Top quark mass corrections to NNLO double Higgs boson production

arXiv:2110.03697

SEPTA Meeting

J. Davies

December 8, 2021

IntroductionLarge- m_t expansionNNLO $gg \rightarrow HH$ S $\bullet \circ \circ \circ \circ \circ$ $\circ \circ \circ \circ \circ$ $\circ \circ \circ \circ \circ \circ$ $\circ \circ \circ \circ \circ \circ$		agualiag		
IntroductionLarge- m_t expansionNNLO $gg \rightarrow HH$ S $\bullet \circ o \circ o \circ$ $\circ \circ \circ \circ \circ$ $\circ \circ \circ \circ \circ \circ$ $\circ \circ \circ \circ \circ \circ$				
Introduction Large- m_t expansion NNLO $gg \rightarrow HH$ S	●00000	0000	000000	0
	Introduction	Large- m_t expansion	NNLO $gg ightarrow HH$	Summary

Higgs self coupling

Standard Model Higgs potential:

$$\mathcal{N}(H) = rac{1}{2}m_H^2H^2 + \lambda vH^3 + rac{\lambda}{4}H^4,$$

where $\lambda = m_H^2/(2v^2) \approx 0.13$.

VBF

Want to measure λ , to determine if V(H) is consistent with nature.

- Challenging! Cross-section $\approx 10^{-3} \times H$ prod.
- ► $-3.3 < \lambda/\lambda_{SM} < 8.5$ [CMS '21]

 λ appears in various production channels:

► H-strahlung

Introduction 0e0000	Large- <i>m</i> t expansion	NNLO $gg \rightarrow HH$	Summary o
Higgs self	coupling		

[LHCHXSWG-2019-005]

Introduction	Large- <i>m</i> t expansion	NNLO $gg \rightarrow HH$	Summary o

Leading order (1 loop) partonic amplitude:

 $\mathcal{M}^{\mu
u} \sim \mathcal{A}^{\mu
u}_1(\mathcal{F}_{tri} + \mathcal{F}_{box1}) + \mathcal{A}^{\mu
u}_2(\mathcal{F}_{box2})$

Form factors:

LO: known exactly

[Glover, van der Bij '88]

- Beyond LO... no fully-exact (analytic) results to date
 - numerical evaluation, expansion in various kinematic limits

Introduction oooo●o	Large- <i>m</i> t expansion	$\begin{array}{l} NNLO \ gg \rightarrow \ HH \\ \circ \circ \circ \circ \circ \circ \circ \end{array}$	Summary o
aa ightarrow HH	Beyond LO		

- ► NLO: large-*m*_t + threshold expansion Padé [Gröber, Maier, Rauh '17]
- ► NLO: high-energy expansion [Davies, Mishima, Steinhauser, Wellmann '18, '19]
- ► NLO: small-p_T expansion [Bonciani, Degrassi, Giardino, Gröber '18]
- ▶ NNLO: large-*m*t exp. of virt [Grigo, Hoff, Steinhauser '15][Davies, Steinhauser '19]
- ► HEFT + num. reals [Grazzini, Heinrich, Jones, Kallweit, Kerner, Lindert, Mazzitelli '18]
- N3LO: Wilson coefficient C_{HH} [Spira '16][Gerlach, Herren, Steinhauser '18]
 N3LO: HEFT [Chen, Li, Shao, Wang '19]

Each part is divergent, sum is finite (including also Collinear CTs).

Total XS: proceed via *Optical Theorem*. Phase-space \rightarrow loop integrals:

Three- and four-particle cuts of 5-loop $2 \rightarrow 2$ forward diagrams.

Large-m _t	expansion		
Introduction	Large- <i>m</i> t expansion ●○○○	$\begin{array}{l} NNLO \ gg \rightarrow \ HH \\ \circ \circ \circ \circ \circ \circ \circ \end{array}$	Summary o

Expand integrals in the region " $m_t \gg$ other scales".

Result: series in powers of $\{q_i \cdot q_i, q_j \cdot q_j, q_j \cdot q_j, \ldots\}/m_t^2$

 $\begin{array}{l} \bullet \quad gg \to H(\to HH): \quad q_1 \cdot q_2/m_t^2 \\ \bullet \quad gg \to HH \qquad \qquad : \{q_3 \cdot q_3, \ q_1 \cdot q_2, \ q_1 \cdot q_3, \ q_2 \cdot q_3\}/m_t^2 \end{array}$

Introduction	Large- <i>m</i> t expansion	NNLO $gg \rightarrow HH$	Summary o

Large-*m_t* expansion

Expansion by sub-graph:

- sum over sub-graphs which contain m_t
- expand hard-scaling propagators in their small parameters

Diagrams factorize into:

- massless integrals
- ► expanded hard sub-graphs → massive tadpole integrals

Example: 2-loop $gg \rightarrow H$ diagram:

Large-m _t	expansion		
Introduction	Large- <i>m</i> t expansion	NNLO $gg \rightarrow HH$	Summary
000000	00●0		o

