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Tasks in Machine Learning

Machine Learning
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From: https://towardsdatascience.

From: https://thegradient.pub com/goqgle-ais-new-object-detection
/semantic-segmentation/ -competition-6dde25cf099d
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Relationships among Al-related fields

Artificial Intelligence, Al

*Rule bases
*Expert systems

Machine Learning, ML

*Support vector machine
*Logistic regression
*Ridge regression
*(shallow) neural networks

Representation Learning, RL

*(shallow) autoencoder
*Dictionary learning

Deep Learning, DL

*Restricted Boltzmann machine
*Deep neural networks
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Difference between classic ML and deep learning

* Classic machine learning

3 2 Feature
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You know what you want as output

Flavor tagging: a classification problem

Filtering: an anomaly detection problem

Particle tracking: a clustering problem

Vertex finding: a classification/clustering problem

* Energy correction: a regression problem

3 ABAR T~ & CUF IOV 7 PIlh

saka University Institute for Datability Science



But then with which network architecture?

Multi-layer perceptron (MLP)

Hidden Layer

Input Layer

From: https://becominghuman.ai/multi-layer-perceptron-
mlp-models-on-real-world-banking-data-f6dd3d7e998f

Convolutional neural networks (CNNs)
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From: [Tabian et al., “A Convolutional Neural Network for Impact Detection
and Characterization of Complex Composite Structures,” Sensors 19(22), 2019]

Graph neural networks (GNNSs)
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From: https://theaisummer.com/Graph_Neural_Networks/

Output
Probabilities

Add & Norm
Feed
Forward
[} b,
((Add & Norm J«~

Multi-Head
Attention

Transformers

Nx

Add & Norm e~
Masked
Multi-Head

Attention

A )
E—

Multi-Head
Attention

A B

. J

Positional
Encoding

Positional
Encoding

Input Output
Embedding Embedding

Inputs Outputs
(shifted right)

From: https://pytorch.org/tutorials/beginner/transformer_tutorial.html



Multilayer Perceptron

Basic relationship between h; and h;:
h2+1 = W;h; + by
hy = U(h;+1)

3) ABAZF—HEUFTOY T4 P HilE
Osaka University Institute for Datability Science

ity Insti



MLP examples

Samples Petal ~

(instances, observations)

* Classification of iris species
e 4D data -
e 3 class classification

Sepal Sepal Petal
length width length

Sepal len.
_ Setosa —
Sepa| Wldth . n 5.9 Virginica
Versicolour | T , N
Petal len. N Sepal
Petal width Ver'ginica / Class labels

Features (targets)

(attributes, measurements, dimensions)

From https://bishwamittra.github.io/imli.html

28px

* Handwritten digit recognition (MNIST) F il

. 28x28=784D data &l 8
* 10 class classification i
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From https://liclog.net/excel-
vba-deeplearning-mnist-download/
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Is it scale?

 MLPs model dense dependency between layers

* Asingle element in an output layer depends on all elements in the
input layer

* The most flexible and capable

* The number of learnable parameters is enormous

10K-D 10K-D 10K-D
10-D

100M 100M 0.1M ) 100M x L + 0.1M + «

) ARAZF—FEUFATOY T4 P

Osaka University Institute for Datability Science



Structures and dependency of input matters

e Data often has a structure
« Animage: 3D (red, green blue) vectors aligned on 2D grid points
« A sentence: asequence of symbols (words)
« A molecule: a graph of symbols (atoms)

* The structure (may) defines possible dependency among
the smaller units

Make the dependency sparse using the structure
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Convolutional Neural Networks

* CNNs are a special case of MLPs
* Assumption:

* Locality of dependency » Use of convolution kernels
* Spatial invariance

From https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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Reduction of parameters over MLPs

* For example: An image of 100 px by 100 px in RGB
* Input data: 100x100x3 = 30K-D
* The first hidden layer: 50x50x20 = 50K-D

« Parameters to be learned for input to first hidden layer:
« MLP: 30K x 50K + a =1500M + a

* 5x5 Convolution kernel: 5x5x3x20+a=1500 + a
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CNN examples

Image recognition by CNN

From: https://theaisummer.com/Graph_Neural_Networks/
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Sound classification by 1D CNN

From: https://medium.com/ai%C2%B3-theory-practice-business/

enhanced-environmental-sound-classification-with-a-cnn-

1ca388748bc9

CT image classification by 3D CNN

From https://www.nature.com/articles/s41598-020-79336-5
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Graph neural networks

* CNNs assumes regular grid points but some types of data

may have different (arbitrary) structures

« Regular structure but hexagonal adjacency
 Arbitrary connections as in molecules

» Generalize convolutions with graphs
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From: https://theaisummer.com/Graph_Neural_Networks/
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GNN examples

. . M B [Fung et al., “Benchmarking graph neural networks for materials chemistry, npj Computational
Material P rediction Materials 7, no. 84, 2021]

Bulk Surface MOF 2D Cluster
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Tra nSfO rmers [Vaswani et al., “Attention is all you need,” NeurlPS 2017]

« GNNs often assume static and predefined connections, but
connections may not be always obvious
« We often don't know what depends on what
« Eg., dependency in a sentence
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Australian scientist discovers star with telescope
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! ! From: https://pytorch.org/tutorials/
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Transformer examples =

« Sentiment analysis from text
Positive or negative BERT
* Analyzing reviews

E[CLS] E, E, Ex
M N N —
[CLS] Tok 1 Tok 2 Tok N

Single Sentence

From: https://www.geeksforgeeks.org/sentiment-classification-using-bert/

* Image classification

Vision Transformer (ViT)
* The locality assumption in CNNs
may be too strong

MLP
Head \
e Transformers allows more

flexible dependencies "~ ‘ [19] @15 @ISI

Transformer Encoder
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From: https://paperswithcode.com/method/vision-transformer



So which one should be use?

* If your data is small and you don’t know its within-data dependency, an
MLP is the first option

« MLPs is a good choice if # training data is enough and you have abundant
computational resource

« E.g., individual particle (rep. by momentum and energy)

* If you know your data has a regular grid structure (like images), CNNs
should be used

 E.g., particle trajectories represented with an image

* If your data has explicit connections (dependency), GNNs can be used
« E.g., particles before and after decay

* If you have a large amount of data but within-data dependency is not
obvious, Transformers help
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Take-away

e Review different architectures of neural networks
« Dependency matters

* Network structures determines flexibility of the model, but highly
flexible models requires more data and computational resources

* Hope this helps someone who wants to start using neural
networks
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