indico.cern.ch/event/1051967/
https://indico.cern.ch/event/1051967/
https://indico.cern.ch/event/1081541/
https://indico.cern.ch/event/1001993/
https://indico.cern.ch/event/1001994/
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Forewords on Graph

http://btechsmartclass.com/data_structures/graph-representations.html 

A graph is composed of  

● Nodes that can be represented as a vector.

● Edges that can be represented with the adjacency matrix. 

➔ Flowing of information using matrix operations.

➔ With machine learning on graphs, edges and nodes might 
acquire internal representations.

10/26/20 18

http://btechsmartclass.com/data_structures/graph-representations.html
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Graph Neural Networks Formalism

19

Graph attributes 

Node attributes 

Edge attributes 

Updated attributes 

Updated attributes 

Updated attributes 

https://arxiv.org/abs/1806.01261

Lots of possibilities to operate on a graph.

Most available architectures can be expressed with Φ and ρ. 

Readily software: 

https://github.com/deepmind/graph_nets


https://github.com/rusty1s/pytorch_geometric 

…

10/26/20

https://arxiv.org/abs/1806.01261
https://github.com/deepmind/graph_nets
https://github.com/rusty1s/pytorch_geometric
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Geometric Deep Learning (I)

20

HGCAL Phase-2 calorimeter reconstruction using GarNet and Object 
condensation, [2106.01832]. [1902.07987] [2002.03605] 

GNN for particle-flow reconstruction, https://indico.cern.ch/
event/1094349/#8-dp-note-ml4pf. [2101.08578] 

https://arxiv.org/abs/2106.01832
https://arxiv.org/abs/1902.07987
https://arxiv.org/abs/2002.03605
https://indico.cern.ch/event/1094349/#8-dp-note-ml4pf
https://indico.cern.ch/event/1094349/#8-dp-note-ml4pf
https://indico.cern.ch/event/1094349/#8-dp-note-ml4pf
https://indico.cern.ch/event/1094349/#8-dp-note-ml4pf
https://arxiv.org/abs/2101.08578
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Geometric Deep Learning (II)

21

Charged particle track reconstruction with GNN, 
[2103.06995], [2103.16701] 

Jet tagging in the Lund plane, [2012.08526] 

https://arxiv.org/abs/2103.06995
https://arxiv.org/abs/2103.16701
https://arxiv.org/abs/2012.08526
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Geometric Deep Learning (III)

22

Pileup mitigation using graph neural network and transformers

ECAL superclustering with machine learning 
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Geometric Deep Learning (IV)

23

Jet mass regression using ParticleNet model, [2777006] 

E/G energy regression using dynamic reduction network, [2003.08013]  

https://cds.cern.ch/record/2777006
https://arxiv.org/abs/2003.08013
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Geometric Deep Learning (V)

24

Jet particle-based simulation with message passing GNN generative 
adversarial network, [2012.00173] 

Anomalous jet detection using graph convolution network 
variational auto-encoder with normalizing flow in the latent 

space, [2110.08508] 

https://arxiv.org/abs/2012.00173
https://arxiv.org/abs/2110.08508


AI4JME, CMS JME Workshop, J-R Vlimant

a selected pick of recent results …

ML in CMS
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di-photon Mass Regression

26

Learn the a/di-photon mass from the 
energy deposition at the Ecal surface.


Unprecedented reach at low mass.

CMS Paper EGM-20-001 to 
appear soon 

RESNET for mass regression

+ 


domain continuation a low mass
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Ecal Regression

27

[cds:2803235] 

• Graph-based model with self-attention trained to :

✓seed-cluster classification

✓super-cluster classification

✓super-cluster energy regression


• Promising work in progress for calorimeter reconstruction

https://cds.cern.ch/record/2803235
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Super-resolution Simulation

28

[cds:2802586] 

• Run GEANT4 with loose parameters as low-quality input

• Learn the full precision high-quality output with CNN

• Model able to “denoise” and approach full precision

https://cds.cern.ch/record/2802586
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Hadronic Tau Identification

29

• Combines jet features and particle-image features

• CNN model to classify hadronic tau

• Much reduced fake rate

• More hadronic taus in analysis

[cds:2800114] 

https://cds.cern.ch/record/2800114
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Vector-Like Lepton Pair Search

30

• At least 3b jets and two third generation leptons in final state

• DeepTau [cds:2800114] method used for tau identification.

