

X-band design activities

Ping Wang, Alexej Grudiev

CERN, European Organization for Nuclear Research

Outline

□ Introduction

□ CLIC-K with bended damping waveguides

□ X-band BOC pulse compressor for klystron-based CLIC

□ Summary

Introduction

[1] Updated baseline for a staged Compact Linear Collider, edited by P.N. Burrows, P. Lebrun, L. Linssen, D. Schulte, E. Sicking, S. Stapnes, M.A. Thomson, CERN–2016–004 (CERN, Geneva, 2016),

[2] Yuliang Jiang et al., Demonstration of a cavity-based pulse compression system for pulse shape correction, Phys. Rev. Accel. Beams 22, 082001

[3] Xiaowei Wu and Alexej Grudiev, Novel open cavity design for rotating mode rf pulse compressors, Phys. Rev. Accel. Beams 24, 112001

[4] Jiayang Liu, Alexej Grudiev, CERN-ACC-2018-0034

CLIC-K with straight damping waveguides

Table 1. Comparison between CLIC-G and CLIC-K				
Parameters	CLIC-G	CLIC-K		
Frequency	11.994 GHz	11.994 GHz		
Accelerating gradient	100 MV/m	75 MV/m		
Active length	0.23 m	0.23 m		
RF phase advance per cell	120 °	120 °		
Number of cells	28	28		
Average iris radius / RF wavelength	0.11	0.1175		
First iris radius / RF wavelength	0.126	0.145		
Last iris radius / RF wavelength	0.094	0.09		
First iris thickness / cell length	0.2	0.25		
Last iris thickness / cell length	0.12	0.134		
Bunch spacing	0.15 m	0.15 m		
Number of particles per bunch	3.72×10 ⁹	3.87×10 ⁹		
Number of bunches per train	312	485		

Jiayang Liu, Alexej Grudiev, CERN-ACC-2018-0034

RF design of CLIC-K with bended damping waveguides

• CLIC-K with bended damping waveguides is more compact.

Application of the HOM Magic-T

Geometry of the bending waveguides

• Bend 1 and bend 2

Two bends have different height (wgb) of 10.16 mm and 6.66 mm

wga	22.86 mm
wgb	10.16/6.66 mm
R1	92.875 mm
R2	39.000 mm
R3	20.600 mm
alpha	4 deg
L	>= 10.0 mm

 $R_{1} = (wga-R_{3}*cos(45deg)-wga*cos(45deg) + R_{3}-R_{2}+R_{2}*cos((90deg-alpha)/2))/(cos((90deg-alpha)/2)-cos(45deg))$

RF simulation of the bending waveguides

TE₁₀ mode

E Field [V/m]

2924.544

2729.5752

2534.6055

2339.6357

2144.6663

1949 6969

1754.7268

1559.7572

1364.7876

1169.8179

974.8483

779 8786

584.9089

389.9393

194.9697

-0.0000

_

The RF performance of the two bending waveguides are very similar in the first two pass bands with center frequency of 12 GHz and 17 GHz.

TE₀₁mode

10 modes

E Field [V/m]

5268.8691

4892.5210

4516.1733

4139.8257

3763.4778

3387.1299

3010.7822

2634.4346

2258.0867

1881.7389

1505.3911

1129.0433

752.6956

376.3478

-0.0000

CLIC Project Meeting- 14.12.2021

Bend2: wgb = 6.66 mm

Wakefield calculation of the CLIC-K

1.0021

1.0011

1.1623

1.0690

< 2

PIC-LDw-x

PIC-LDw-y

Requirements

CLIC-K with bended damping waveguides can suppress the transverse wakefield very well.

- PML on input coupler and damping waveguides (PIC-PDw)
- PML on input couplersand Loads in damping waveguides (PIC-LDw)

[1] D. Schulte, Multi-bunch calculations in the CLIC main linac, Proceedings of PAC09, Vancouver, BC, Canada, 2009.

3.0745

2.2665

< 5

Wakefield calculation of the CLIC-K

HOM Magic-T is necessary to suppress the wakefield in the input coupler

- PML on input coupler and Loads in damping waveguides (PIC-LDw)
- Shorted Bends on input coupler and Loads in damping waveguides (SFIC-LDw)
- HOMMagic-T on input coupler and Loads in damping waveguides (MTIC-LDw)

485 bunches	Fc	Frms	Fworst
PIC-LDw-x	1.0021	1.1623	3.0745
PIC-LDw-y	1.0011	1.0690	2.2665
SFIC-LDw-x	1.0044	1.2392	64.366
SFIC-LDw-y	1.0011	1.0687	2.2460
MTIC-LDw-x	1.0020	1.1577	3.5042
MTIC-LDw-y	1.0011	1.0692	2.2577

A monopole wakefield and transverse kicks

X-band BOC pulse compressor for klystron-based CLIC

Z

E = E

r

....

 $\rho = \overline{\rho}$

BOC has large unloaded quality factor and good suppression of other parasitic modes

٠

[1] Igor Syratchev, CLIC Klystron based. Updates 2017. CLIC WS, CERN, March 2017
[2] Jinchi Cai and Igor Syratchev, CERN-ACC-2020-0031
[3] Igor Syratchev, CERN/PS 2002-008 (RF)

X-band BOC pulse compressor for klystron-based CLIC

[1] Riccardo Zennaro, BOC production at PSI, RF meeting, 2021

Cavity outer wall optimization

cic

120 mm

Calculation of the Width of the waveguide around the BOC

- a: Radius of resonant cavity ۲
- Δ : Thickness of wall between resonant cavity and waveguide •

Method1:w0 = 19.301 mm

w = 19.50 mm W_0 a $\lambda_{g0} = 3250 mm$ $\lambda_q = 32.32 mm$

Method2: 19.308 mm

Q

Two coupled cavities should have the same frequencies

Novel coupler for BOC

- Double height waveguide can reduce the loss and surface field of the waveguide.
- New coupler can avoid the thin wall between the input and output waveguides, which ease the machining.

Eig mode simulation of the X-band BOC

E face

H face

Full geometry of the new X-band BOC pulse compressor

- Outer radius of the waveguide: 351 mm
- Height of the BOC: 200mm

Summary

- RF design of the CLIC-K with bended damping waveguides was completed and the mechanical design is in progress.
- Preliminary RF design of the BOC pulse compressor was finished and the mechanical design will be discussed in the next step

Thanks for your attention!!!