

Mechanisms of $\mathbf{0}\nu\beta\beta$ Decay

Graham Van Goffrier Department of Physics and Astronomy Supervised by Prof. Frank Deppisch vangoffrier@gmail.com

Neutrinos and $\mathbf{0}\nu\beta\beta$

- Flavour oscillation \Rightarrow massive neutrinos
- Cosmology, oscillations, β-decay provide partial answers and constraints.
- $0\nu\beta\beta$ -- just another probe? No!
 - Sensitive to LNV
 - May differentiate mass mechanisms
- Current bounds (@90%)
 - GERDA: T_{1/2} > 1.8 · 10²⁶ y [1]
 - KamLAND-Zen: $T_{1/2} > 1.1 \cdot 10^{26}$ y [2]

Nuclear Matrix Elements (NMEs)

• Observable $m_{\beta\beta}$ related to decay half-life: [3]

$$T_{1/2}^{-1} = G_{0\nu} |\mathbb{M}|^2 m_{\beta\beta}^2$$

- NMEs are key source of error for Ovββ theory.
- However, discrepancies are correlated for (some) pairs of isotopes.

Nuclear Matrix Elements (NMEs)

• Observable $m_{\beta\beta}$ related to decay half-life: [3]

$$T_{1/2}^{-1} = G_{0\nu} |\mathbb{M}|^2 m_{\beta\beta}^2$$

- NMEs are key source of error for Ovββ theory.
- However, discrepancies are correlated for (some) pairs of isotopes.

Research Directions

	Strand 1 – Computational		Strand 2 – Analytical
•	How will correlated NME errors impact inference from future $0\nu\beta\beta$ searches?	•	How much do short-range $0\nu\beta\beta$ mechanisms contribute to NME discrepancies?
	Bavesian (MCMC) methods		FFT-inspired approaches

Strand 1: Inference with NMEs

Searching for Short-Range Mechanisms

- Numerous mechanisms have been parameterised [Deppisch et al. arXiv:2009.10119]
- We consider a single exotic $0\nu\beta\beta$ mechanism with its own compound "heavy NME":

$$T_{1/2}^{-1} = G_{iso} \left| \frac{m_{\beta\beta}}{m_e} M_{\nu,iso} + \epsilon M_{H,iso} \right|^2$$

- Any fixed $0\nu\beta\beta$ half-life corresponds to two parallel-line solutions in $\{m_{\beta\beta}, \epsilon\}$ • Slope and intercept of these lines are isotope-dependent.
- Multi-isotope observations can constrain both $m_{\beta\beta}$ and ϵ .

Likelihoods for Ge, Ge/Mo, Ge/Mo/Xe

Bayesian Inference

• Update prior knowledge $\pi(\theta)$ with likelihood $L_{\chi}(\theta)$ to obtain posterior knowledge $p(\theta)$.

$$p(\boldsymbol{\theta}) = \frac{L_X(\boldsymbol{\theta})\pi(\boldsymbol{\theta})}{\int L_{\boldsymbol{X}}(\boldsymbol{\theta'})\pi(\boldsymbol{\theta'})d\boldsymbol{\theta'_H}} \equiv \frac{L_{\boldsymbol{X}}(\boldsymbol{\theta})\pi(\boldsymbol{\theta})}{M_{\boldsymbol{X}}^H}$$

- Markov Chain Monte Carlo (MCMC) samples p(0) using only local distributions.
 Locality helps to combat MC rejection problems at high-dimensionalities.
- Our parameter space: $\{m_{\beta\beta}, \epsilon\}$ + $\{M_{\gamma}, M_{H}\}$ for each isotope
 - Flat priors on $m_{\beta\beta}$, ϵ see [Deppisch, Van Goffrier arXiv:2103.06660]
 - Careful tuning of the proposal width needed for $d \ge 6$.

Correlated Likelihood, Ge/Mo

Strand 2: Corrections to NMEs

Background: Nuclear Effective Theory

- Approximate chiral symmetry of QCD facilitates construction of Chiral EFTs for p << \land
 - At their simplest, only include nucleon (-) and Goldstone pion (--) fields.
 - Perturbative expansion made possible by a consistent power-counting scheme. [4]
- NN scattering is non-perturbative
 - Bound states
 - Large scattering lengths
- Novel subtraction scheme and "KSW" power-counting prove necessary - [Kaplan et al., 1996]

Background: Promoted Ov $\beta\beta$ Contact Operator

- In LO ChEFT, including only a long-range LNV operator leads to a regulator-dependent amplitude.
- Renormalization requires a contact counterterm at distance scale $R \leq \Lambda_{\Box}$, with unknown LEC. [Cirigliano et al., 2018]
- Divergence only arises from "double-contact" LNV diagrams.

Background: Promoted Ov $\beta\beta$ Contact Operator

- In LO ChEFT, including only a long-range LNV operator leads to a regulator-dependent amplitude.
- Renormalization requires a contact counterterm at distance scale $R \leq \Lambda_{\Box}$, with unknown LEC. [Cirigliano et al., 2018]
- Divergence only arises from "double-contact" LNV diagrams.

