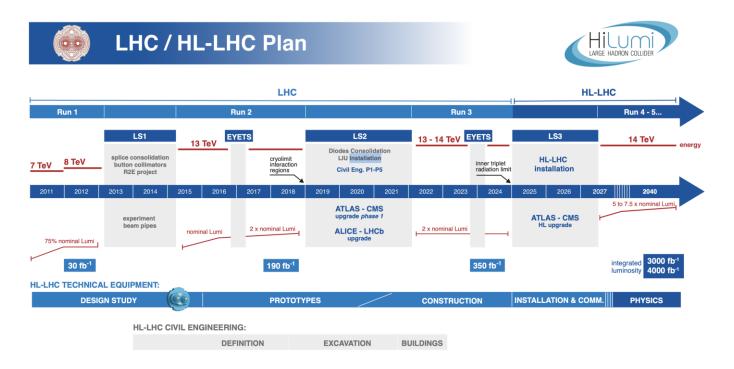

CMS Phase-II Upgrades

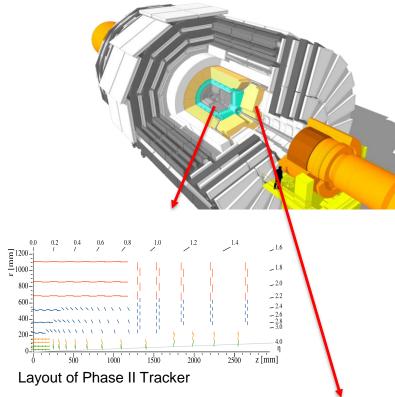


Long Shutdown 3 (LS3) scheduled for 2025-2027?!?

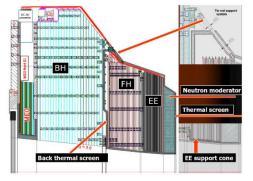
- LHC accelerator upgrade to High-Luminosity (HL)-LHC
- Upgrade of detectors necessary
 - Existing systems reach end of life (radiation damage)
 - Increase in luminosity at HL-LHC: 300 → 3000 fb⁻¹
- Latest schedule with no COVID related delays
 - And experiments will not be ready by 2027 ...

CMS Phase-II Upgrades

Long Shutdown 3 (LS3) scheduled for 2025-2027?!?


- LHC accelerator upgrade to High-Luminosity (HL)-LHC
- Upgrade of detectors necessary
 - Existing systems reach end of life (radiation damage)
 - Increase in luminosity at HL-LHC: 300 → 3000 fb⁻¹
- Latest schedule with no COVID related delays
 - And experiments will not be ready by 2027 ...

Phase-II Upgrade of CMS (with HEPHY involvement):


- CMS Tracker
 - → 200 m² Si Sensors needed
- High Granularity Calorimeter
 - → 600 m² Si Sensors (8 inch)

With our expertise in silicon sensors HEPHY plays a key role in both projects

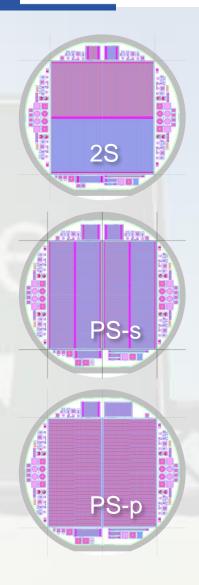
- Simulations and design of sensors and test structures
- Electrical characterization of sensors and test structures
- Preparation, negotiations and QA of series production
- → Co-Convenors of both sensor development working groups

