

Module & Main LINAC Studies

13/12/2021

Matthew Capstick Steffen Doebert, Carlo Rossi, Markus Aicheler

With thanks to: Mateusz Sosin, Hélène Durand, Kurt Artoos, Andrea Latina, Daniel Schulte

Contents

Module design	3
Alignment system	5
Recent module work	6
Prototypes	7
Universal joints	8
Testing & results	9
Future prototypes	10
Module stability	11
Stability requirements	12
Modal analysis	15
Harmonic analysis	18
Random vibration analysis	20
Future module plans	23

Module Design

A summary of the module systems, and an update on the current design and alignment systems.

Module Introduction

- The CLIC Two Beam Module (TBM)
 - Closely integrated assembly of Drive Beam and Main Beam sections
 - Along with the separate Main Beam Quadrupoles, forms the majority of the CLIC main LINAC
- Contains the positioning and alignment systems for the super accelerating structures
 - Passive prealignment
 - Active positioning
 - Stabilisation

Above: A CLIC TO Two Beam Module (TBM)

Module Alignment Introduction

- The Super Acceleration Structures (SAS) are individually prealigned relative to the girder to within 10µm in all axes
- The girder is actively aligned using the same methodology & kinematics
 - Vertically and laterally adjusted automatically using linear actuators.
 - Longitudinal axis can be active or passive as required. Currently there is no proposed feedback mechanism.
 - Girder position monitored using WPS (Wire Position Sensors)
- Two-stage adjustment:
 - Removes the need for expensive precision girders e.g. SiC, Epument
 - Removes the misalignment induced due to thermal mismatch between the SAS and the supports
- Current design uses 'universal joints' for the SAS and girder positioning systems
 - Previously considered flexures and cam movers

Top: Main beam girder alignment schematic. Bottom: profile view of a main beam girder

SAS Alignment Platform Prototypes

The manufacture and testing of SAS alignment platform prototypes. Introduction to future prototype designs.

SAS Alignment Platform Prototypes

- This year we have manufactured and tested two versions of the SAS prealignment system
 - Consists of six mechanical flexures
 - This fully constrains the structure
 - Each flexure is then moved by a wedge or differential thread which provide a mechanical reduction and allow very fine precision adjustment in that direction
 - All adjustment points are on one side of the girder and intended to be compatible with a semi automatic adjustment system
- V3 prototype = 6 flexures
- V3.5 prototype = 5 flexures and one 'universal joint'
 - Introduced to verify the universal joint and see if it impacted the operation of the system

Top: The SAS adjustment platform V3.5 during testing.

.

Universal Joints

- Flexures (top right) are designed to be ridged in one axis, but flexible in all others.
 - Achieved by two narrow sections in the profile
 - This typically sacrifices the axial stiffness for off axis flexibility
 - Bad for stability
- Universal joints (centre and bottom right) replicate the kinematics
 - Achieved by two spherical bearings in series
 - Axial stiffness is dependent on bearing diameter, but independent of off-axis flexibility
- Originally developed for HL-LHC by BE-GM.
 - Thanks to Mateusz Sosin and Hélène Durand for helping with the design and sharing their test results

Top: A steel flexure from the adjustment platform and the fully assembled test joint.

Bottom: The test joint disassembled, showing a spherical bearing.

SAS Alignment Platform Prototype Testing

• Testing procedure:

- Each axis was manually independently adjusted by a set number of revolutions, and the displacement was measured
 - Resolution
 - Adjustment rate and linearity
 - Range and backlash

• Testing results:

- Sub micron resolution in all axes
- Adjustment rate close to design
- Backlash <16µm
 - Current design does not attempt to eliminate backlash, but it can be avoided through correct operation
- There is no obvious limitation or impingement from the longitudinal joint on the other axes.
- All the test data is comparable to the V3 prototype

Above: A plot of the vertical axis #3 averaged test results

	Wedge Axes				Differential Thread Axes			
Axis	V1	V2	V3	LN	Design	L1	L2	Design
Resolution	<1	<1	<1	<1	<1	<1	<1	<1
Average Gradient	31.58	32.59	32.45	28.4	30	38.28	35.22	40
Average Backlash	12.43	15.79	12.48	7.2		2.84	0.01	
Max Non-Linearity	6.80%	6.40%	1.70%	2.80%		6.20%	15.10%	

Above: A summary table of all the axes test results

SAS Alignment Platform Future Prototype

- We are currently manufacturing a V4 adjustment platform prototype
 - Based around six universal joints
 - Based upon the results of the stability analysis and optimisation
 - 22mm diameter (commercially available) bearings
 - 260mm x 160mm landscape orientation girder
- Compatible with existing structures (round disk and manifolds), dummy structures (used in prototypes V1-3.5), and future SmartDisc structures*
- * Rectangular disc structure currently in design and development, credit Pedro Morales Sanchez

Top: The SAS adjustment platform V4

Alignment & Stability Requirements

CLIC structure static alignment and stability constraints.

