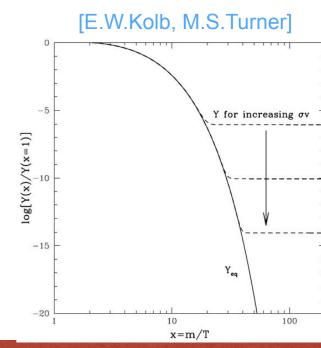
The comprehensive search for CP violating Higgs portal WIMP

Taisuke Katayose (Osaka University)

work in progress

Collaborators, M.Takeuchi, S.Matsumoto, Y.Watanabe, I.Saha

Physics in LHC and Beyond


2022/5/12

About WIMP

- Weakly Interacting Massive Particle (WIMP)
- Very well-motivated dark matter candidate (contained in many BSM theories)
- Stable particle, mass is around GeV~TeV
- Abundance is determined by freeze-out mechanism
- We can estimate abundance by solving Boltzmann Eq.

$$\frac{dn}{dt} + 3Hn = \langle \sigma v \rangle (n_{\rm eq}^2 - n^2)$$

n : Number density of DM $\langle \sigma v \rangle$: Annihilation cross section of DM

Classification of WIMP

- There are many models which include WIMP
- It is convenient to classify WIMP by its gauge representation

Lorentz	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$
scalar		1	0
or		2	-1/2, +1/2
fermion	1	3	-1, 0, +1
or		4	-3/2, -1/2, +1/2, +3/2
vector		5	-2, -1, 0, +1, +2
		•	• • •

 Hypercharge is quantized by the condition that DM must be electrically neutral

Classification of WIMP

- There are many models which include WIMP
- It is convenient to classify WIMP by its gauge representation

Lorentz	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	
scalar		1	0	
or		2	-1/2, +1/2	
fermion	1	3	-1, 0, +1	
or		4	-3/2, -1/2, +1/2, +3/2	
vector		5	-2, -1, 0, +1, +2	
		:	÷	
The interaction of SU(2)-multiplet WIMP is letermined by gauge theory				
Physics in LHC and Beyond				

Classification of WIMP

- There are many models which include WIMP
- It is convenient to classify WIMP by its gauge representation

Lorentz	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$
scalar		1	0
or		2	-1/2, +1/2
fermion	1	3	-1, 0, +1
or		4	-3/2, -1/2, +1/2, +3/2
vector		5	-2, -1, 0, +1, +2

The interaction of SU(2)-singlet WIMP cannot be determined from gauge theory, and there can be various types of interaction

We focus on SM gauge singlet fermionic WIMP in this talk

Singlet fermionic WIMP

• We impose Z_2 symmetry to stabilize WIMP

WIMP(χ) : odd SM particles : even

 Renormalizable operators cannot be written because of gauge symmetry and Z₂ symmetry

Mass dimension	Operator		
4	None		
5	$\bar{\chi}\chi H ^2$	$\bar{\chi}i\gamma_5\chi H ^2$	
6	$ar{\chi}\gamma_{\mu}\gamma_{5}\chiar{Q}\gamma^{\mu}Q$	$ar{\chi}\gamma_{\mu}\gamma_{5}\chi\partial_{ u}F^{\mu u}$	etc.

Singlet fermionic WIMP

• We impose Z_2 symmetry to stabilize WIMP

WIMP(χ) : odd SM particles : even

 Renormalizable operators cannot be written because of gauge symmetry and Z₂ symmetry

Mass dimension	Operator		
4	None		
5	$ar{\chi}\chi H ^2$	$\bar{\chi}i\gamma_5\chi H ^2$	
6	$ar{\chi}\gamma_{\mu}\gamma_{5}\chiar{Q}\gamma^{\mu}Q$	$\chi_{\mu}\gamma_{5}\chi\partial_{\nu}F^{\mu\nu}$	etc.

