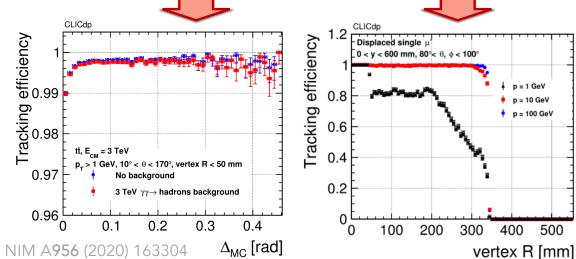
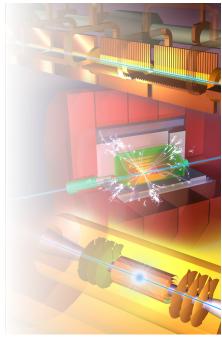


CLIC Detector & Physics

CLIC Project Meeting 13 December 2021

Aidan Robson University of Glasgow




CLIC Detector

CLICdet:
 High-performing detector optimized for CLIC beam environment

- Full GEANT-based simulation, including beam-induced backgrounds, available for optimization and physics studies
- Mature reconstruction chain allows detailed performance characterisation
 - e.g. for tracking: effect of busy environment; displaced track reconstruction

Software framework:

- Originally in iLCSoft, the simulation/reconstruction is now fully embedded in the Key4HEP ecosystem -> a common target for all future collider options
- existing reconstruction algorithms "wrappered" for the new framework

Detector R&D for CLICdet

Calorimeter R&D => within CALICE and FCAL Silicon vertex/tracker R&D:

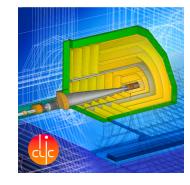
• Working Group within CLICdp and strong collaboration with DESY + AIDAinnova

• Now integrated in the <u>CERN EP detector R&D programme</u>

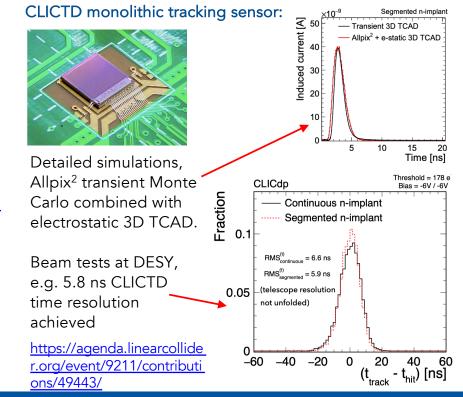
A few examples:

Hybrid assemblies:

• Development of **bump bonding** process for **CLICpix2** hybrid assemblies with 25 µm pitch <u>https://cds.cern.ch/record/2766510</u>



 Successful sensor+ASIC bonding using Anisotropic Conductive Film (ACF), e.g. with CLICpix2, Timepix3 ASICs. ACF now also used for module integration with monolithic sensors. https://agenda.linearcollider.org/event/9211/con tributions/49469/

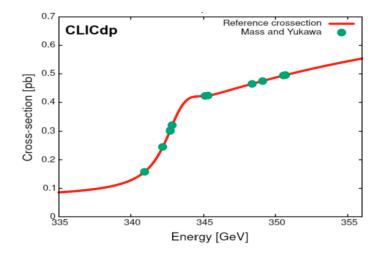

Monolithic sensors:

• Exploring sub-nanosecond pixel timing with ATTRACT FASTPIX demonstrator in 180 nm monolithic CMOS https://agenda.linearcollider.org/event/92 11/contributions/49445/

 Now performing qualification of modified 65 nm CMOS imaging process for further improved performance

Physics Potential recent highlights 1: Initial energy stage

Ongoing studies on Higgs and top-quark precision physics potential

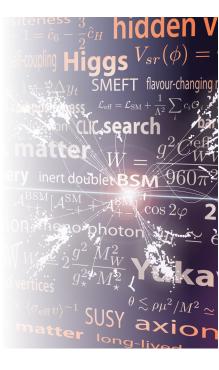

Higgs coupling sensitivity:

• Sensitivities under different integrated luminosity scenarios to complement accelerator luminosity studies