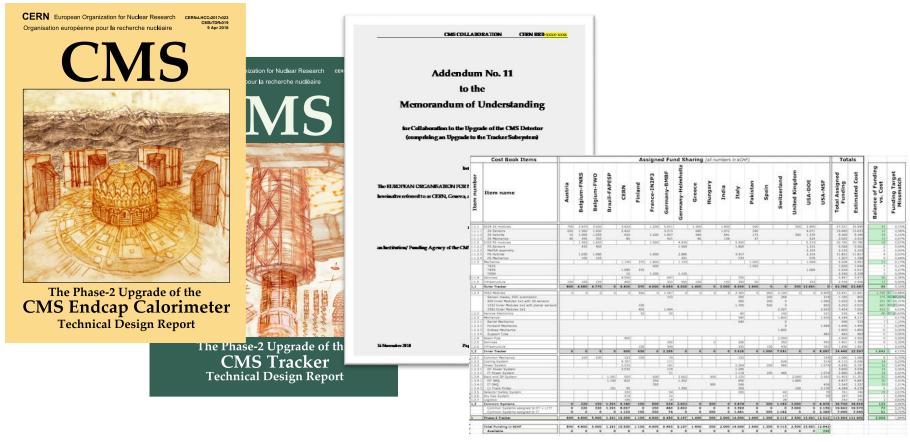
Layout of Endcap Calorimeter

ÖAW

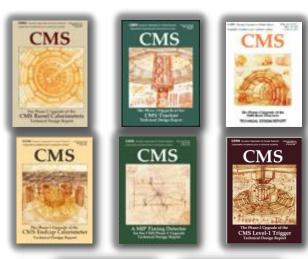
Active contributors today

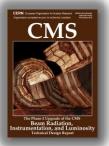
- Staff Scientists
 - Marko Dragicevic
 - Convener: Outer Tracker Sensors WG
 - Tracker Resource Manager
 - Thomas Bergauer
 - Convener: HGCal Sensors WG
 - Also: Group Leader Detector Development (non-CMS)
- PhDs
 - Dominic Blöch: Tracker SQC (ÖAW funded until Oct 2020)
 - Viktoria Hinger: Tracker & HGCal PQC (FFG funded until Oct 2020)
 - Peter Paulitsch: HGCal (FFG funded until mid 2021)
 - Konstantinos Damanakis: Sensor QA (ÖAW funded since Oct. 2020)
- PostDocs
 - Florian Pitters: HGCal & Detector Development Left for paternity leave and to industry
 - Moritz Wiehe: HGCal Since mid August 2021
- Sensor QA team
 - Margit Oberegger
 - Andreas Bauer
 - Stefan Schultschik
 - Doris Wohlmuth
 July October 2021
- Additional support
 - Wolfgang Brandner
 - Florian Buchsteiner

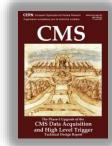

HEPHY in CMS Phase II


Note: In 2015, after long internal discussions and with the SAB, we decided to contribute to sensors only!

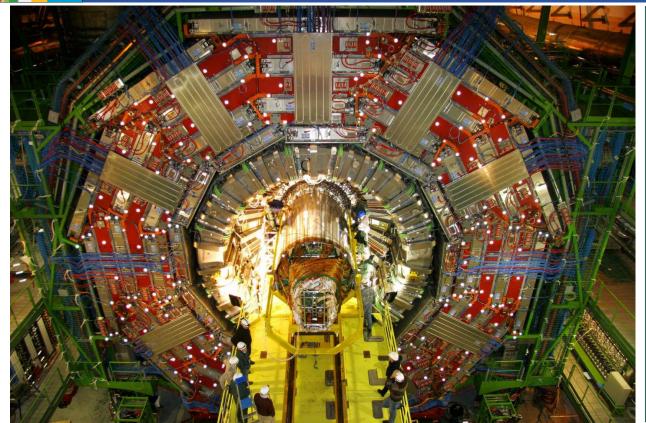
- HEPHY responsibilities in CMS Outer Tracker
 - 2010 2019: Participation in all development studies of the sensors (Materials, thickness, radiation hardness, simulations, production process, design choices, etc.)
 - **2008 2018:** Establishing alternative European sensor producer (Infineon)
 - Stopped by Infineon in 2018 due to commercial reasons
 - 2019: Final design and wafer layout for all three sensor types (PS-p pixel design from KIT)
 - **2014 2019:** Conduction of the procurement process (~18 MCHF)
 - 2019 2024: Definition and supervision of the Quality Assurance Campaign to produce ~ 29.000 sensors
 - Process Quality Control (PQC) as major contribution from HEPHY (Viktoria Hingers PhD Thesis)
- HEPHY responsibilities in CMS HGCal
 - 2015 2018: Establishing alternative European sensor producer (Infineon)
 - Initially our main interest to join HGCal
 - Infineon's 8" sensor technology was highly attractive for HGCal
 - Pushed HPK into developing 8" process for HGCal in parallel
 - 2018 2022: Development of radiation hard HGCal sensors with HPK
 (Materials, thickness, radiation hardness, simulations, production process, design choices, etc.)
 - 2022 2024: Participate in Quality Assurance campaign
 - Process Quality Control (PQC) as major contribution from HEPHY (Viktoria Hingers PhD Thesis)
- Managerial responsibilities
 - Thomas Bergauer
 - since 2016: Co-Convener of the HGCal Sensor WG
 - Marko Dragicevic
 - Since 2014: Co-Convener of the Tracker Sensor WG
 - Since 2017: Tracker Resource Manager