We focus on CP violating Higgs Potral operator

[L.Lopez-Honorez, T.Schwetz, J.Zupen (2012)] (The reason will be mentioned later)

Singlet fermionic WIMP

• We impose Z_2 symmetry to stabilize WIMP

 $WIMP(\chi)$: odd SM particles : even

 Renormalizable operators cannot be written because of gauge symmetry and Z₂ symmetry

Mass dimension	Operator		
4	None		
5		$\bar{\chi}i\gamma_5\chi H ^2$	
6	$ar{\chi}\gamma_{\mu}\gamma_{5}\chiar{Q}\gamma^{\mu}Q$.	$\chi_{\mu}\gamma_{5}\chi\partial_{\nu}F^{\mu\nu}$	etc.

We need to introduce mediator field to connect WIMP and Higgs field for the UV-completion

The model

- New particles are WIMP and a mediator particle
- WIMP : SM gauge singlet fermion (χ)
- Mediator : SM gauge singlet CP odd scalar (A)
- Interaction of WIMP and mediator : $A(\bar{\chi}i\gamma_5\chi)$
- Interaction of Higgs and mediator : $A |H|^2$
- Effective operator obtained by integrating out the mediator field : $(\bar{\chi}i\gamma_5\chi) |H|^2$

Lagrangian

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2}\bar{\chi}(i\partial \!\!\!/ - m_{\chi})\chi + \frac{1}{2}(\partial_{\mu}A)^2 - \frac{y_p}{2}A(\bar{\chi}i\gamma_5\chi) - V(A,H)$$
$$V(A,H) = \mu_{AH}A|H|^2 + \frac{\lambda_{AH}}{2}A^2|H|^2 + \mu_1^3A + \frac{\mu_A^2}{2}A^2 + \frac{\mu_3}{3!}A^3 + \frac{\lambda_A}{4!}A^4$$

- Mass mixing of mediator and SM Higgs occurs after the symmetry breaking
- We call the neutral scalar fields a and h (125GeV) after the diagonalization

$$\begin{pmatrix} h \\ a \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} h' \\ a' \end{pmatrix} \leftarrow \text{Original SM Higgs} \leftarrow \text{Expansion of } A \text{ around the vacuum}$$

Parameters of the model

- Mass of WIMP : m_{χ}
- Mass of mediator : m_a

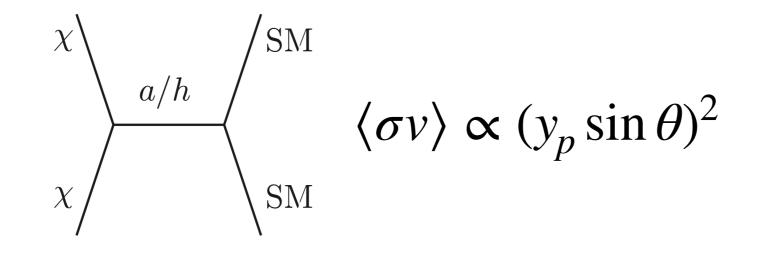
• Coupling constant of WIMP and mediator : y_p

- Mixing angle of mediator and Higgs : $\sin\theta$
- Scalar three point coupling $: C_{ahh}$
- Another scalar three point coupling : C_{aah}
- Scalar four point coupling of mediator : λ_{aaaa}

Parameters of the model

- Mass of WIMP : m_{χ}
- Mass of mediator : m_a
- Coupling constant of WIMP and mediator : y_p
- Mixing angle of mediator and Higgs : $\sin \theta$
- Scalar three point coupling $: C_{ahh}$
- Another scalar three point coupling : C_{aah}
- Scalar four point coupling of mediator : λ_{aaaa}

- Relic abandance
- Direct detection
- Collider physics
 etc...