• Attention-based graph model [2001.05311] working on final state objects acts as 

classifier used for signal categorization.

• State of the art deep-learning in state of the art NP search

[cds:2803736] 

https://cds.cern.ch/record/2800114
https://arxiv.org/abs/2001.05311
https://cds.cern.ch/record/2803736


AI4JME, CMS JME Workshop, J-R Vlimant

Particle-Flow Reconstruction

31

[cds:2802826] 

● Set of tracks & clusters in input to graph-based model

● Classify sub-set of graph nodes as particle candidates

● Regress parton kinematics from candidate

● Model almost matching classical algorithm

● Execution time quasi-linear with pile-up

https://cds.cern.ch/record/2802826
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Particle Reconstruction at HL-LHC

32

[cds:2803236] 

• High-Granularity Calorimeter (HGCAL) provides fine-grained 
description of energy deposition


• Graph-based models [2106.01832] using object condensation loss 
[2002.03605] trained to perform cell-to-particle association


• Stepping stone towards ML-based particle reconstruction in HGCAL

https://cds.cern.ch/record/2803236
https://arxiv.org/abs/2106.01832
https://arxiv.org/abs/2002.03605
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Vertexing at L1 at HL-LHC

33

[cds:2801638] 

• Tracks reconstructed at L1 used in input

• Model regress position of primary vertex and 

track-PV assignment

• Quantized/pruned model can efficiently 

deploy on FPGA

https://cds.cern.ch/record/2801638
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a few words of wisdom …

Prospects for Deep Learning
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Interpretability

35

Interplay between deep learning and science is key.

Use Physics knowledge to produce better models.


Use models to learn Physics knowledge.
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Propagation and estimation of uncertainties are keys.

Uncertainty-aware models.


Uncertainty-predicting models.

Uncertainty-improving models.

Uncertainty Quantification

36
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Computational cost of Science is key.

Adapt to heterogenous computing environment.


Hardware-aware model optimization.

Computation Aspect

37
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Publication Plans

38

Publishing in peer-reviewed journal is key.

Importance of open-data samples.


Flexibility in experiments to publish work in progress.
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Summary

39

➡Modern machine learning a.k.a Deep Learning 
goes much beyond classification.


➡GDL is most promising for many applications.


➡Novel Deep Learning are being adopted in CMS. 
Many more upcoming results.


➡The future of AI4HEP is interpretable, quantifiable, 
runnable and publishable …
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A Definition

41

“Giving computers the ability to learn without explicitly programming 
them” A. Samuel (1959). 


Is fitting a straight line machine learning ? 
Models that have enough capacity to define its own internal 
representation of the data to accomplish a task : learning from data. 


In practice : a statistical method that can extract information from the 
data, not obviously apparent to an observer. 


➔ Most approach will involve a mathematical model and a cost/
reward function that needs to be optimized. 


➔ The more domain knowledge is incorporated, the better. 
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Supervised Learning

42

● Given a dataset of samples, a subset of features is qualified as 
target, and the rest as input


● Find a mapping from input to target

● The mapping should generalize to any extension of the given 

dataset, provided it is generated from the same mechanism 
 
 
 
 
 

● Finite set of target values : 

➔ Classification


● Target is a continuous variable : 

➔ Regression

dataset≡ {( xi , yi)}i
find function f s.t. f (xi)= yi
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Unsupervised Learning

43

● Given a dataset of samples, but there is no subset of feature 
that one would like to predict