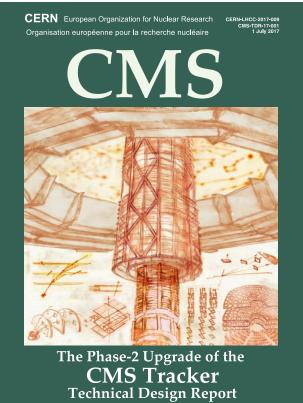



CMS PHASE II UPGRADE STATUS



- TDRs¹ for all major Phase 2 upgrades completed and reviewed by LHCC
 - Tracker since 2017
 - HGCal since 2018
- MoUs² defined and signatures still in progress
 - MTD, BRIL and DAQ/HLT outstanding
- Tracker has recently passed the EDR³ for the Outer Tracker


Phase-2 Upgrade MoU Addenda Signatory Progress					
Concerning	No.	Addendum	Last signed MoU Addendum received on 19/11/2021	Out of	Remaining
Common Fund	10	CERN-MoU-2017-060	30	56	26
Tracker	11	CERN-MoU-2019-006	13	22	9
Barrel Calorimeter	12	CERN-MoU-2019-007	5	8	3
Muons	13	CERN-MoU-2019-008	10	22	12
HGCal	14	CERN-MoU-2019-009	11	23	12
MoU Extension	15	CERN-MoU-2019-036	29	55	26
L1-Trigger	16	CERN-MoU-2020-319	3	12	9
Totals			101	198	97

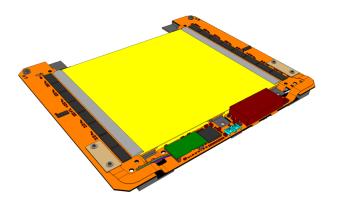

¹ Technical Design Report – Comprehensive description and motivation of the detector design with some details not yet fixed

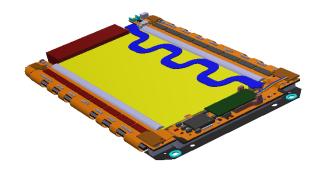
² Memorandum of Understanding - defining technical and financial responsibilities of each Funding Agency in the construction of a subdetector 3 Engineering Design Review - CMS internal review to authorise the construction of significant parts of the detector

