LHeC Detector Update

- Second Proton Beam
 - steering through IR in same beam pipe √ (informal meeting on 5.October '10)
- Beam Separation Dipols
 integrated in detector structure where?
- SR Calculations
 not finished
- Beam Pipe / Detector Dimensions
 not fixed
- Forward Jet Measurement Toroid
 an option?
- Solenoid(s)
 - 1 or 2 magnets (2 magnets no return yoke)?
 - physics case: best muon measurement possible
 - cost estimate needed
 - any drawbacks?

13th Octoberl 2010, LHeC Design Meeting

SR Calculations IR layout w. head-on collision

LR - Design M.Sullivan -Elliptical Beam Pipe1: inner-Ø_x = 12cm

inner- $\varnothing_y = 5$ cm outer- $\varnothing_x = 12.8$ cm

outer- \emptyset_v = 5.8cm

→ thickness: 0.4cm

Beam envelopes of 10σ (electrons) [solid blue] or 11σ (protons) [solid green], the same envelopes with an additional constant margin of 10 mm [dashed], the synchrotron radiation fan [orange], and the approximate location of the magnet coil between incoming protons and outgoing electron beam [black].

Answer: SR problematic to be checked

INTERACTION-REGION DESIGN OPTIONS FOR A LINAC-RING LHEC by F.Zimmermann et.al. submitted IPAC'10

CLIC-LHeC Synergies & KEK Trip Report, Frank Zimmermann, CLIC Meeting 20 August 2010

SR Calculations

Current Activities

- RR Option:
 - Nathan Bernard (UCLA) MadLab/GEANT4 Rob Appleby (Uni Manch.) - dedicated software - fields (Velocity Verlet meth.) + (MC LEP inspired - H.Burkhardt)
- LR Option:
 - Emre Eroglu (Uludag Uni. Fluka)
- First Results (RR) presented in August (N.B.)
- Essential: check of LR Option
- Incorporate the upstream sources (not starting from last p-quadrupole)

SR Characteristics using GEANT4 Simulations

Characteristic	Detector Dipole	No Detector Dipole	
E [GeV]	60	60	
I [mA]	100	100	
Detector Dipole Length [m]	2.4	0	
B [T]	0.024	0.028	
θ _{Initial} * [mrad]	3.6	3.8	
θ _{Crossing} * [mrad]	1.108	1.104	
Ec [keV]	102.79	108.05	
E _µ [keV]	31.65	33.27	
Eσ[keV]	57.47	60.41	
λ [m]	2.585	2.579	
γ/e-	7.7025	8.2043	
P [kW]	24.3756	27.2986	
Separation** [mm]	49.067	49.795	

 $^{*}\theta$ is the angle between the electron and proton momentum vectors

** The separation is the displacement between the proton and electron centroids at the absorber

Beam Pipe Wall Thickness

Detector Setup

Main Objectives 1

- Warm Calorimeter (contr. Uludag Univ.)
- Cold Calorimeter (H.Oberlack)
- dedicated forward calorimeter (Calice, DREAM)
- Tracking lightweight SiGas (pixel, strip, pad) Trigger capable TRD in front of backward calorimeter (γ/π°/e) track segment definition (NikHEF)
- Tracking conventional Si based (pixel, strip, pad) multiple scattering! few high accurate measuring points only - high costs

Fwd-Toroid z-Dimension = PathLength Momentum - Field Strength

PathLength = 1.2 m used in figure before

CMS Detector Setup

Detector Setup

Main Objectives 2

- Solenoid return yoke for 3.5T needs ~1ok tons steel ~3M\$ (June '10) - ~5M\$ (currently) + cost for extended muon tracking detector, mechanics etc.
- Second solenoid closed field; either lower field both

 adding to 3.5T;
 Or higher field in inner part = 3.5T + outer field
- CMS and ATLAS are not hermetic as well; radiation to be checked (Uludag Univ.)
- access easier and weight much less;
 support structure by both solenoids
 + external frame
- to be evaluated (H.Tenkate, A.Dudarev)
- ONE Detector Configuration Only would be a big step forward!

Detector Setup

Main Objectives 2

- Solenoid return yoke for 3.5T needs ~1ok tons steel ~3M\$ (June '10) - ~5M\$ (currently) + cost for extended muon tracking detector, mechanics etc.
- Second solenoid closed field; either lower field both

 adding to 3.5T;
 Or higher field in inner part = 3.5T + outer field
- CMS and ATLAS are not hermetic as well; radiation to be checked (Uludag Univ.)
- access easier and weight much less;
 support structure by both solenoids
 + external frame
- to be evaluated (H.Tenkate, A.Dudarev)
- ONE Detector Configuration Only would be a big step forward!

Energy= 3.085858e+9

many things to do still

LHeC – general parameters

e- beam	RR	LR ERL	LR "p-140"	p- beam	RR	LR	
e- energy at IP[GeV]	60	60	140	bunch pop. [10 ¹¹]	1.7	1.7	
luminosity [10 ³² cm ⁻² s ⁻¹]	17.1	10.1	0.44	tr.emit.γε _{x.v} [μm]	3.75	3.75	
polarization [%]	5 - 40	90	90	spot size σ _{x.v} [μm]	30, 16	7	
bunch population [10 ⁹]	26	2.0	1.6	β* _{x,v} [m]	1.8,0.5	0.1 ^{\$}	
e- bunch length [μm]	10000	300	300	bunch spacing [ns]	25	25	
bunch interval [ns]	25	50	50				
transv. emit. γε _{x,y} [mm]	0.58, 0.29	0.05	0.1	^{\$} smaller LR <i>p</i> - $β$ * value than for nominal LHC (0.55 m): - reduced <i>I</i> * (23 → 10 m) - only one <i>p</i> beam squeezed - new IB guads as for HI-LHC			
rms IP beam size $\sigma_{x,y}$ [µm]	30, 16	7	7				
e- IP beta funct. $\beta_{x,y}^*$ [m]	0.18, 0.10	0.12	0.14				
full crossing angle [mrad]	0.93	0	0				
geometric reduction H _{hg}	0.77	0.91	0.94		0310111		
repetition rate [Hz]	N/A	N/A	10				
beam pulse length [ms]	N/A	N/A	5				
ER efficiency	N/A	94%	N/A	B. Holzer, M. Klein,			
average current [mA]	131	6.6	0.27				
tot. wall plug power[MW]	100	100	100				

CLIC-LHeC Synergies & KEK Trip Report, Frank Zimmermann, CLIC Meeting 20 August 2010