● Find mapping of the samples to a lower dimension manifold

● The mapping should generalize to any extension of the given 

dataset, provided it is generated from the same mechanism 
 
 
 
 

● Manifold is a finite set 

➔ Clusterization


● Manifold is a lower dimension manifold : 

➔ Dimensionality reduction,  

density estimator

dataset≡ {(xi)}i
find f s.t. f (xi)= pi
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Reinforcement Learning

44

● Given an environment with multiple states, given a 
reward upon action being taken over a state


● Find an action policy to drive the environment toward 
maximum cumulative reward 
 
 
 
 
 

st+ 1= Env(st , at)
rt= Rew (st , at)

π (a∣ s)= P (At= a∣S t= s)
find π s.t.∑

t
r t is maximum
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Artificial Neural Network

45

● Biology inspired analytical model, but not bio-mimetic

● Booming in recent decade thanks to large dataset, increased computational 

power and theoretical novelties

● Origin tied to logistic regression with change of data representation

● Part of any “deep learning” model nowadays

● Usually large number of parameters trained with stochastic gradient descent

h= ϕ(Ux+ v)
o(x)= ωT h+ b

pi≡ p( y= 1∣ x)≡ σ (o(x))=
1

1+ e− o( x)

lossXE= −∑
i
yi ln ( pi)+ (1− yi) ln (1− pi)
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Neural Net Architectures

46

http://www.asimovinstitute.org/neural-network-zoo

➢ Does not cover it all : densenet, graph network, ...

http://www.asimovinstitute.org/neural-network-zoo
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Machine Learning in Industry

47

https://www.nvidia.com/en-us/deep-learning-ai/ 

http://www.shivonzilis.com/machineintelligence 

Prominent skill in industry nowadays.

Lots of data, lots of applications, lots 
of potential use cases, lots of money.

Knowing machine learning can open 

significantly career horizons.

https://www.nvidia.com/en-us/deep-learning-ai/
http://www.shivonzilis.com/machineintelligence
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Learning to Control

48

Mastering the game of Go with deep neural networks and tree search,

https://doi.org/10.1038/nature16961

Learning to Walk via Deep Reinforcement Learning

https://arxiv.org/abs/1812.11103

Modern machine learning boosts control technologies.

AI, gaming, robotic, self-driving vehicle, etc.

https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1812.11103


AI4JME, CMS JME Workshop, J-R Vlimant

Learning from Complexity

49

Machine learning model can extract information from complex dataset.

More classical algorithm counter part may 

 take years of development. 



AI4JME, CMS JME Workshop, J-R Vlimant

The Black-box Dilemma

50

Deep learning may yield great improvements.

Having the “best classification performance” is not always sufficient.


Forming an understand of the processes at play is often crucial.

Deep Learning

P. Perona DSHEP2017 

https://indico.fnal.gov/event/13497/contributions/19852/
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Physics Knowledge 

51

Machine Learning can help understand Physics.

P. Komiske, E. Metodiev, J. Thaler, [1810.05165] 

https://arxiv.org/abs/1810.05165
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Learning Observables

52

[2010.11998] [2011.01984] 

Search in the space of functions using decision ordering.

Simplified to the energy flow polynomial subspace.

Extract set of EFP that matches DNN performance.

Electron classification performance

https://arxiv.org/abs/2010.11998
https://arxiv.org/abs/2011.01984
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Use Physics

53

Let the model include Physics principles to master convergence

A. Sanchez-Gonzalez, V. Bapst, K. Cranmer, P. Battaglia [1909.12790] 

https://arxiv.org/abs/1909.12790
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Inductive Bias

54

Embed the symmetry and invariance in the model.

Economy of model parameters.