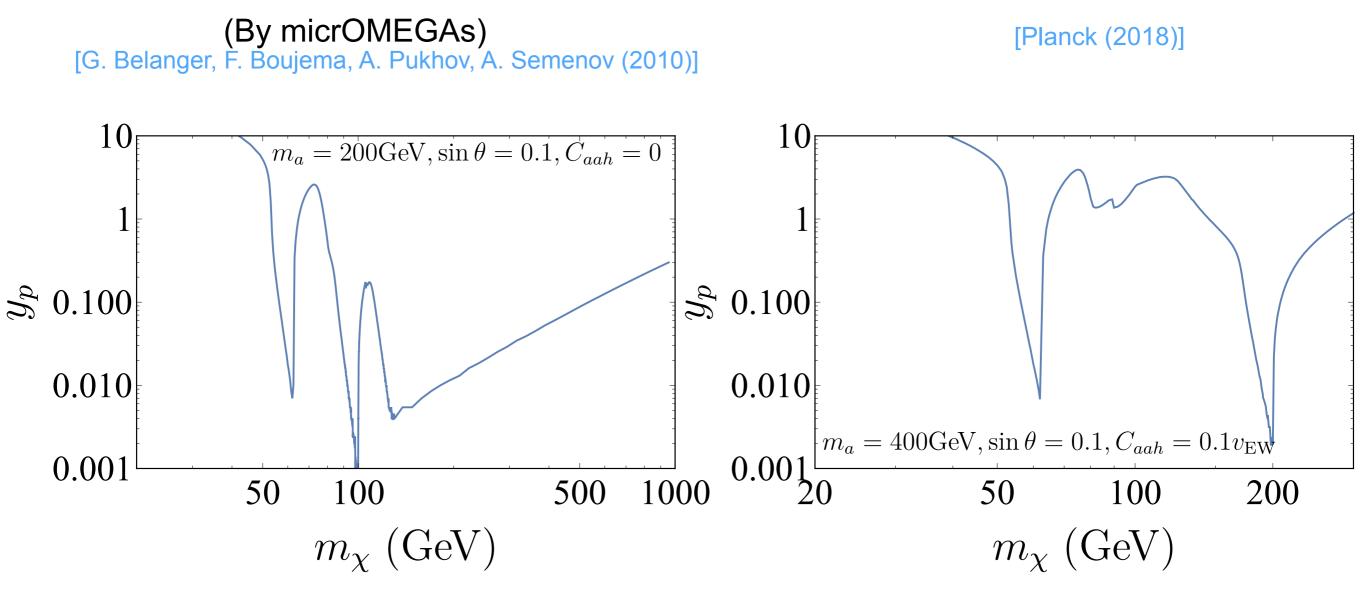

- Decay of the scalar particles
- Vacuum stability

Constraint on the model

- Vacuum stability condition
- Relic abundance condition
- Direct detection
- Collider experiment
- Indirect detection

Relic abundance condition

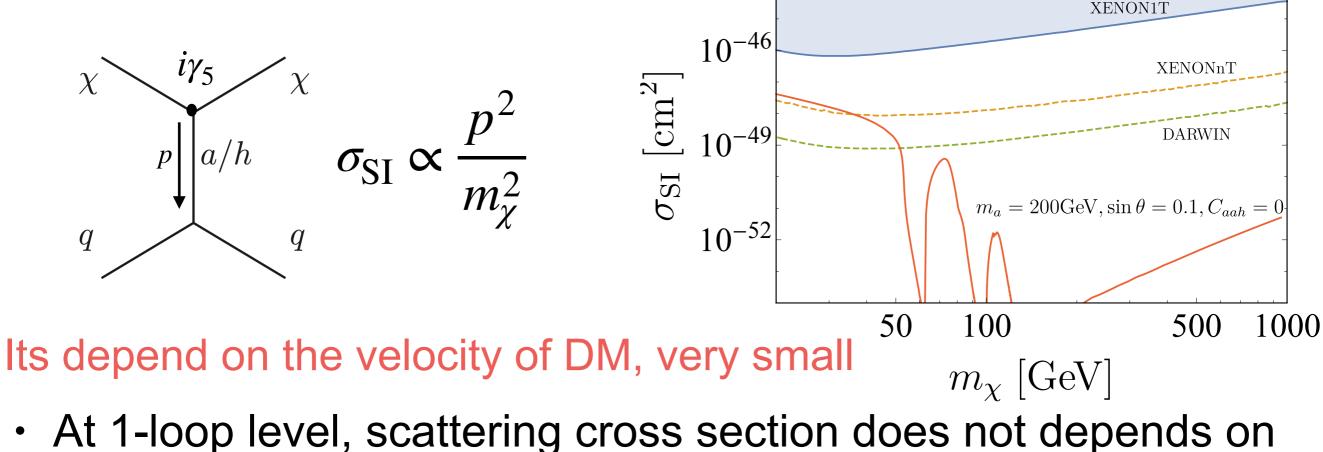
• $\chi\chi \rightarrow a/h \rightarrow SMs$ is main annihilation mode

