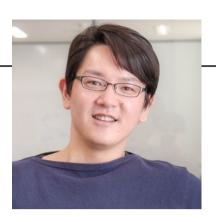
Recent Machine Learning Techniques and Exploration of New Physics

May 12, 2022 Yuta Nakashima

About me

Yuta Nakashima

Institute for Datability Science, Osaka University Associate Professor



• Bio

- -2012: Ph.D Course, Osaka University
- 2012: Visiting Scholar, UNC Charlotte
- 2012-2016: Assistant Prof., Nara Institute for Science and Technology
- 2015-2016: Visiting Scholar, CMU
- 2017- : Current Position

Research interests

- Computer Vision; CV
- Pattern Recognition; PR
- (Natural Language Processing; NLP)

Tasks in Machine Learning

Machine Learning Unsupervised **Supervised** Reinforcement **learning learning learning** Dimensionality Classification reduction Regression Clustering Detection $35.4 \in \mathbb{R}_{+}$ Segmentation From: https://towardsdatascience. com/google-ais-new-object-detection From: https://thegradient.pub -competition-6dde25cf099d /semantic-segmentation/

Relationships among Al-related fields

Artificial Intelligence, AI

- Rule bases
- Expert systems

Machine Learning, ML

- Support vector machine
- Logistic regression
- Ridge regression
- •(shallow) neural networks

Representation Learning, RL

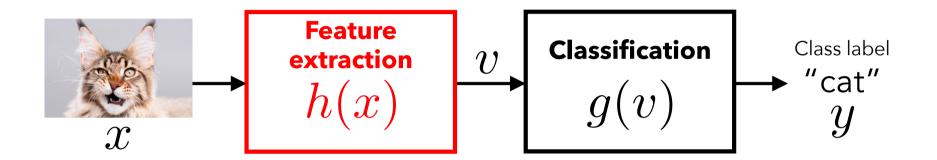
- •(shallow) autoencoder
- Dictionary learning

Deep Learning, DL

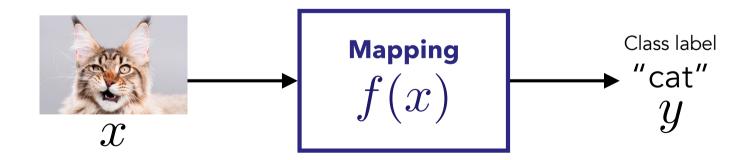
- Restricted Boltzmann machine
- Deep neural networks

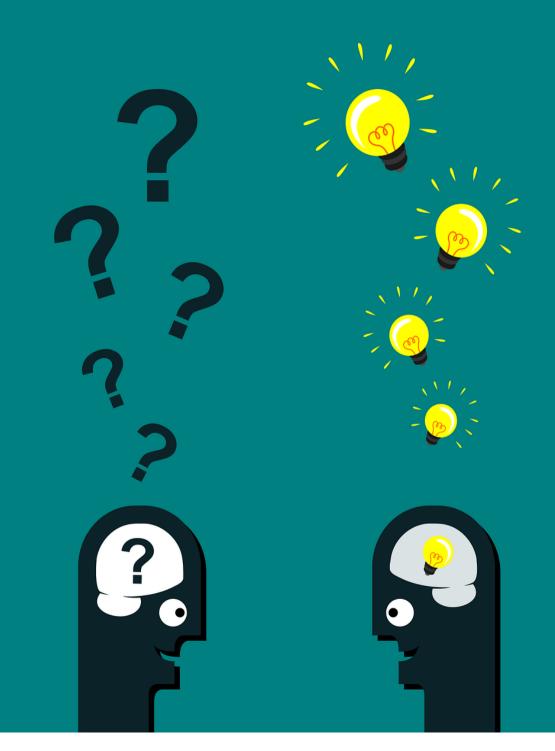
Difference between classic ML and deep learning

Classic machine learning



Deep learning



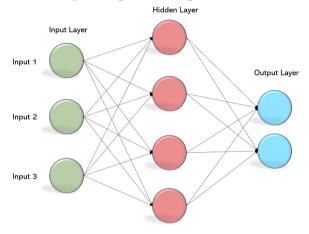


You know what you want as output

- Flavor tagging: a classification problem
- Filtering: an anomaly detection problem
- Particle tracking: a clustering problem
- Vertex finding: a classification/clustering problem
- Energy correction: a regression problem

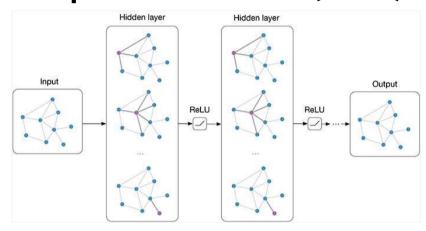
But then with which network architecture?