Suitability of current module design.

- Structure Alignment Requirements (PIP):
 - Cavity offset relative to girder axis $= 14 \mu m$
 - Cavity tilt relative to girder axis = 141µrad
 - The prototype structure alignment systems have demonstrated the ability to meet these requirements

• Structure Jitter Requirements (CDR)

- RMS jitter tolerance which leads to a 1% luminosity loss
 - Accelerating structure horizontal position = 8µm
 - Accelerating structure vertical position = 1.4μm
 - Accelerating structure horizontal tilt = 6µrad
 - Accelerating structure vertical tilt = 1.1µrad
- These tolerances are tighter (particularly the vertical position), and harder to compare our current design against, and require consideration of the local sources of vibration:
 - Known: e.g. ground motion, technical noise
 - Unknown: e.g. Structure water cooling, tunnel airflow, other equipment

Alignment & Stability Analysis

Analyses performed: Modal, Harmonic, & Random Vibration.

Module alignment systems considered: Flexures, Cam, & Joints.

Modal Analysis

clc

- Performed to determine the harmonic frequencies of the module.
- The TBM design uses a `hard-mount' passive vibration isolation system:
 - Similar to the base of the main beam quadrupoles (MBQs)
 - Unlike the pre-isolation of the CLIC final focusing magnets.
- The CLIC feedback system is good at suppressing frequencies below 1 Hz but amplifies the range 4-25 Hz, & immediately above and below the operational frequency [1].
- The goal of the optimisation is to increase the fundamental frequency to significantly greater than the 50Hz operational frequency

[1.] C. Gohil, Dynamic Imperfections in the Compact Linear Collider (2020) http://cds.cern.ch/record/2724824/files/405CERN-THESIS-2020-074.pdf

Above: A contour plot of the primary mode.

13/12/2021

Modal Analysis Optimisation

- The harmonic frequencies are extracted from the Finite Element stiffness matrix
 - Very low axial stiffness was the main motivation to move from flexures to universal joints
- The stiffness of the universal joints are closely related to the diameter of the spherical bearings
 - Joint stiffness determined through axisymmetric analysis, validated against test data
- Considering universal joints for both the girder support system, and the structure support systems, we can perform an impact study:
 - Increasing the both bearing diameters increases natural frequency
 - The girder support bearing is more significant
 - Very large bearings show diminishing returns
- Chosen design:
 - 22mm bearings for the SAS supports (commercially available)
 - 35mm bearings for the Girder supports (custom)
 - Increases the fundamental frequency to ~60Hz

Top: The fundamental frequency of a module compared to the diameter of the spherical bearings used in the girder positioning system, and the SAS positioning systems

16

Modal Analysis

- The two lowest harmonic frequencies are very close (59.6Hz and 60.6Hz) and result in a lateral and longitudinal • swaying:
 - Unsuprising as the support system relies upon three vertical joints, but two lateral and one longitudinal joints •
 - The vertical jitter tolerance is much tighter than the lateral or longitudinal tolerances, however both these harmonic modes also result in ٠ displacements in the vertical axis, so must be considered

Above: A contour plot of the primary mode.

Above: A contour plot of the secondary mode.

Harmonic Analysis

- A nominal oscillation is applied to each of the support base plates, and sweep across a frequency range
 - 0-300 Hz
 - The three bases can be in-phase or out-ofphase
 - A 3% damping ratio is assumed
- The average displacement of each structure a the beam axis can be calculated
 - This can be averaged across all four structures
- Plotting these displacements against the input frequency produces the Frequency Response function of each structure

Right: The FEA model used for the harmonic analysis, including 'point mass' representation of the waveguide & vacuum network. Showing the base plates which are excited as part of the harmonic analysis

> Left: An example of a contour plot of the structure displacements due to a harmonic excitation

13/12/2021

Harmonic Analysis

- For a vertical excitation, the average beam-line position of the module experiences an amplification of this displacement up to a peak at 100Hz
 - The in-phase excitation produces a gain greater than 1 until frequencies >150Hz, with a peak around 100Hz
 - Expected behaviour for a hard mount system
 - The out-of-phase excitation produces a gain greater than 1 for frequencies between 70Hz & 150Hz, with peaks around 100Hz
 - The peaks at 80Hz and 100Hz align with the harmonic frequencies which produced the largest vertical displacements
- At low frequencies the vertical ground noise is broadly coherent over 2m (the length of the module)
 - Above 40Hz this coherence decreases
 - The large peak at 100Hz could be significant
- More studies needed

Above: The in-phase (left) and out-of-phase (right)

transfer functions averaged across the four SAS for the

Z-Axis (vertical)

Ground Noise Analysis

• Random vibration analysis:

- A spectrum analysis technique which calculates the probability distribution of a result due to some random excitation, using the combined effects from each harmonic mode.
 - Commonly used for jitter in alignment of optical equipment.
- Assumes a Gaussian distribution of results.
- Takes a Power Spectral Density function as the input: e.g. ground noise data.
- Using this method it is possible to statistically quantify the displacement of the module due to the Ground Noise
 - Gives the standard deviation of the displacements, which can be compared to the 1.4µm RMS value from the CDR

Right: The FEA mode used for the random noise analysis. Showing the base plates which are excited.