More explicitly:

$$\iint d^{d} l_{1} d^{d} l_{2} \frac{1}{l_{2}^{2}} \frac{1}{(l_{2}+q_{1})^{2}} \frac{1}{(l_{2}-q_{2})^{2}} \frac{1}{(l_{1}+q_{1})^{2}-m_{l}^{2}} \frac{1}{(l_{1}-q_{2})^{2}-m_{l}^{2}} \frac{1}{(l_{1}-l_{2})^{2}-m_{l}^{2}} \longrightarrow (1)$$

$$\int d^{d} l_{2} \frac{1}{l_{2}^{2}} \frac{1}{(l_{2}+q_{1})^{2}} \frac{1}{(l_{2}-q_{2})^{2}} \int d^{d} l_{1} \left[\frac{1}{(l_{1}^{2}-m_{t}^{2})^{3}} + \frac{2(q_{1} \cdot l_{1}-q_{2} \cdot l_{1}-l_{2} \cdot l_{1}) + l_{2} \cdot l_{2}}{(l_{1}^{2}-m_{t}^{2})^{4}} + \cdots \right]$$
(2)

What remains?

- massless integral over l₂
- massive tadpole integrals: $l_1^{\mu_1} l_1^{\mu_2} \cdots l_1^{\mu_N} / (l_1^2 m_t^2)^m$

Software:

diagram generation	qgraf	[Nogueira '93]
large- <i>m</i> t expansion	q2e/exp	[Harlander, Seidelsticker, Steinhauser '97]
	FORM 4.2	[Ruijl, Ueda, Vermaseren '17]
tadpoles (1-3 loop)	MATAD	[Steinhauser '00]
massless integrals	FIRE 6	[Smirnov '19]
	LiteRed	[Lee '12]

Introduction	Large- <i>m</i> t expansion	$\begin{array}{l} NNLO \ gg \rightarrow \ HH \\ \bullet \circ \circ \circ \circ \circ \circ \end{array}$	Summary o
NNLO gg	ightarrow HH		

<code>qgraf</code> generates a large number of 5-loop 2 \rightarrow 2 diagrams:

- filter for valid cuts using gen
 - gg channel: $16.6M \rightarrow 160.1K$
 - gq channel: 1.7M \rightarrow 5.4K

Expansion of such graphs is very difficult, computationally.

• compute only the leading term $(1/m_t^0)$ in this style

Introduction	Large- <i>m</i> t expansion	$\begin{array}{l} NNLO \ gg \rightarrow \ HH \\ \circ \bullet \circ \circ \circ \circ \end{array}$	Summary o

"Building blocks"

Approach: construct "building blocks", pre-expanded effective vertices:

Need to compute and expand various building blocks:

▶ ggH
▶ gggH
▶ gggHH
▶ ggggHH
▶ ggggHH

Generate "building block" diagrams directly:

- ▶ gg channel: $16.6M \rightarrow 160.1K \rightarrow 4612$
- ▶ gq channel: $1.7M \rightarrow 5.4K \rightarrow 336$

Introduction	Large- <i>m</i> t expansion	$\begin{array}{c} NNLO \ gg \rightarrow \ HH \\ \circ \circ \bullet \circ \circ \circ \end{array}$	Summary o

Phase-space Integrals

After large- m_t expansion, 2- and 3-loop "phase-space integrals" remain.

IBP reduce (LiteRed) to obtain three and four particle cuts of 74 3-loop MIs belonging to 13 topologies,

and 16 2-loop MIs belonging to 3 topologies,

Compute MIs via differential equations w.r.t. $x = m_H^2/s$:

 $\blacktriangleright \ \partial_x \vec{l} = M(\epsilon, x) \vec{l}$

• exact solns, and via series expansion: $\delta = 1 - 4x \rightarrow 0$ (2*m_h* thr.)

13/17

Introduction	Large- <i>m</i> t expansion	$\begin{array}{l} NNLO \ gg \rightarrow \ HH \\ \circ \circ \circ \bullet \circ \circ \end{array}$	Summary o

Phase-space Integrals

Two examples, ratio of $\delta = 1 - 4x \rightarrow 0$ expansion to exact:

• δ^{30} reproduces exact result very well up to $\delta \approx 0.9$

• $2m_t$ threshold corresponds to $\delta = 1 - m_h^2/m_t^2 = 0.48$

Exact expressions are "unpleasant" (GPLs), so produce cross sections (and compute collinear CTs) as series in δ .

NNLO $gg \rightarrow HH$, Partonic Cross Sections

Resulting expansions for channels $gg~(\rho^3 = (m_h^2/m_t^2)^3)$ and $gq~(\rho^4)$:

m_t dependence is a ~100% correction to HEFT at NNLO

NNLO $gg \rightarrow HH$, Partonic Cross Sections						
Introduction	Large- <i>m</i> t expansion	$\begin{array}{l} NNLO \ gg \rightarrow \ HH \\ \circ \circ \circ \circ \circ \bullet \end{array}$	Summary o			

► LO→NLO: +100%
 ► NLO→NNLO: +30%

Introduction	Large- <i>m</i> t expansion	NNLO $gg \rightarrow HH$	Summary ●
Summary			

Multi-scale multi-loop amplitudes are hard:

- study them via expansions in certain kinematic limits
- direct numerical evaluation

Large-*m*_t expansions:

- good description of amplitudes below top quark threshold
 - above threshold: "Born improvement" work in progress
- can be combined with other expansions for a better approximation
 - Iarge-m_t + threshold Padé at NNLO work in progress
- ▶ differential XS? Requires large- m_t exp. of 2-loop 2 → 3 planned