Multi-layer perceptron (MLP)



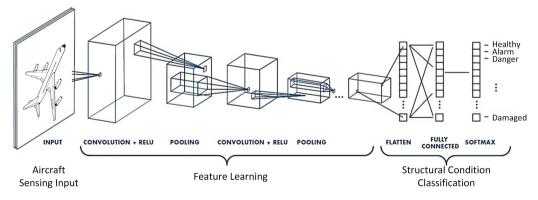
From: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f

Graph neural networks (GNNs)

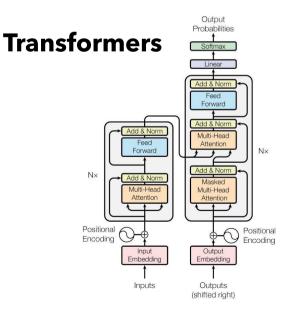


From: https://theaisummer.com/Graph_Neural_Networks/

Convolutional neural networks (CNNs)

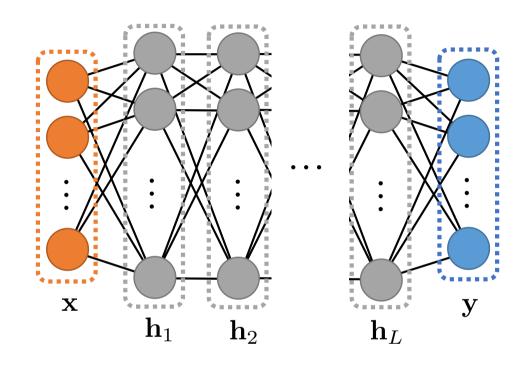


From: [Tabian et al., "A Convolutional Neural Network for Impact Detection and Characterization of Complex Composite Structures," Sensors 19(22), 2019]



From: https://pytorch.org/tutorials/beginner/transformer_tutorial.html

Multilayer Perceptron



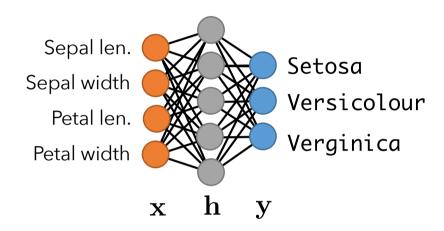
Basic relationship between h_l and h_{l+1} :

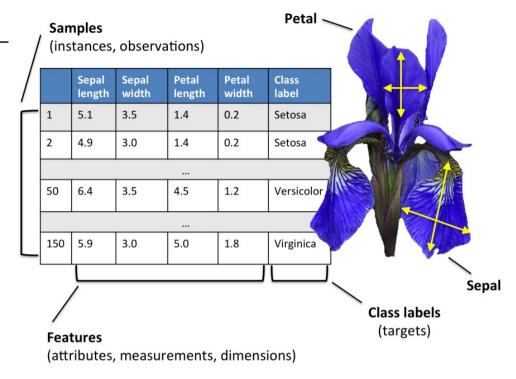
$$\mathbf{h}_{l+1}' = \mathbf{W}_l \mathbf{h}_l + \mathbf{b}_l$$

$$\mathbf{h}_{l+1} = \sigma(\mathbf{h}'_{l+1})$$

MLP examples

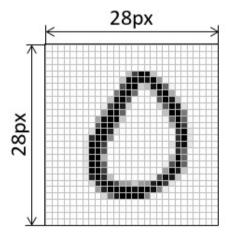
- Classification of iris species
 - 4D data
 - 3 class classification





From https://bishwamittra.github.io/imli.html

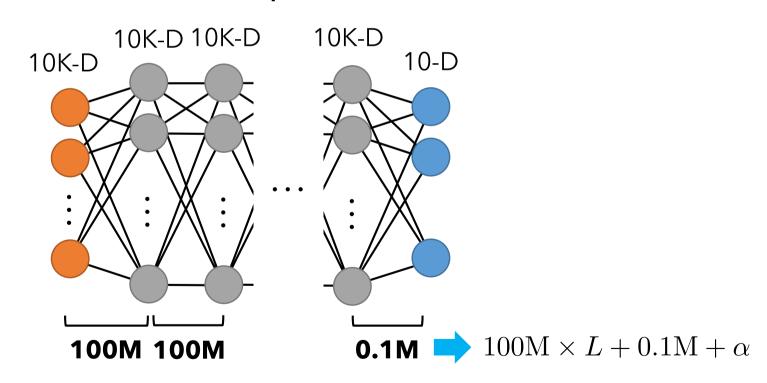
- Handwritten digit recognition (MNIST)
 - 28x28=784D data
 - 10 class classification



From https://liclog.net/excelvba-deeplearning-mnist-download/

Is it scale?