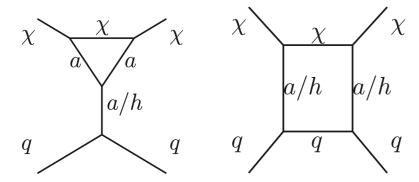


- $\chi\chi \to ah$ can happen for $2m_{\chi} > m_a + m_h$
- $\chi\chi \to aa$ can happen for $m_{\chi} > m_{a}$

We mainly focus on $\chi \chi \to a/h \to SM$ annihilation mode, which means the region $m_{\chi} < m_a$

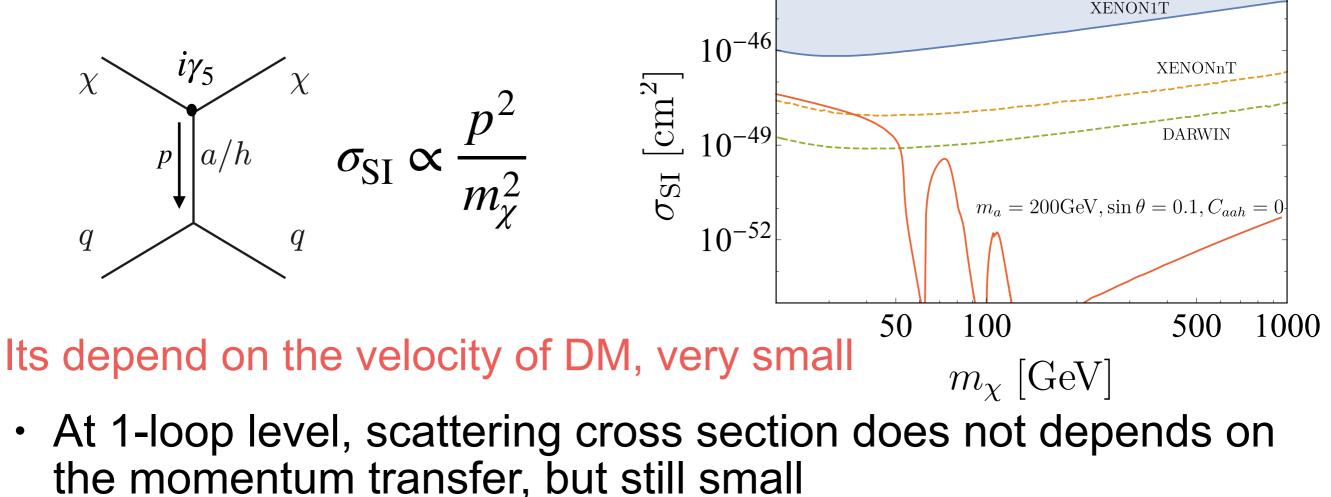
Relic abundance condition

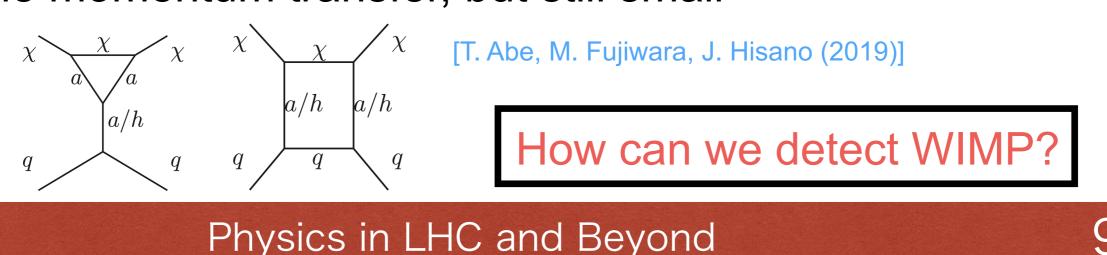

• Calculate the parameters to obtain $\Omega h^2 = 0.120$