OUTER TRACKER

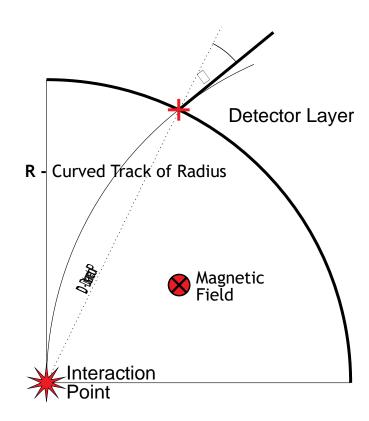
Reminder HL-LHC tracking

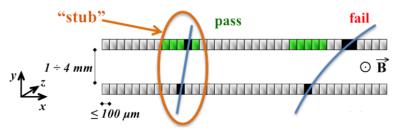
- Challenges for HL-LHC tracking
 - Harsh radiation environment up to
 - IT max.: 3.5 x 10¹⁶ n_{eq}/cm⁻², 1.9 Grad
 - OT max.: 1.1 x 10¹⁵ n_{eq}/cm⁻², 77 Mrad
 - High pileup
 - Increase granularity for sufficient two track separation
 - L1 Trigger needs tracking information
 - Tracker needs to provide data to L1 Trigger at every BX
 - Transmitting full information at every BX not possible, data reduction is required
- Goal: Keep performance of existing system in HL-LHC environment for 3000 fb⁻¹ (ultimate 4000 fb⁻¹)




CMS Tracker Solution

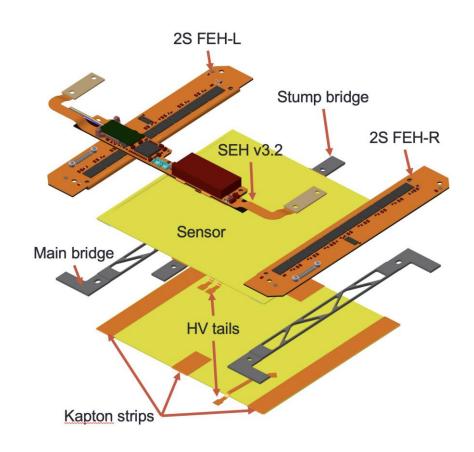
- Fully integrated modules
 - Just add services
 (HV, LV, CO₂ cooling, readout and control links, mechanical mounting)
 - Filtering on high p_t tracks on module
- Just two types of modules used everywhere
 - Barrel and endcaps!
 - 2 and 3 different flavours (sensor spacing)


Data filtering



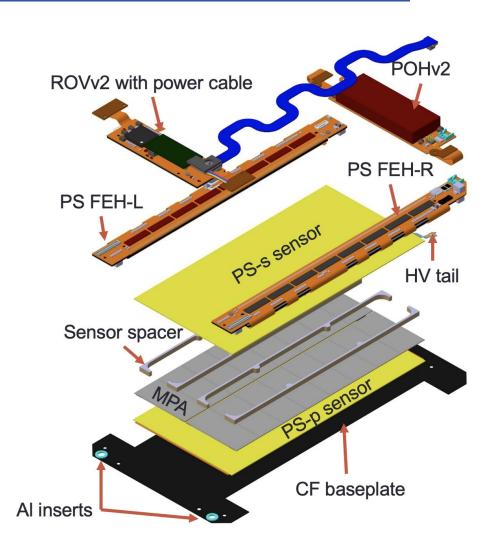
On-module data reduction by only sending hits from particles with a transverse momentum **p**_t of > a few GeV/c

- At given magnetic field the track curvature depends on the particle's p_t
- Different curvature results in different incident angles at a given radius
- Estimate incident angle from hit displacement over a short distance
 - → two parallel sensor planes