Deep set

[1810.05165] 

Lorentz Learning Layer

[1707.08966] 

Lorentz group quivariant networks

[2006.04780] 

https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/1707.08966
https://arxiv.org/abs/2006.04780
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Jet Tagging

55

[2012.08526] 

Graph-based models have recently achieved state-of-the-art jet tagging performance on 
benchmarks, and in analysis. Still a very rich field, in particular in developing inductive bias 
in the model (symmetry, invariance, … ). Kinematic regression, substructure assignment, …  

also possible thanks to model flexibility.

https://arxiv.org/abs/2012.08526
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Operation Vectorization

56

ANN ≡ matrix operations  ≡ parallelizable

Computation of prediction from artificial neural network model 
can be vectorized to a large extend.
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Hyper-Fast Prediction

57

Synthesizing FPGA firmware from trained ANN

https://fastmachinelearning.org/hls4ml/


J. Duarte et al.[1804.06913] 

Artificial neural network model can be 
executed efficiently on FPGA, GPU, TPU, ...

https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/1804.06913
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Inference Engines

58

Growing list of deep learning accelerators.

Location of the device is driven by the environment (Trigger, Grid, HPC, … ).

“On-Board accelerator”

“Remote accelerator”

[1811.04492], [2007.10359], 

[2007.14781] 

https://arxiv.org/abs/1811.04492
https://arxiv.org/abs/2007.10359
https://arxiv.org/abs/2007.14781


AI4JME, CMS JME Workshop, J-R Vlimant

Model Compression

59

Model inference can be accelerated by reducing 
the number and size of operations.

Automatic deep heterogeneous quantization of Deep 
Neural Networks for ultra low-area, low-latency inference 

on the edge at particle colliders [2006.10159] 

Fast inference of deep neural networks in FPGAs 
for particle physics [1804.06913] 

https://arxiv.org/abs/2006.10159
https://arxiv.org/abs/1804.06913
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The Standard Model

60

Well demonstrated effective model.

Good amount of detailed, “labelled” simulation available.
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The Sea Beyond Standard Model

61

Slide: A. Wulzner [H&N] 

http://www.weizmann.ac.il/conferences/SRitp/Aug2019/
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Event Triggering

62

Select what is important to keep for analysis.

Ultra fast decision in hardware and software.

Reconstruction of the event under limited latency / bandwidth.

Better resolution help lowering background trigger rates, 

Faster algorithms helps making more refined decisions.
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Reconstructing Collisions

63

From detector signal to high-level features using mostly pattern recognition.

Complex and computing intensive series of tasks.

Detector 
DataDetector 
Data

Local 
reconstruction

Jet ClusteringParticle 
representation

High level 
features

Event Processing

Dimensionality reduction

Globalization of information
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Simulating Collisions

64

Event Generator: compute predictions of the standard models to 
several orders of expansion in coupling constants (LO, NLO, 
NNLO, ...) using proton density functions.

Hadronization: phenomenological model of the evolution of 
hadrons under the effect of QCD.

Material simulator: transports all particles throughout meters of 
detector, using high resolution geometrical description of the 
materials.

Electronic emulator: converts simulated energy deposits in 
sensitive material, into the expected electronic signal, including 
noise from the detector.

Madgraph, 
Pythia, 
Sherpa, ...

Pythia, ...

GEANT 4,

GEANT V

Homegrown 
software

Non-differentiable, computing intensive sequence of complex simulators 
of the signal expected from the detectors. 
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Reconstruction ◦ Simulation ∼ Identity

65

Simulation aims at predicting the outcome of collisions.

Reconstruction aims at inverting it.


Multiple ways to connect intermediate steps with deep learning.
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The Computing Cost of Science

66

Ever growing needs for computing resource.

Slowdown of classical architecture, over growth of GPU architecture.

https://indico.cern.ch/event/822126/contributions/3500169/ 

https://indico.cern.ch/event/822126/contributions/3500169/
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Possible Utilizations

67

Accuracy Speed

Interpretable

➔ Fast surrogate models (trigger, simulation, etc) ; even better if more accurate. 

➔ More accurate than existing algorithms (tagging, regression, etc) ; even better if faster.

➔ Model performing otherwise impossible tasks (operations, etc)