Top: LHC Ground Noise data from Points 0 & 960, and envelope curves

Ground Noise Analysis

- The ground noise data is typically characterised by its Power Spectral Density
- It is possible to plot the output Power Spectral Density on top of the input
 - The peaks align with the modal frequencies, agreeing with the modal and harmonic analysis
- For ground noise greater than 0.1Hz, the 1σ vertical displacement of the structures is <0.05μm, well within tolerance
- An important consideration when quantifying the RMS displacements of the module is the frequency range
 - We have ground noise data from <0.01Hz up to >500Hz
 - Including the very low data significantly skews the data
- Frequency ranges considered:
 - Below 1Hz vibrations are well suppressed by the CLIC beam trajectory feedback system.
 - Between 0.1Hz and 1Hz the ground noise is coherent over lengths around 1km

		Frequency Range	
Axis	0.08Hz+	0.1Hz+	1Hz+
Х	0.445	0.014	0.003
Y	1.375	0.028	0.003
Z	0.905	0.042	0.001

Above: 1-sigma displacement of the module [µm]

• Modal analysis

- Initial optimisation goals me, fundamental modes around 60Hz
- Exact frequencies will depend on currently unknown factors
 - Structure design
 - Waveguide and vacuum network designs; height & mass
- Of limited use when comparing directly against the PIP and CDR requirements

• Harmonic analysis

- Extracted transfer functions for individual SAS and module average
- Agrees with the other analysis, and expected behaviour
- Could potentially be used in further stability and emittance growth studies

• Ground noise analysis

- Real input data allows comparison to the PIP specification
- Highlighted the importance of the frequency range when considering the ground noise
- Further work is needed to fully understand and quantify the impact

We have written a paper covering the analysis & optimisation in more detail:

De Collid	Design and optimisation of the Compact Linear sign and optimisation of the Compact Linear er main LINAC module for micron-level stability and alignment.
	The one-standard-ef-sition average vertical missing is set than 0.04 µm alow and the for all SAS.
	The Compact Linear Collider (CLG) is a proposed electron-positron collider with a centre-of-mass collision emergy up to 3 TeV [1] and a high luminosity of $1.5 \times 10^{10} \text{ cm}^{-2} a^{-1} [2]$. (LIC is based on a novel two beam acceleration scheme \times that utilises a low-energy high-intensity Drive Beam to supply the RF power Preprint submitted to Journal of BT_{DN} Templates Disconder 10, 2021

Future work

The current and immediate work of the module team. Prototypes currently on manufacture or final design work. Future aims.

Future Module Work

- V4 SAS Adjustment platform prototype
 - Six universal joints with 22mm diameter (commercially available) bearings
 - 260mm x 160mm landscape orientation girder

• Girder positioning system prototype seeing

structures if required

- Based around six universal joints with 35mm diameter spherical bearings.
- Five linear actuators to provide the active alignment capacity.
 - Longitudinal position defined but not actively adjusted
- Capacity to integrate the V4 SAS adjustment platform components, and expand up to four

Future Module Work

Thank you for listening

Matthew Capstick

matthew.john.capstick@cern.ch

Figure 15: The frequency response of the module due to out-of-phase base excitation in the z axis and measured at the beam axis.

Bonus Slide: Joint Axisymmetric Analysis

Non-linear

Figure 11: The spring model of a universal joint.

Linear

Figure 8: The measured response of a 14 mm diameter bearing assembly under load. assumed to have an initial line contact.

(a) The force-displacement curves for optimised (b) Joint bearing diameter compared to joints with various bearing diameters. compressive and tensile joint stiffness.

Figure 9: The results of analysis of the optimised joint analyses.

Non-linear

Bonus Slide: Waveguide Network

Figure 6: An image of a prototype CLIC module assembly (a) and a similar module modelled within FEA (b).

Figure 12: The natural frequency [Hz] of the flexure supported Main Beam girder compared to the adjustment range of the SAS flexures [mm] for the three waveguide system masses considered.

Bonus Slide: Cam Mover

Figure 8: The primary mode of oscillation for the 5 degree of freedom cam mover system.

Figure 5: Specifics of the cam support system analyses, including the contact point refinement (a) and the bearing contact settings (b).

(b)

(a)

Bonus Slide: Flexure Range

♦ 100% Waveguide Size

• 80% Waveguide Size

65

60

8

0.0

Figure 17: The natural frequency [Hz] of the flexure supported Main Beam girder compared to the adjustment range of the SAS flexures $[\pm mm]$ for the three waveguide system masses considered.

Figure 18: The natural frequency [Hz] of the cam supported Main Beam girder compared to the adjustment range of the SAS flexures $[\pm mm]$ for the three Waveguide masses considered.