The pt Module Concepts

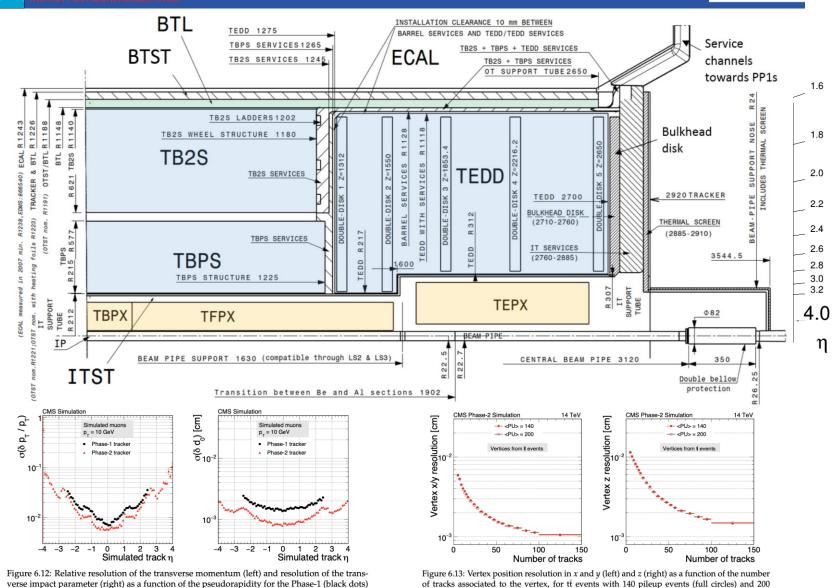
The 2S Module

- <u>2</u> x <u>S</u>trip sensors: 2S sensor
 - Size: 10 x 10 cm²
 - Pitch: 90 μm
 - Length: 5 cm
 - No. of strips per sensor: 2x1016
- 2 x 8 CMS Binary Chips: CBC
 - 2x127 channels per chip
 - Bump bonded to flexible hybrid
 - Connects to top and bottom sensors
 - Interchip communication via hybrid
- Concentrator ASIC: CIC
 - collects data from 8 CBCs (half module)
- Low Power GigaBit Transceiver
 IpGBT + VTRx+
 - Bandwidth: 5 Gb/s
- 2-stage DCDC powering
 - 12 V to
 - 2.5 V (opto)
 - 1.25 V (ASICS)


The p_t Module Concepts

The PS Module

- Macro<u>P</u>ixel sensor: PS-p sensor
 - Size: 5 x 10 cm²
 - Pitch: 100 μm
 - Length: 1.5 mm
 - No. of pixels: 32x960
- Strip sensors: PS-s sensor
 - Size: 5 x 10 cm²
 - Pitch: 100 μm
 - Length: 2.5 cm
 - No. of strips: 2x960
- 2 x 8 Short Strip ASIC: SSA
 - 120 channels per chip
 - Sends hits to MPA
 - Bump bonded to flexible hybrid
- 16 MacroPixel ASIC: MPA
 - 120 x 16 pixels per chip
 - Bump bonded to MacroPixel sensor
 - Includes correlation logic
- Concentrator ASIC: CIC
 - collects data from 8 MPAs
- Low Power GigaBit Transceiver IpGBT + VTRx+
 - Bandwidth: 5 or 10 Gb/s
- 2 stage DCDC powering
 - 12 V to
 - 2.5 V (opto)
 - 1.25 V (ASICS)
 - 1.05 V (MPA digital)



Tracker Layout

AUSTRIAN ACADEMY OF SCIENCES

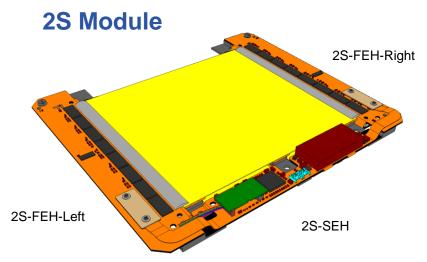
mentum of 10 GeV.

and the upgraded (red triangles) tracker, using single isolated muons with a transverse mo-

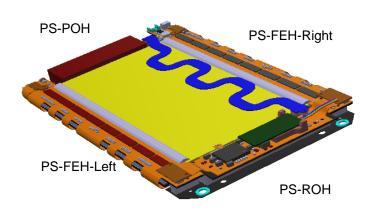
pileup events (open circles).

