

UNCE Seminar IPNP

Rare B decays at ATLAS experiment

Pavel Řezníček 15^{th} Dec 2021

Rare B decays

- B
 ightarrow II and B
 ightarrow s(d)II suppressed at tree level in the SM
 - Further suppression by CKM and helicity
- For pure leptonic decays BR is predicted within SM with small uncertainties

New physics contributions

• ... could suppress or enhance decay rates

• ... could affect angular distributions in b
ightarrow sll

• Lepton Flavour Universality tests

B anomalies

• Long-standing tension w.r.t. SM in rare b-hadron decays

Interpreted in Effective Field Theories

- Branching ratio of ${\it B}^0_{(s)}
 ightarrow \mu \mu$
- Angular analysis of $B^0 o K^{*0} \mu \mu$
- In progress: lifetime of $B^0_s
 ightarrow \mu \mu$
- In progress: $R(K^*)$
- Potentially $R(K^+)$, $R(D^{(*+)})$, other $b \rightarrow sll$ decays

Study of the rare decays of B_s^0 and B^0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector

JHEP 04 (2019) 098

Analysis of rare $B^0_{(s)} ightarrow \mu \mu$ decays

- FCNC in the SM proceeding via loop and box diagrams, and helicity suppressed $\implies \mathcal{B} \sim 10^{-9}$
- BSM can significantly contribute, modifying the branching ratio

Measurement

$$\mathcal{B}(B^{0}_{(s)} \to \mu^{+}\mu^{-}) = N_{d(s)} \cdot \frac{\mathcal{B}(B^{\pm} \to J/\psi K^{\pm}) \cdot \mathcal{B}(J/\psi \to \mu^{+}\mu^{-})}{N_{J/\psi K^{\pm}} \cdot \frac{\epsilon_{\mu^{+}\mu^{-}}}{\epsilon_{J/\psi K^{\pm}}}} \cdot \frac{f_{u}}{f_{d(s)}}$$

- $\mathcal{B}(B^0_{(s)} \to \mu\mu)$ measurement relative to $\mathcal{B}(B^{\pm} \to J/\psi K^{\pm})$, $B^0_s \to J/\psi \phi$ as control channel
- Blinded signal di-muon invariant mass region [5166, 5526] MeV
- BDT based background suppresion, trained on sidebands data
- Yields $N_{d(s)}$ and $N_{J/\psi K^{\pm}}$ obtained from UML fits to the mass spectra
- Relative reconstruction efficiencies estimated from MC (corrected for data-MC differences): $\epsilon_{\mu^+\mu^-}/\epsilon_{J/\psi K^\pm} = 0.1176 \pm 0.0009_{\rm stat.} \pm 0.0047_{\rm syst.}$
- Known branching ratios from PDG, $f_u/f_{d(s)}$ from HFLAV

• $B^{\pm} \rightarrow J/\psi K^{\pm}$ yield: 33435 $\pm 0.3\%_{\text{stat.}} \pm 4.8\%_{\text{syst.}}$

Backgrounds

Partially reconstructed *b*-hadron decays

- Mostly in the low di-muon mass region
- Shape free in the mass fit

Peaking backgrounds

- Hadronic B⁰_s decays where hadrons are misidentified as muons
- Simulated and fixed in the mass fit

Continuum background

- Combinatorics of μ and uncorrelated hadron decays
- Reduced by BDT
- Linear shape constrained in the mass fit across BDT bins
- Systematics due to $B_c^{\pm} \rightarrow J/\psi \mu \nu$ and $B_{(s)}^0/\Lambda_b^0 \rightarrow h \mu \nu$ decays

BDT and signal yield extraction

- BDT formed from 15 variables
 - kinematics, isolation, B-vertex separation from PV
- BDT output validated on reference B[±] → J/ψK[±] and control B⁰_s → J/ψφ channels, observed difference applied as a correction to signal channel
- Signal region divided into four BDT bins with constant signal efficiency
- Simultaneous extraction of $B_s^0 \rightarrow \mu\mu$ and $B^0 \rightarrow \mu\mu$ yields from unbinned maximum likelihood fit to di-muon mass distributions in the four BDT bins

0.035 ATLAS Simulation 0.03 5 0.025 0.02 $B^0_{-} \rightarrow \mu^+ \mu^- MC$ ATI AS Simulation Double Gaussian fit √s = 13 TeV, 26.3 fb⁻¹ $B^0 \rightarrow \mu^+ \mu^- MC$ Double Gaussian fit 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 BDT output 5000 5200 5400 5600 5800 Dimuon invariant mass [MeV]

0.04

→ u+u: MC w/o BDT reweighting

→ u+u: MC with BDT reweighting

Results

• Contours obtained using Neyman construction

Standard Model

$$\mathcal{B}(B^0_s o \mu\mu) = (3.66 \pm 0.14) imes 10^{-9} \ \mathcal{B}(B^0 o \mu\mu) = (1.03 \pm 0.05) imes 10^{-10}$$

ATLAS 2015 + 2016 data

$$\mathcal{B}(B^0_s \to \mu\mu) = (3.2^{+1.1}_{-1.0}) \times 10^{-9}$$

 $\mathcal{B}(B^0 \to \mu\mu) < 4.3 \times 10^{-10}$ at 95% CL

ATLAS Run 1 + 2015 + 2016 data $\mathcal{B}(B_s^0 \to \mu\mu) = (2.8^{+0.8}_{-0.7}) \times 10^{-9}$ $\mathcal{B}(B^0 \to \mu\mu) < 2.1 \times 10^{-10}$ at 95% CL

- $\bullet\,$ Combined measurement compatible with SM at 2.4 σ
- Statistic uncertainties dominate
- Largest systematics contribution from di-muon mass fit procedure