	Increased integrated luminosity at 380 GeV (4ab ⁻¹)			Baseline: 380 GeV (1ab ⁻¹) + 1.5 TeV		
	Benchmark	HL-LHC	HL-LHC + CLIC		HL-LHC + FCC-ee	
			$380 (4 a b^{-1})$	380 (1 ab ⁻¹) + 1500 (2.5 ab ⁻¹)	240	365
$g_{HZZ}^{\mathrm{eff}}[\%]$	SMEFT _{ND}	3.6	0.3	0.2	0.5	0.3
$g_{\mu\nu\nu}^{\rm eff}$	SMEFT _{ND}	3.2	0.3	0.2	0.5	0.3
$g_{H\gamma\gamma}^{\text{eff}}[\%]$ $g_{HZ\gamma}^{\text{eff}}[\%]$ $g_{HZ\gamma}^{\text{eff}}[\%]$ $g_{H\etag}^{\text{eff}}[\%]$	SMEFT _{ND}	3.6	1.3	1.3	1.3	1.2
$g_{HZ\gamma}^{\rm eff}[\%]$	SMEFT _{ND}	11.	9.3	4.6	9.8	9.3
$g_{H_{gg}}^{\mathrm{eff}}[\%]$	SMEFT _{ND}	2.3	0.9	1.0	1.0	0.8
$g_{Htt}^{\mathrm{eff}}[\%]$	SMEFT _{ND}	3.5	3.1	2.2	3.1	3.1
g_{Hcc}^{eff} [%]	SMEFT _{ND}	-	2.1	1.8	1.4	1.2
$g_{Hbb}^{\mathrm{eff}}[\%]$	SMEFT _{ND}	5.3	0.6	0.4	0.7	0.6
$g_{H au au}^{ m eff}[\%]$	SMEFT _{ND}	3.4	1.0	0.9	0.7	0.6
$g_{H\mu\mu}^{ m eff}$ [%]	SMEFT _{ND}	5.5	4.3	4.1	4.	3.8
$\delta g_{1Z}[\times 10^2]$	SMEFT _{ND}	0.66	0.027	0.013	0.085	0.036
$\delta \kappa_{\gamma}[\times 10^2]$	SMEFT _{ND}	3.2	0.032	0.044	0.086	0.049
$\lambda_Z[imes 10^2]$	SMEFT _{ND}	3.2	0.022	0.005	0.1	0.051

https://arxiv.org/abs/2001.05278

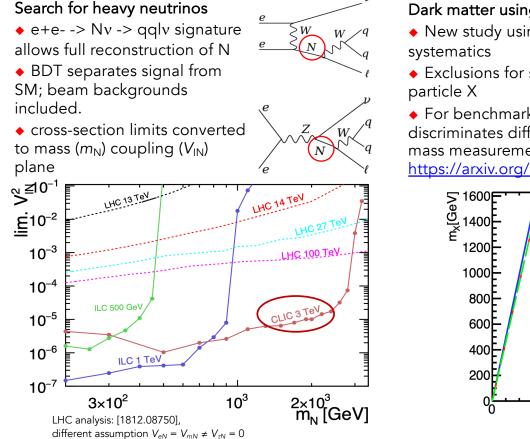
other sensitivities from Briefing Book https://arxiv.org/abs/1910.11775

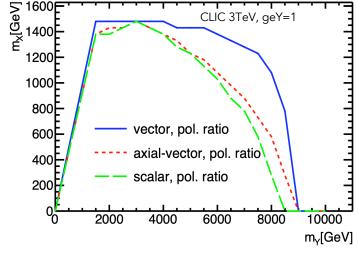


Top-quark threshold scan

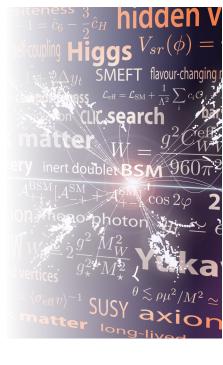
• Optimisation of scan points including beam spectrum; here optimising on mass and Yukawa coupling.

• Expected top-quark mass precision of 25MeV can be improved by 25% without losing precision on width or Yukawa. https://arxiv.org/abs/2103.00522




Physics Potential recent highlights 2: Multi-TeV stages

Ongoing studies on new physics searches



- Dark matter using mono-photon signature at 3TeV, $e+e- \rightarrow XX\gamma$
- New study using ratio of electron beam polarisations to reduce
- Exclusions for simplified model with mediator Y and DM
- For benchmark mediator of 3.5TeV, photon energy spectrum discriminates different DM mediators & allows 1TeV DM particle mass measurement to ~1%

https://arxiv.org/abs/2103.06006

Collaboration

- Wolfgang Kilian elected for a second term as chair of Institute Board
- Roma Tre admitted to the Collaboration
- Roberto Franceschini (Roma Tre) joins Publications Committee (also new: Lucie Linssen, Aidan Robson)
- Katharina Dort (CERN) joins Speakers Committee

Related Initiatives

ECFA Higgs factory initiative

https://indico.cern.ch/event/1044297/page/22657-programme

WG1 (Physics Programme)

- 5 working units under construction: Precision, EFT, Higgs/top/EWK, Flavour, Search

WG2 (Physics Analysis Tools)

- first topical meeting held (generators)
- follow-up on beam spectrum January; Simulation topical meeting February

'WG3' (Detector) under discussion

First workshop being planned for October 2022 ; second expected in autumn 2023 followed by reports in 2024

ILC International Development Team

Monthly open physics meetings inclusive of all e+e- projects (common physics case) <u>https://linearcollider.org/team/wg3/physics/</u>

• Snowmass planning exercise

Continuing interest from them

• CERN Future Collider Unit aiming to maintain some diversity at CERN

Everyone encouraged to bring CLIC physics & detectors to all of these forums

Outlook

- CLICdp collaboration remains active
- Resources very limited, but targeted activities maintained in context of wider efforts
- Higgs factory is community priority, but continued interest in physics reach of TeV-scale e+e-