Mechanics

AUSTRIAN ACADEMY OF SCIENCES



Modules



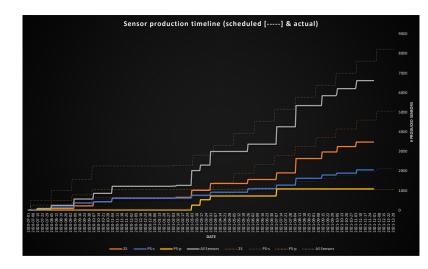
AUSTRIAN ACADEMY OI SCIENCES

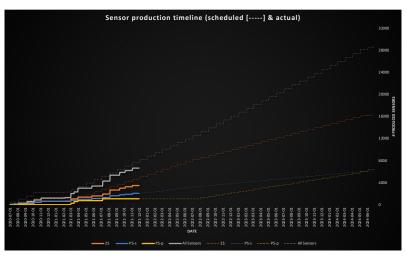
PS Module

Construction Status

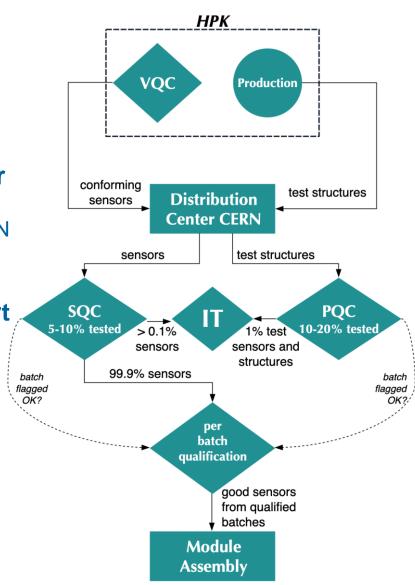
- Outer Tracker in transition to construction
 - Engineering Design Review (EDR) held on 14 15
 October
 https://indico.cern.ch/event/1064838
 - Authorised global production start for Outer Tracker
 - Specifically Hybrids, MaPSA and mechanics
 - Procurement Readiness Reviews (PRRs) already done for
 - Sensors (2019/20)
 - Raw composite materials CFRP, CF-foam, AICF (2020)
 - CBC production (2020)
 - MPA, SSA and CIC design and engineering run (2021)
 - Some components already in production since 2020
 - Sensors and CBC
- Production of modules will start next year

SENSOR PRODUCTION (AT HEPHY)




Production Status

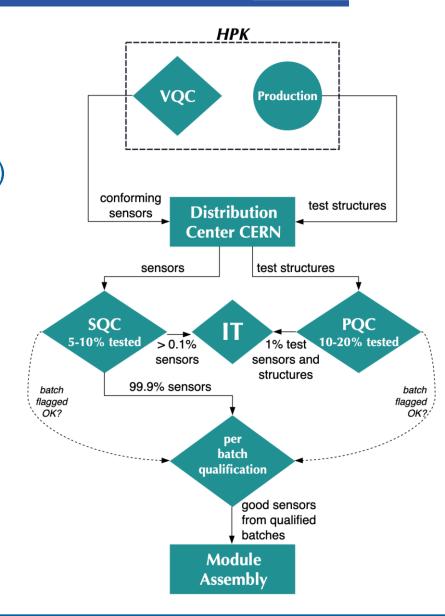
- Sensor production (deliveries) started summer 2020
 - Campaign started within COVID-19 pandemic
 - Lockdowns had significant effects on all centres
 - But all institutes pulled through
 - Several problems identified during pre-production and now corrected
- Projected end date for production is mid 2024
 - Almost 24.000 x 6" wafers
 - 16900 x 2S + 3100 x PS-s + 3750 x PS-p
- Today:
 - > 5000 wafers (> 20%) delivered
 - > 1200 sensors IV tested
 - > 500 sensors fully tested
 - > 3000 halfmoons tested



Quality Assurance

AUSTRIAN ACADEMY OF SCIENCES

- Four tier quality control system
 - VQC Vendor Quality Control
 - SQC Sensor Quality Control
 - PQC Process Quality Control
 - IT Irradiation Tests
- All sensors characterised by producer
 - Results recorded in DB for each sensor
 - Only conforming sensors are sent to CERN
- Acceptance using sample measurements at SQC, PQC and IT
- Production and QA monitored by expert panel
- → Effort lead by HEPHY and KIT
- Participants
 - Europe: Demokritos, Perugia,
 - US: Brown, Rochester
 - Asia: Delhi, NCP Pakistan