- MLPs model dense dependency between layers
 - A single element in an output layer depends on all elements in the input layer
 - The most flexible and capable
- The number of learnable parameters is enormous



Structures and dependency of input matters

- Data often has a structure
 - An image: 3D (red, green blue) vectors aligned on 2D grid points
 - A sentence: a sequence of symbols (words)
 - A molecule: a graph of symbols (atoms)
- The structure (may) defines possible dependency among the smaller units

Make the dependency sparse using the structure

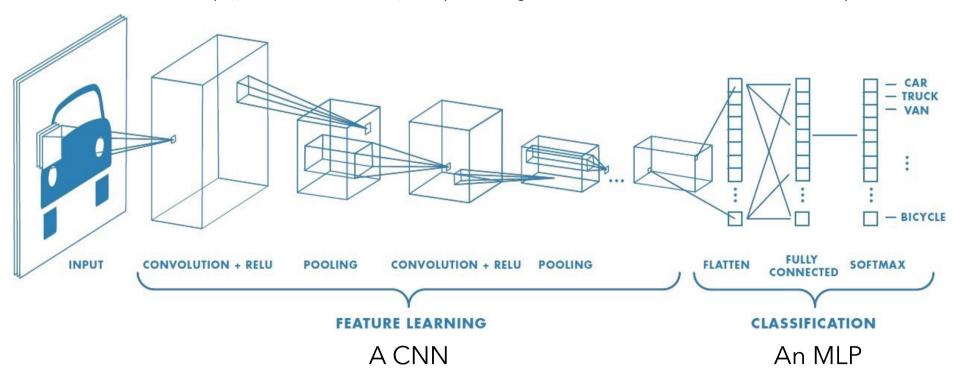
Convolutional Neural Networks

- CNNs are a special case of MLPs
 - Assumption:
 - Locality of dependency

Use of convolution kernels

Spatial invariance

From https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53



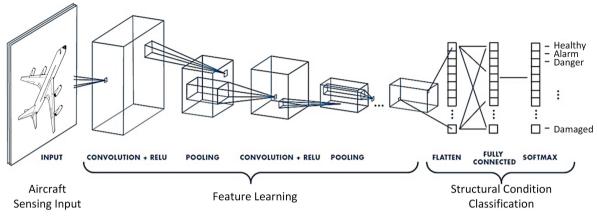
Reduction of parameters over MLPs

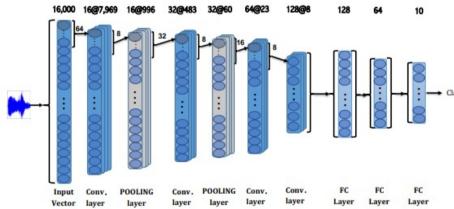
- For example: An image of 100 px by 100 px in RGB
 - Input data: 100x100x3 = 30K-D
 - The first hidden layer: 50x50x20 = 50K-D
- Parameters to be learned for input to first hidden layer:
 - MLP: $30K \times 50K + a = 1500M + a$
 - 5×5 Convolution kernel: $5 \times 5 \times 3 \times 20 + a = 1500 + a$

CNN examples

Image recognition by CNN

From: https://theaisummer.com/Graph_Neural_Networks/



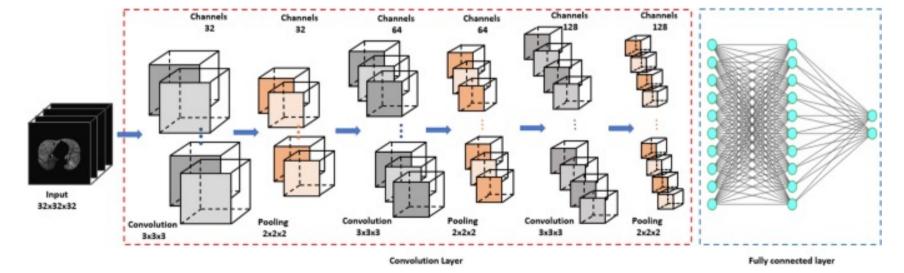


Sound classification by 1D CNN

From: https://medium.com/ai%C2%B3-theory-practice-business/enhanced-environmental-sound-classification-with-a-cnn-1ca388748bc9

CT image classification by 3D CNN

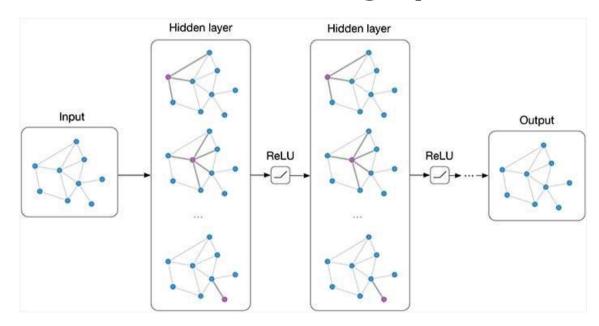
From https://www.nature.com/articles/s41598-020-79336-5



