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Two Breakthroughs 10 Years ago

“.--_ o S

e
| MEESHeen
IS A VAST RE )
1500 %, G=8TaV Le53n'

Events / 1.5 GeV

S/(S+B) Weighted

o
P, - l ¥

Q -

‘4’*
Mo,

")

PH‘L‘SFIG’S-LETTERS s

ImageNet Classification with Deep Convolutional

Neural Networks

University of Toronto
kriz@cs.utoronto.ca 1ilya@cs.utoronto.ca hinton@cs.utoronto.ca

ATLAS

201112

/s=7-8 TeW

— Oservad Lg:jhwxdm ol « 14

July 2012

500

300

400 500
m, [GeV]

Alex Krizhevsky Geoffrey E. Hinton

University of Toronto

Ilya Sutskever
University of Toronto

Abstract

We trained a large, deep convolutional neural network to c1a331fv the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 | :

ferent classes. On the test data, we achieved top-1 and t/|
and 17.0% which is considerably better than the previ |
neural network, which has 60 million parameters and 6
of five convolutional layers, some of which are followe [* = =
and three fully-connected layers with a final 1000-way L

container ship  motor scooter oa
. . B mite container ship motor scooter ledpard
ing faster, we used non-saturating neurons and a very ¢[ black widow lifeboat go-kart F_I jaguar
, . . .U cockroach amphibian moped cheetah
tation of the convolution operation. To reduce overfittii [ tick _fireboat bumper car snow leopard
| starfi drilling platfom golfcart Egyptian cat

layers we employed a recently-developed regularization
that proved to be very effective. We also entered a var
ILSVRC-2012 competition and achieved a winning top-: |&
compared to 26.2% achieved by the second-best entry.
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Since then.. vast progress in ML

Prompt: “Panda Mad Scientist
mixing sparkling chemicals, artstation”

&)

This is a picture of Barack Obama. He is a former president of @ What is he doing?
the United States.

+
@ He is looking at the scale.
How many people are there in this picture?

@ Where is Obama's foot positioned?

@ O

There are at least 5 people in this picture.

+
@ Obama's foot is positioned on the right side of the scale.
Where was this picture taken?

@ What happens as a result?

@ O

It was taken in a school.

+
@ The scale shows a higher weight.
How many mirrors are there?

@ Is the person on the scale aware of it?

@ O

There are at least 2 mirrors in this picture.

<+
@ O | think he is not aware of it.
What is the person standing on?

+ @ Do you think that's why people are laughing?
@ The person is standing on a rug.

+
@ | think so.
@ He is standing on a scale.

+
@ | think you are right.

DeepMind: Flamingo OpenAl: Dall-E 2



In HEP and Fundamental Science, it’s entering everywhere
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Where is this going?



Challenges

*
@ This is a picture of Barack Obama. He is a former president of
the United States.

@ How many giraffes are there?

*
& There are two giraffes. G o X

Replacing everything with one big black-box is not sufficient for
scientific use cases: need uncertainties, interpretability, robustness, ....

A lot of interest In “physics-informed” Machine-Learning approaches
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Where to inject the physics?

parameters

ML Model f, Loss
labels ‘Exﬁ(f¢ (ZC), y)

Feedback

signals Ideally: inject physics domain
knowledge in all areas of a ML system

The
algorithm

Our
Assessment

Learning
Process




How to inject the physics?

parameters

ML Model f, Loss
labels ‘Exﬁ(f¢ (ZC), y)

Ability to computation gradients of computer programs
are a key mechanism to inject domain knowledge into ML

L» Differentiable Programming



Gradient Based Optimization

Deep Learning is about searching through am extremely high-dimensional space

Space of Algorithms

Gradients with respect to the algorithm parameters
are crucial in order to make this feasible at all.