Quality Assurance

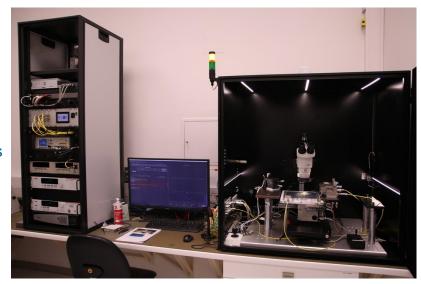
AUSTRIAN ACADEMY OF SCIENCES

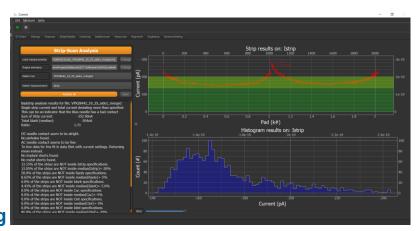
HEPHY's responsibilities

- Managerial tasks
 - Overall planning
 - Co-convener of weekly acceptance meetings (OTSEPP)
 - Contact to Tracker and CMS
 - Contact to Vendor (HPK)
- Sensor Quality Control (SQC)
 - Responsible for testing 25% of the production
- Process Quality Control (PQC)
 - Test structures, characterisation methods and setups developed at HEPHY
 - Responsible for testing 25% of the production

AUSTRIAN ACADEMY OF SCIENCES

SENSOR QUALITY CONTROL SQC AT HEPHY

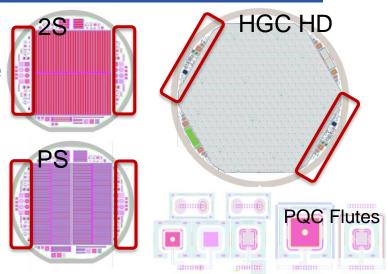


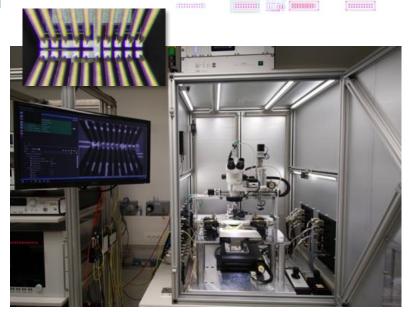

SQC: Tracker

- **SQC S**ensor **Q**uality **C**ontrol: fully characterise strip sensors
- Existing semiautomatic probe station completely refurbished
 - Fully custom made at HEPHY
 - Complex mechanical and electrical setup with precise environmental control and monitoring
 - Can automatically characterise ~2000 strips in 4-8 hours
- **Custom software** to control setup implemented in **Python**
 - Written by PhD Student (D. Blöch)
 - Important first step to phase out proprietary LabVIEW control
 - Plan to be replaced by more reliable Python tool implemented and maintained by Bernhard Arnold
 - Based on existing software tools by Bernhard for other setups like PQC
- Setup in operation every day to test one or two sensors
 - Mainly operated and maintained by Kostas and Stephan
 - Fully characterize at least 3 sensors per batch of ~40, one batch per week
- In addition, **longterm tests** are performed in our climate chamber
 - Including more detailed studies on humidity and temperature behaviour
- After initial difficulties, HEPHY SQC is now among the fastest and most reliable!