Graph neural networks

- CNNs assumes regular grid points but some types of data may have different (arbitrary) structures
 - Regular structure but hexagonal adjacency
 - Arbitrary connections as in molecules

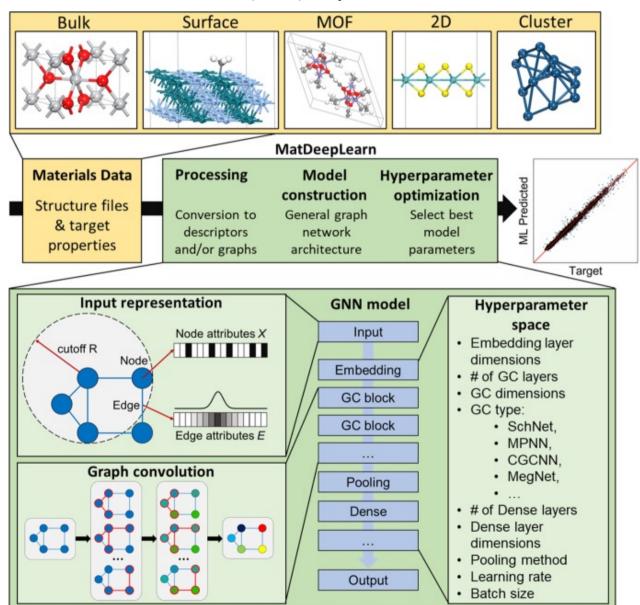
Generalize convolutions with graphs



From: https://theaisummer.com/Graph_Neural_Networks/

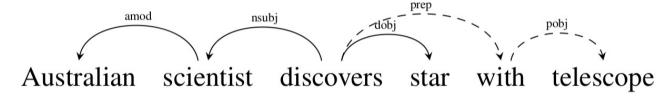
GNN examples

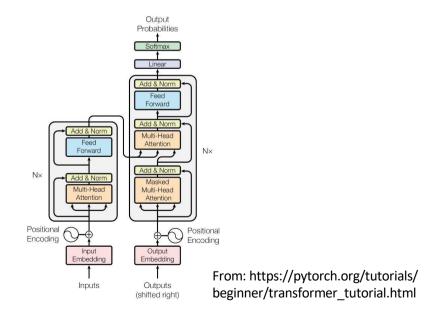
• Material prediction [Fung et al., "Benchmarking graph neural networks for materials chemistry, npj Computational Materials 7, no. 84, 2021]



Transformers [Vaswani et al., "Attention is all you need," NeurIPS 2017]

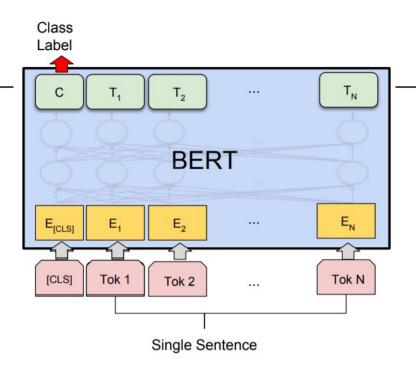
- GNNs often assume static and predefined connections, but connections may not be always obvious
 - We often don't know what depends on what
 - Eg., dependency in a sentence





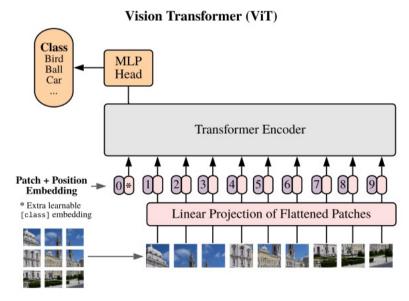
Transformer examples

- Sentiment analysis from text
 - Positive or negative
 - Analyzing reviews



From: https://www.geeksforgeeks.org/sentiment-classification-using-bert/

- Image classification
 - The locality assumption in CNNs may be too strong
 - Transformers allows more flexible dependencies



From: https://paperswithcode.com/method/vision-transformer

So which one should be use?

- If your data is small and you don't know its within-data dependency, an MLP is the first option
 - MLPs is a good choice if # training data is enough and you have abundant computational resource
 - E.g., individual particle (rep. by momentum and energy)
- If you know your data has a regular grid structure (like images), CNNs should be used
 - E.g., particle trajectories represented with an image
- If your data has explicit connections (dependency), GNNs can be used
 - E.g., particles before and after decay
- If you have a large amount of data but within-data dependency is not obvious, Transformers help

Take-away

- Review different architectures of neural networks
 - Dependency matters
 - Network structures determines flexibility of the model, but highly flexible models requires more data and computational resources
- Hope this helps someone who wants to start using neural networks