Background: Promoted Ov $\beta\beta$ Contact Operator

- In LO ChEFT, including only a long-range LNV operator leads to a regulator-dependent amplitude.
- Renormalization requires a contact counterterm at distance scale $R \leq \Lambda_{\Box}$, with unknown LEC. [Cirigliano et al., 2018]
- Divergence only arises from "double-contact" LNV diagrams.

Matching Estimate of Contact LEC

- Can decompose hadronic Ονββ amplitude into regions of low-med-high virtual momentum.
- Anchor to ChEFT in the low region, QCD operator product expansion in the high region.
 [Cirigliano et al., 2021]
- The result is an estimate of the contact counterterm LEC.

Matching Corrections

- OPE takes advantage of perturbative QCD above cutoff ∧.
 - Non-perturbative effects absorbed into coefficients, including vacuum effects.
- We expect gluon vacuum condensates to give the leading correction to the $0\nu\beta\beta$ OPE.
- Making use of external field approximations to compute these corrections. [7]
 - Compton scattering results indicate size of spin-0, spin-2 gluon contributions. [8]

Next Steps

- Complete calculation of gluon condensate OPE terms, as well as NLO pQCD terms
 Draw conclusion about range of validity of OPE in matching below ∧.
- Address other dominant systematic uncertainties in ChEFT matching

 Inelastic intermediate states (e.g. NNπ) may be responsible for ~20% error.
 Could elucidate relationship with forward Compton scattering. [6]

THANK YOU FOR LISTENING!

Works Cited

[1] G. collaboration, M. Agostini, G. R. Araujo, A. M. Bakalyarov, M. Balata, I. Barabanov et al., Final results of gerda on the search for neutrinoless double- β decay , 2020.

[2] KamLAND-Zen Collaboration, A. Gando, Y. Gando, T. Hachiya, A. Hayashi, S. Hayashida, H. Ikeda et al., Search for majorana neutrinos near the inverted mass hierarchy region with kamland-zen, Phys. Rev. Lett. 117 (Aug, 2016) 082503.

[3] M. Agostini, G. Benato and J. Detwiler, Discovery probability of next-generation neutrinoless double-beta decay experiments , Phys. Rev. D96 (2017) 053001, [1705.02996].

[4] Kaplan, David B., Martin J. Savage, and Mark B. Wise. "Nucleon-nucleon scattering from effective field theory." Nuclear Physics B 478.3 (1996): 629-659. [5] Cirigliano, Vincenzo, et al. "New leading contribution to neutrinoless double- β decay." Physical review letters 120.20 (2018): 202001.

[6] Cirigliano, Vincenzo, et al. "Determining the leading-order contact term in neutrinoless double β decay." Journal of High Energy Physics 2021.5 (2021): 1-68.

[7] Novikov, V. A., et al. "Calculations in external fields in quantum chromodynamics. Technical review." Fortschritte der Physik32.11 (1984): 585-622.

[8] Hill, Richard J., and Gil Paz. "Nucleon spin-averaged forward virtual Compton tensor at large Q 2." Physical Review D 95.9 (2017): 094017.

Backup I: Neutrinos and \mathbf{0}\nu\beta\beta

• $m_{_{\beta\beta}}$ dependent on neutrino masses and two Majorana phases α and β :

$$m_{\beta\beta} = \left| c_{12}^2 c_{13}^2 m_1 + s_{12}^2 c_{13}^2 m_2 e^{i\alpha} + s_{13}^2 m_3 e^{i\beta} \right| = \left| A + B e^{i\alpha} + C e^{i\beta} \right|$$

• With IO hierarchy, small m₃ causes C << A, B.

Backup I: Neutrinos and \mathbf{0}\nu\beta\beta

• $m_{_{\beta\beta}}$ dependent on neutrino masses and two Majorana phases α and β :

$$m_{\beta\beta} = \left| c_{12}^2 c_{13}^2 m_1 + s_{12}^2 c_{13}^2 m_2 e^{i\alpha} + s_{13}^2 m_3 e^{i\beta} \right| = \left| A + B e^{i\alpha} + C e^{i\beta} \right|$$

• With NO hierarchy, possible to tune parameters and drive $m_{_{RR}} \rightarrow 0$.

Backup II: Least-Informative Priors

- Information theory: we want posterior to arise from experiment, not our prior biases.
- Information gain from prior to posterior captured in the Kullback-Leibler divergence.
- Define Least-Informative Prior (LIP) as prior which maximises expected information gain.

$$\langle D_{KL}(p|\pi) \rangle_{data} = \int dX \int d\theta \ p(\theta|X) \log\left(\frac{p(\theta|X)}{\pi(\theta)}\right)$$

• No prior is bias-free, but the LIP can serve as a reference with which to compare others.