In peaky region, h and a propagate on-shell for annihilation of DM

Direct detection

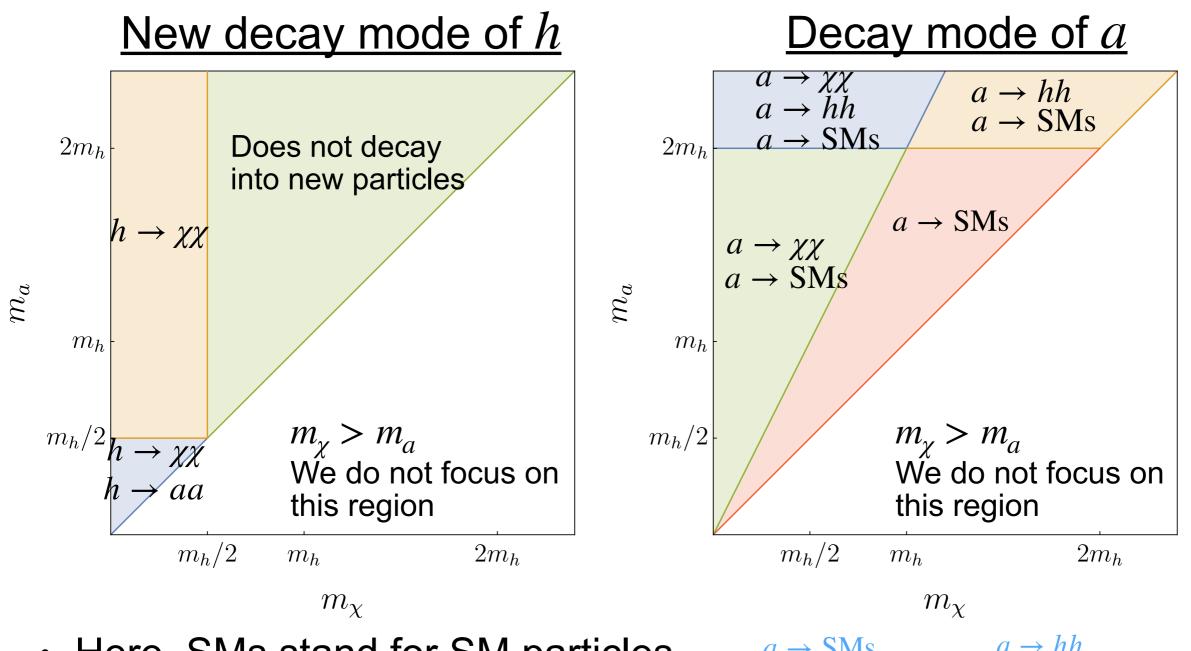
 Scattering cross section depends on the momentum transfer at the tree level

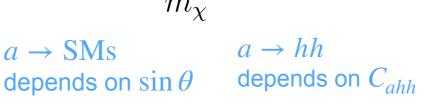

 At 1-loop level, scattering cross section does not depends on the momentum transfer, but still small



[T. Abe, M. Fujiwara, J. Hisano (2019)]