Requires differentiable models & differentiable losses

oL
op

A

¢ — argjbnin ﬂm£(f¢(x)a y)

SWITCH TRANSFORMERS: SCALING TO TRILLION
PARAMETER MODELS WITH SIMPLE AND EFFICIENT
SPARSITY

William Fedus* Barret Zoph* Noam Shazeer
Google Brain Google Brain Google Brain
liamfedus@google.com barretzophlgoogle.com noam@google.com
ABSTRACT

In deep learning, models typically reuse the same parameters for all inputs. Mix-
ture of Experts (MoE) models defy this and instead select different parameters
for each incoming example. The result is a sparsely-activated model — with an
outrageous number of parameters — but a constant computational cost. However,
despite several notable successes of MoE, widespread adoption has been hindered

arXiv:2101.03961



Automatic Differentiation

Automatic Differentiation: careful application of chain rule to computer programs
» exact gradients (as e.g. Mathematica), but low overhead
e available for many common programming languages

import jax
import jax.numpy as jnp

=f func(x):
y = X
for 1 in range(4):
y += x[0]*%2 + jnp.sin(x[1]) + jnp.exp(-x[2])
y = y.sum()
return y

exact gradients! ‘

gfunc = jax. (func)

B W e ([ R y =f(x) dy — Jf dx

(DeviceArray(141.36212, dtype=float32),
DeviceArray([ 49. , —10.8799095, -87.66867 ], dtype=float32))

‘ Normal Program Additional Program
P Y Tb R C H Output Output w/ AD

1F TensorFlow

... but also C++, Fortran, ...



What is the space of algorithms?

Classic Neural Network answer: a program without any structure

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

output layer

Generic layers that are easily differentiated
With sufficient data this can work.



Inductive Bias

Architectures: By imposing structure on the program we can
bias learning towards sensible solutions

 more interpretable & data-efficient

Constraint: program must stay differentiable wrt. parameters
to allow gradient-based optimization
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Why stop there?

We already have a lot of code and structure that encodes our physics intuition
« Simulation, Tracking, Calorimetry, Particle ldentification, Event Observables, ..

Instead of adding structure to a neural networks (symmetries, ...) we can try to
make our existing already-structured programs / logic differentiable

learnable blocks

The differentiable programming POV

e enforce structure where we want it
e |let ML fill in the blanks

* joint end-to-end optimization

physics structure



What do we get from this?

Currently we enforce physics by compartmentalizing the ML components
* train tracking, then particle ID, then analysis discriminants

g~ -0  O-Em-0

learnable blocks

With end-to-end differentiable programming
we can guide low-level algorithms with
high-level feedback

e.g. optimize reconstruction on final
physics performance

physics structure
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Example: Systematics-Aware Neural Networks

Instead of optimizing on a proxy non-physics goal
we can optimize on e.g. actual physics sensitivity

CLs (log scale)

[ network pars )

~
Observable Stat. Analysis —{ physics perf. j
_J

“smarter loss” thanks to a fully differentiable statistical

analysis incl. systematics modelling, profiling.

- p-value (with uncert)
BCE - p-value (without uncert)

BCE (Wlth aug.) 0064 @ current value
INFERNO (0?)

neos (CLg)

b
s
. oy

step O

0.0 2.5 5.0 7.5 10.0

6 5 10 15 analysis config ¢

differentiable
but not a neural net!

ifferentiable
Yikelihoods

= [LH, M. Feickert, G. Stark]

arxXiv:2203.05570
IN. Simson, LH]

arXiv:1806.04743
P. de Castro, T. Dorigo]14



Example: Gradient-Based Labels

Gradients are also key in order to improve labels. Intuitive: The more information
you have about a target function the better 286

sim. data

l Data
r ! labels |
train this

Mining Gold:
Extract labels from a (differentiable) simulator
for density ratio estimation

log p(x, z| 0)




Example: Gradient-Based Labels

Improved gradient labels can improve physics a lot!