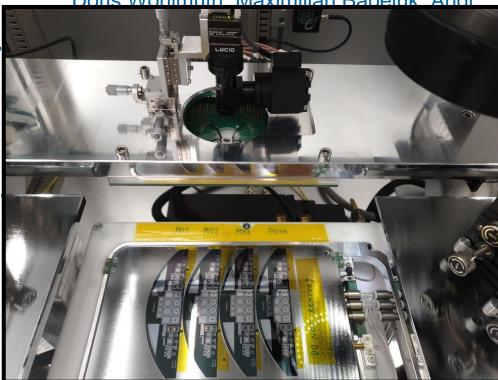
AUSTRIAN ACADEMY OF SCIENCES

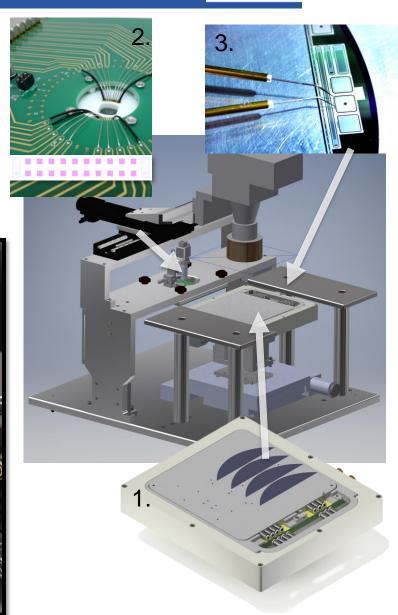
PROCESS QUALITY CONTROL PQC AT HEPHY




PQC: Tracker & HGCal

- PQC Process Quality Control:
 Use test structures to asses the
 quality and stability of the
 production process
 - 6" AC coupled (Tracker 2S and PS-s)
 - 6" DC coupled (Tracker PS-p)
 - 8" DC coupled (HGCal)
- Identical set of test structures on all wafers
- Use standardised pattern of 20 connection pads: flute
 - Connect using standardised probe cards
 - Use switching to access all structures on one flute
 - Automatic movement to next flute


PQC: Tracker & HGCal



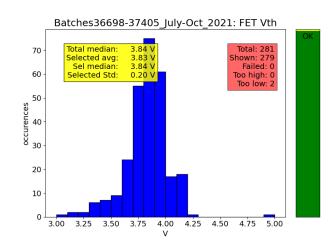
- New versatile semiautomatic probe station
 - Built from scratch in 2019
 - Excellent support for design and manufacturing from HEPHY machine shop
 - Commissioning in 2020 difficult due to lockdowns

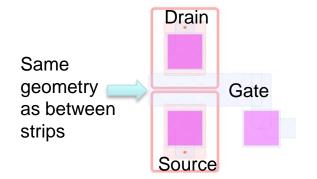
Now reliable working thanks a lot of effort:
 Doris Wohlmuth Maximilian Babeluk Andi

PQC: Tracker & HGCal

- PQC is providing quick and detailed check of process stability
 - First batches of sensor characterized within a week of delivery
 - Completed within a month
 - SQC usually lags behind a few weeks
- For each batch of ~40 wafers we perform several 100 of measurements
- All four Tracker PQC centers produce consistent results, reliably and quickly
- Also used to understand and qualify the process used for the future HGCal production

PQC: Example





Some exemplary results from

http://heros.local.hephy.at/pqcresults/INCOMING/analysis_Batches36698-37405_JulyOct_2021/results.html

- Doris analysed all measurements she performed between July to October
 - 281 Halfmoons characterised
 - Analysis done by script developed by Maximilian
- Example: Threshold voltage of a FET using inter-strip geometry inside channel
 - Representative and sensitive to strip isolation
- Perfect batches show values around 3.8 V with a healthy ~gaussian distribution
- Some weak batches (not shown here) have
 2 V
 - But do not yet compromise strip isolation
 → FET threshold V is more sensitive
 - HPK informed and can take countermeasures

Summary for Tracker

- Outer Tracker construction started and will be in full swing (module production) by end of 2022
- Sensor production ongoing since 2020 with HEPHY leading the QA effort
- High quality of sensors delivered by HPK as demonstrated and assured by our measurements
- More detailed and scientificly interesting investigations starting now (not shown here)
 - → Now to Moritz with an update on HGCal

THANKS FOR YOUR ATTENTION!