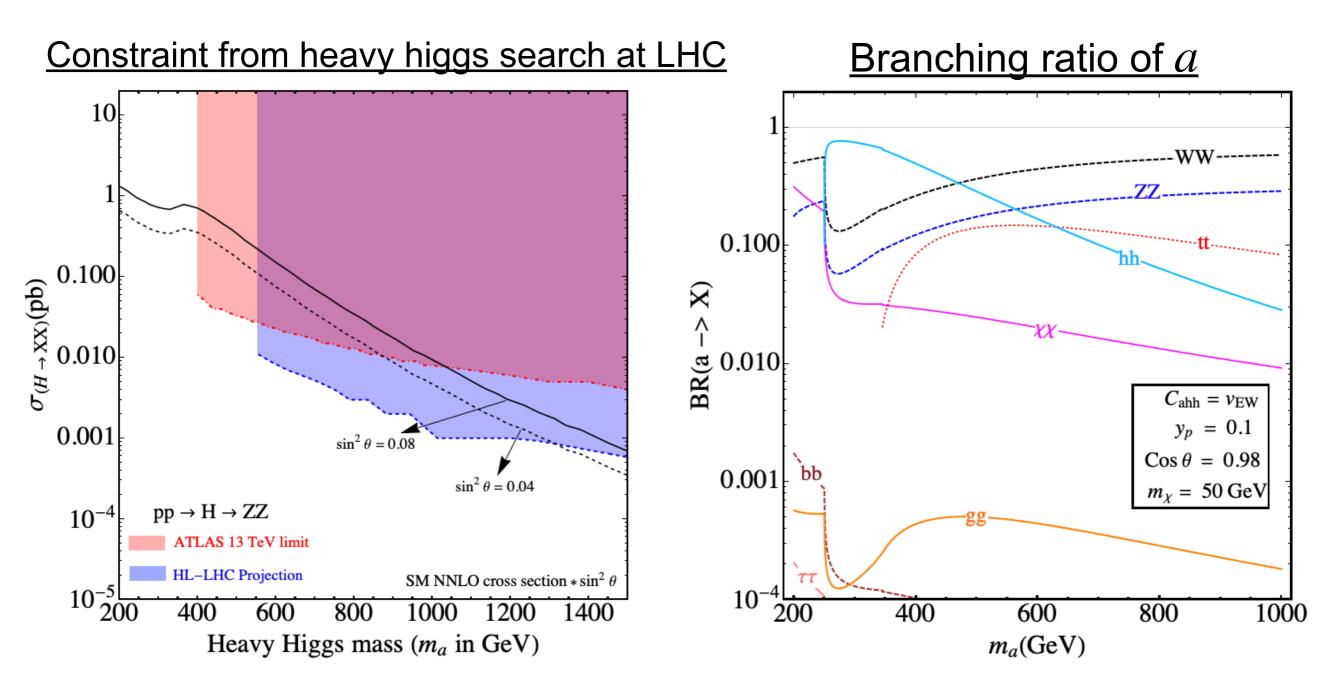
Direct detection


 Scattering cross section depends on the momentum transfer at the tree level



Collider experiment

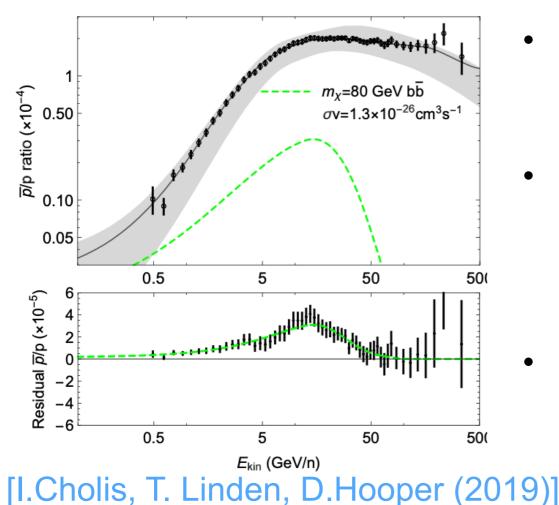
Look at the decay of 125 GeV Higgs and mediator



 Here, SMs stand for SM particles other than higgs

Collider experiment

Looking at decay of a (taking some benchmark points)



Physics in LHC and Beyond

11/13

Indirect detection

- Pair annihilation of WIMPs can occur in our galaxy
- $\chi\chi \to a/h \to SMs \to \gamma, e^+, e^-, P, \bar{P} \dots$
- The remnant particles of this annihilation can be observed in cosmic rays

- Energy spectrum of \bar{P} has a small excess abrund 10GeV [AMS-02]
- This can be explained by s-wave annihilation of DM, $\chi\chi \rightarrow b\bar{b}$ [A.Cuoco, J.Heisig D.Hooper,(2017)]
- Our model is a candidate of such an annihilating DM!!

$$\chi\chi \to a/h \to b\bar{b}$$

Summary

- We consider various experiments and observations for SM gauge singlet fermionic WIMP, assuming CP odd scalar mediator
- Direct detection experiments do not work effectively for this model, and large parameter region is remained uncovered
- Precision measurement of Higgs and direct production of mediator particles at collider experiments become very important
- As the implication from the indirect detection, the excess of anti-proton at a few 10GeV can be explained by this model