Expected MSE on logr
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Differentiable MadGraph: madjax [Lagrangian] [ parametersj

(" )
Feynman
* General purpose Matrix Element Generator ~ Diag
» Default Choice for BSM Searches at LHC ( Code Gen |
" Fortran
Standard Simulator workflow: > g
Given a model, generate code to evaluate MEs ~ Integ
( EvGen

o(x,0) = ) | M (x)| j
| mada

|
o un-normalized pdf = p(x|0) = ——p(x|6)
2(6) dx

T
| [LH, Kagan] (WIP)

from MC integration




Differentiable MadGraph: madjax [Lagrangian] [ parametersj

( Feynman )

* General purpose Matrix Element Generator ~ Diag

» Default Choice for BSM Searches at LHC " Code Gen
JAX

\dea: - SO

Given a model, generate differentiable code to evaluate MEs Integ

[ Z
(

EvGen

Automatically delivers additional physics information

useful for downstream tasks j
A mada

o(x, 0) V.o(x,0) Vyo(x,0) dx

Matrix Phase-space Theory Landscape [LH, Kagan] (WIP)
Elements derivatives derivatives ’




Example: Differentiable Design Optimization

One of the most important optimization problems
In physics is designhing the detector itself

* very high-dimensional (many modules, ...)
 many trade-offs not obvious at detector level
but dictated by downstream physics goals

Idea: Can you use gradient-based optimization?
 very ambitious idea, but potentially big payoff

(- )
Design

Configuration

\_ l J
= e |




CEM

simulator f}'- P X Y simulator evalué

Successful Examples from outside of HEP

GD

20



Successful Examples from inside of HEP

Detector parameters
Black-Box Optimization with Local Generative Cost constraintsand
Surrogates Continuous
model (GAN,
VAE, local
surrogates) visance
Sergey Shi ¥ ALl : "mode
Department ¢ 25 W G L o /
Imperial Collg . o 20 | . c 2: !
8 s.shi obgl?ci::ref?%? -0.12 N:‘S’ £ /// 254 5 °.'5 : Propagation, -
O - . %ZZ . \ X , 2: i | mult_iple : ;4__ Trajectory finder and
@\ Michael -0.24 i L e ; 02 : d scattering, hit ; _;‘-;—:i construction of density map
5::4; SLAC National Accg aw!, . o b ' generation :
—_ Menlo Pa r—0.36 15 10 05 00 05 10 15 20 25 |
United § Y, ‘. !
Q) o GANgradss | Semecsccccccccccccccc e
— 3.0 i = -
— - - Resolution, , .
-0.60 s PR o5 9, XO
(’_D]. -0.72 &“EE : | : ':;:;‘:’—‘;" ’ | \ :: Efﬁdency9,9,o -
o) 0.0 ] S AL B :
& -0.84 ol - o : Zi
o~ B T R R R TR
2 ,, A DE
Figure 2: (Left) objective function surface of the
"hump model" overlaid by the optimization path.
Red stars are the objective optimal values. (Right)
True gradients and GAN gradients, calculated at
the yellow point. Black rectangle correspond to Right: scheme of the |,
the current € neighborhood around yellow point. modeled apparatus
Full path animation is available at https://doi. (graph courtesy G. C.
org/10.6084/m9.figshare.9944597.v3. Strong)

[Strong, Dorigo]



Differentiable Programming as a paradigm
HEP & ML are a great match - slowly permeating everything

Gradient Information allows us to inject physics domain knowledge into ML
and make them more data-efficient, interpretable and robust systems

add inductive bias exploit judge on
: : : (left for homework)
(symmetries, structure...) simulators physics goals
Differentiable Programming in High-Energy Physics
1990 2022
Making the World Differentiable: On Using Self-Supervised Fully Atlillg?ld(::; igr]:;}g};él?ﬁjg;d)[,fkieéﬁ?s}f r(él\é%)) lffetiﬁgef EZIISTN(%[;C)
Recurrent Neural Networks for Dynamic Reinforcement Learning Andlflzvtvhﬁeggigge{f:&;\j[;ﬂl;st;?:; RULLUQ) Jannicks Poarkes [Jignford ),
and Planmng in Non—StationaIy Environmgnts Savannah Thais (Princeton), Vassil Vassilev Diﬁerenti able Slmul ators for HEP

Jirgen Schmidhuber* RSN .11 9 3 o
Institut fiir Informatik Abet L. Heinrich*, M. Kagan*“, M. Mooney”, and K. Terao

Technische Universitat Miinchen 24

Arcisstr. 21, 8000 Miinchen 2, Germany A. key com.p.onent to the success of deep learnin ICERN
R T . a0y a | | learning practitioners compose a variety of modules | o 3
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