

Klystron developments for CLIC. X-band and L-band prospects I. Syratchev, CERN.

I. Syratchev, CLIC PM #41, 13.12.2021

X-band HE klystrons 8MW - 60MW

I. Syratchev, CLIC PM #41, 13.12.2021

Retro-fit High Efficiency 8 MW, 12 GHz klystron (CERN/Canon).

- Re-used solenoid.
- Re-used cathode
- Increased power gain (10 dB)

Prototype is in fabrication at Canon To be shipped to CERN in 03.2022.

Retrofit design

8-10 MW	E37113 at factory	HEX COM_M (CERN/Canon)
Voltage, kV	154	154
Current, A	93	94
Frequency, GHz	11.994	11.994
Peak power, MW	6.2	8.16
Sat. gain, dB	49	58
Efficiency, %	42	57/ FCI
Life time, hours	30 000	30 000
Solenoidal magnetic field, T	0.35	0.4
RF circuit length, m	0.127	0.127

20-MW X-band Klystron (Recent on the market)

Klystron: E37116 Perveance : 1.25

Electromagnet: VT-68970

	Parameter	Sim. Target	Design result
/	Beam voltage[kV]	265 (<290)	265
	Beam current [A]	170.3 (<195)	170.3
	Output power [MW]	>23	24.3
	Efficiency [%]	>51	53.8
/	Drive power [W]	~120 (<400)	120
ĥ	Max. electric field strength [kV/mm]	<64.5 (at 1.5 μs)	60.4
/	Stability	No reflected electrons	ОК

* Actual efficiency is estimated to be 46 - 48%.

CANON ELECTRON TUBES & DEVICES CO., LTD.

Two tubes have been built and tested up to 20MW

20 MWX-band HE klystron design by CEA

https://edms.cern.ch/ui/file/1817230/1.0/ARIES-Del-D4.2-Final.pdf

Retro-fit High Efficiency 50 MW, 12 GHz klystron (CERN/CPI).

Saturated efficiency & RF power

- Re-used solenoid.
- Increased life time (> factor 2)
- Reduced modulator power (~ factor 2)
- Increased power gain (10 dB)
- Reduced solenoidal field

Prototype fabrication is under negotiation within CPI/INFN/CERN collaboration.

		VKX-8311A	HEX COM_M (CERN/срі)
	Voltage, kV	420	420
M.M N.4 KANPERN	Current, A	322	204
	Frequency, GHz	11.994	11.994
	Peak power, MW	49	59
	Sat. gain, dB	48	59
	Efficiency, %	36.2	69
	Life time, hours	30 000	85 000
X	Solenoidal magnetic field, T	0.6	0.37
VKX-8311A	RF circuit length, m	0.316	0.316

50 MW HE tube prototypes in BVERI (China). For i Recent communication. Beijing Vacuum Electronics Research Institute

For information

Specification	Tube 1801 #	Tube 1802 #	Tube 1803 #
11.424GHz	11.424GHz	11.424GHz	11.424GHz
$\geq 50 \mathrm{MW}$	51MW	50.4MW	50.8MW
120pps	50pps	50pps	50pps
≥1.5µs	1.5µs	1.5µs	1.5µs
\geq 50dB	52.6dB	50.9dB	51.3dB
≥40%	55.6%	59.9%	56.3%
≥30MHz	38MHz	36MHz	33MHz
$450 \mathrm{KV}{\sim} 470 \mathrm{KV}$	452kV	450kV	450kV
≤250A	203A	187A	200.5A
	Specification 11.424GHz ≥50MW 120pps ≥1.5µs ≥50dB ≥40% ≥30MHz 450 KV~470KV ≤250A	Specification Tube 1801# 11.424GHz 11.424GHz ≥50MW 51MW 120pps 50pps ≥1.5µs 1.5µs ≥50dB 52.6dB ≥40% 55.6% ≥30MHz 38MHz 450 KV~470KV 452kV ≤250A 203A	Specification Tube 1801# Tube 1802# 11.424GHz 11.424GHz 11.424GHz ≥50MW 51MW 50.4MW 120pps 50pps 50pps ≥1.5µs 1.5µs 1.5µs ≥50dB 52.6dB 50.9dB ≥40% 55.6% 59.9% ≥30MHz 38MHz 36MHz 450 KV~470KV 452kV 450kV ≤250A 203A 187A

(BVERI)

- The prototyping is far from the final version. Large beam interception (partly explain efficiency spread) is not mitigated.
- In the test of 1802, the operating frequency (max efficiency) was reduced by 10MHz in 200 hours of operation at 50Hz (the cavities were chewed by the electron beam).
- BVERI is now planning to reduce operating voltage down to 400kV (higher perveance), simplify the RF circuit and increase magnetic field. All together (Igor's projection) the efficiency will be reduced down to about 50(+)%.

UHF/L-band HE klystrons 0.3MW - 24MW

Two-Stage Multi Beam Klystron (TS MBK) technology.

Specific features

- Bunching at a low voltage (high perveance). Very compact RF bunching circuit.
- 2. Bunched beam acceleration and cooling (reducing $\Delta p/p$) along the short DC voltage post-accelerating gap.
- 3. Final power extraction from high voltage (low perveance) beam. **High efficiency.**

Additional advantages:

- 1. The second HV stage can be operated in DC mode. Thus simplifying the modulator topology (cost/volume) and increasing the modulator efficiency (in pulsed mode).
- 2. Simplified feedback for the first stage pulsed voltage. Improved klystron RF phase and amplitude stability.
- 3. Gap's accelerating DC voltage is a natural barrier for reflected electrons. Improved tube stability.

Commercial HE MBK Efficiency 70%

Stage

Stage

' V₁ ,

 V_2

HV insulators

Post accelerating gap

High Efficiency 24 MW, 1 GHz, CLIC TS MBK performance summary (PIC CTS/3D)

TABLE I. DESIGN AND SIMULATED PARAMETERS $(CST/3D)$ of the transmission of transmission of transmission of the transmission of transmission of the transmission of transm	ΗE
CLIC TS MBK AND CANON MBK E3750 CATALOGUE DATA	

Parameter	TS MBK	E37503	Unit
Operating frequency	1000	1000	MHz
Voltage at the 1 st stage	25	160	kV
Voltage at the 2 nd stage	140]	
Total beam current	212	180	А
Number of beamlets	30	6	
Number of cavities	6	6	
Perveance at the 1 st stage	1.77	0.47	$\mu A/V^{3/2}$
Perveance at the 2 nd stage	0.133		
Output RF power	24.1	20	MW
Saturated power gain	52	54	dB
Saturated efficiency	82	70	%
Length of RF circuit	900	1500	mm

I. Syratchev, CLIC PM #41, 13.12.2021

High Efficiency 10 MW, 1.3 GHz, ILC TS MBK (scaled from TS CLIC MBK+2nd harmonic)

Parameter	TS	E37536	Unit
	MBK		
Operating frequency	1300	1300	MHz
Voltage at the 1 st stage	25	118.8	kV
Voltage at the 2nd stage	140		
Total beam current	88	129.5	А
Number of beamlets	16	6	
Number of cavities	7	6	
Perveance at the 1 st stage	1.68	0.53	$\mu A/V^{3/2}$
Perveance at the 2 nd stage	0.105		
Output RF power	10.5	10	MW
Saturated power gain	47.2	48.2	dB
Saturated efficiency	85	65	%
Length of RF circuit	536		mm

150

300 (mm)

2nd harmonic

0

cavity