$B^0_{(s)} ightarrow \mu \mu$: LHC combination

 Combining binned 2D profile likelihoods, systematics treated as independent, except for f_s/f_d which is the only source of correlation between experiments

P. Řezníček

ATLAS Rare B Decays

- Theory prediction limited by $\left|V_{cb}\right|$
- Experimental uncertainty on B_s^0 dominated by f_s/f_d
- Mass resolution improvements will help distinguishing the B_s^0 and B_d^0 peaks
- Additional information from effective lifetime and *CP* asymmetry
 - Distinguish RH and LH contributions
 - Inclusion of $B^0_s \to \mu \mu \gamma$ studies to probe vector coupling

- Computations in SUSY unified models (PRD 91 (2015) no.9, 095011)
- Subset consistent with other measurements

Angular analysis of $B^0 \to K^{*0} \mu^+ \mu^-$ decays in *pp* collisions at $\sqrt{s} = 8 \text{ TeV}$ with the ATLAS detector (Run 1 data)

JHEP 10 (2018) 047

Analysis of rare $B^0 ightarrow K^{*0} \mu \mu$ decays

- FCNC in the SM proceeding via loop and box diagrams
- BSM can significantly contribute, modifying the differential decay rate

Measurement

$$\mathcal{L} = \frac{e^{-N}}{n!} \prod_{i=1}^{n} \sum_{j} n_{j} P_{ij}(m_{K\pi\mu\mu}, \cos\theta_{K}, \cos\theta_{L}, \phi; \hat{\boldsymbol{\rho}}, \hat{\boldsymbol{\theta}})$$

- Extended unbinned maximum likelihood fit of the 3D decay angles distribution (and *B*-candidate mass)
 - Dependent on di-muon invariant mass² q^2 (ignored range above $c\bar{c}$)
- Blinded fit results
- Study of number of potential backgrounds from radiate resonant decays and other semileptonic rare decays
 - Treated in systematics, no need to include in default fit
- Detector acceptance (sculpting of the angular distributions) from MC
- No ${\cal K}/\pi$ separation in ATLAS \implies 11% wrong tag of B-flavor

Fit simplifications

Low statistics (\sim 340 signal events) does not allow full fit \implies simplifications:

Angular distribution folding

- $\bullet\,$ Full angular distribution $\rightarrow\,$ four simplier distributions
- Lost sensitivity to S_6 and S_9

 $\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_L d\cos\theta_K d\phi dq^2} = \frac{9}{32\pi} \left[\frac{3(1-F_L)}{4} \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1-F_L}{4} \sin^2\theta_K \cos 2\theta_L \right]$ $-F_L \cos^2\theta_K \cos 2\theta_L + S_3 \sin^2\theta_K \sin^2\theta_L \cos 2\phi$ $+S_4 \sin 2\theta_K \sin 2\theta_L \cos \phi + S_5 \sin 2\theta_K \sin \theta_L \cos \phi$ $+S_6 \sin^2\theta_K \cos \theta_L + S_7 \sin 2\theta_K \sin \theta_L \sin \phi$ $+S_8 \sin 2\theta_K \sin 2\theta_L \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_L \sin 2\phi \right]$ $\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_L d\cos\theta_L d\phi d\phi^2} = \frac{9}{2\pi} \left[\frac{3(1-F_L)}{4} \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1-F_L}{4} \sin^2\theta_K \sin^2\theta_L \sin^2\theta_K + \frac{1-F_L}{4} \sin^2$

$$\frac{1}{d\Gamma/dq^2} \frac{d^2\Gamma}{d\cos\theta_\ell d\cos\theta_K d\phi dq^2} = \frac{9}{8\pi} \left[\frac{3(1-\Gamma_L)}{4} \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1-\Gamma_L}{4} \sin^2\theta_K \cos 2\theta_\ell - F_L \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_\ell \cos 2\theta_\ell + S_5 \sin 2\theta_K \sin^2\theta_\ell \cos 2\theta_\ell + S_5 \sin^2\theta_\ell \cos^2\theta_\ell + S_5 \sin^2\theta_\ell \sin^2\theta_\ell \cos^2\theta_\ell + S_5 \sin^2\theta_\ell \sin^2\theta_\ell \cos^2\theta_\ell + S_5 \sin^2\theta_\ell \sin$$

Fit simplifications

Low statistics (\sim 340 signal events) does not allow full fit \implies simplifications:

Angular distribution folding

- $\bullet\,$ Full angular distribution $\rightarrow\,$ four simplier distributions
- Lost sensitivity to S_6 and S_9

B-candidate mass distribution pre-fits

- B-candidate mass distribution pre-fitted and fixed in the angular fit
- Mass nuisance parameters extract from fits to control channels $(B^0 \rightarrow J/\psi K^*, B^0 \rightarrow \psi(2S)K^*)$

Rough q^2 binning

• 3 bins only in q² GeV]: (0.04 - 2), (2.0 - 4.0), (4.0 - 6.0)

Fit projections

• Example of fit projections for the extraction of S_5 (resp. P'_5) parameter for q^2 bin (4-6) GeV

P. Řezníček

Results

- $\bullet\,$ Results \sim compatible with Standard Model predictions and with other experiments
- Largest (local) deviations of 2.7 σ for P_5' and P_4' , follow LHCb observation

${\cal B}^0 o {\cal K}^{*0} \mu \mu$: HL-LHC projections

- The transitions b
 ightarrow sll provide access to number of operators
- Statistics would allow improvement in the precision by one order
 - $\bullet~\sim(5-9)\times$ for ATLAS

ATL-PHYS-PUB-2019-003

Combination of all observables will help discriminating NP scenarios

arXiv:1812.07638

