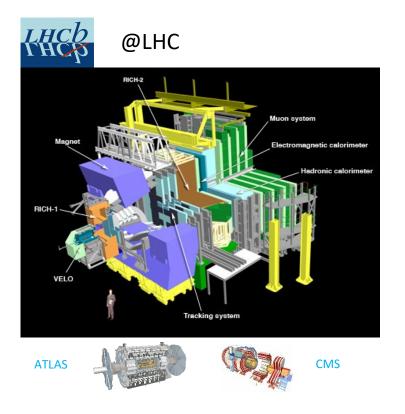
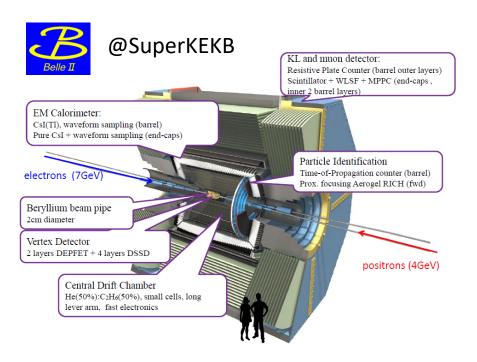


Heavy Flavor Physics Experiments

Akimasa Ishikawa (KEK)


LHC and Beyond @Matsue, Japan

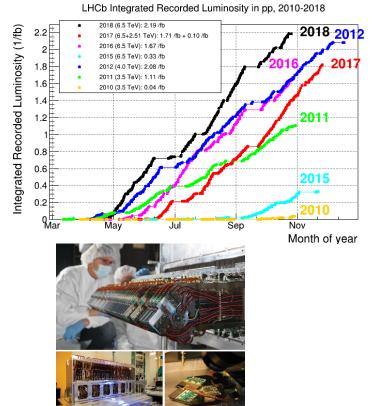

https://unseki.co.jp/blog/archives/2009/06/09235903.php

https://www.sanin-chuo.co.jp/articles/-/4693

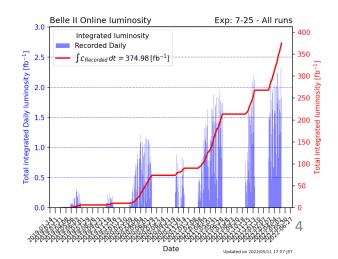
LHC and Beyond

- SuperKEKB is the first collider after LHC
- Hope something beyond the SM will be observed at LHC and SuperKEKB

Comparison of LHCb and Belle II


• LHCb and Belle II are competitive and complementary

	LHCb THCp	
Detector	Forward Spectrometer 2<η<5	4π detector
physics	Focusing on b and c	Focusing on b, c and tau
Signal σ	σ(pp→bX) ~ 144µb at 13TeV	σ(ee→BB) ~ 1.08nb at 10.58GeV
BG σ	σ(pp→X) ~ O(10)mb	σ(ee→qq) ~ 3.5nb
Luminosity	<mark>50fb⁻¹ by 2029</mark>	50ab ⁻¹ around 2031 (50 x Belle1)
b hadrons	B ⁰ , B ⁺ , Bs, Bc, and B Baryon	B ⁰ and B ⁺ (some Bs at Y(5S))
Event	B hadrons associated with many particles	Only two B mesons almost at rest in CM frame while boosted forward in lab frame
Discriminator	Vertex separation (B mesons travel several mm)	4momentum conservation (E _{CM} known) Event shape (spherical BB, isotropic qq)
Efficiency	Lower	Higher : O(1)-O(10)%
Good at	all charged final states	Electron and neutrals : π^0 , γ , K _s , K _L , ν , and DM

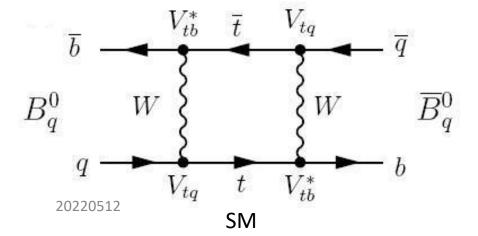

Status

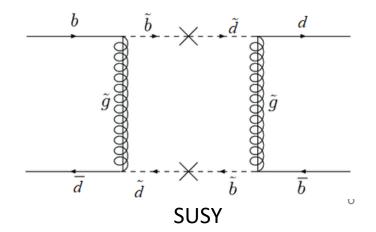
- LHCb
 - Accumulated 9 fb⁻¹ so far
 - New VELO detector installed in LS2
 - Resumed the operation in Apr 2022

- Belle II
 - Accumulated 0.375ab⁻¹ so far
 - LS1 from July 2022
 - To install second layer of PXD detector
 - Resume the operation in 2023

https://cerncourier.com/a/velos-voyage-into-the-unknown/

Contents

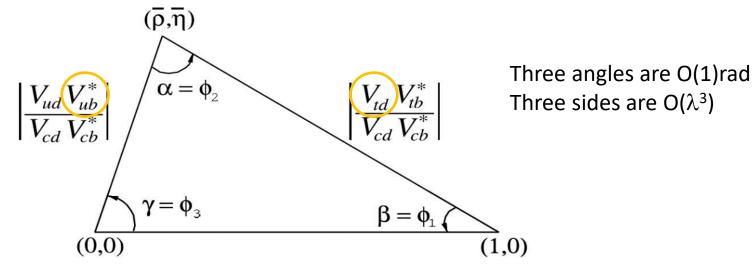

- B Physics
 - Beyond the SM Physics in loop
 - B⁰-B⁰ mixing and Unitarity Triangle (LHCb, Belle II)
 - $B \rightarrow X_s \gamma$ (Belle II)
 - Beyond the SM Physics Physics in tree
 - $B^+ \rightarrow \tau \nu$, $\mu \nu$ (Belle II)
 - Hint of Beyond the SM Physics in Lepton Flavor Universality??
 - b→cτν (LHCb, Belle II)
 - b→sll (LHCb, Belle II)
- τ Physics
 - Beyond the SM Physics in forbidden processes
 - Lepton Flavor Violating τ decays (Belle II)


B⁰-B⁰ Mixing

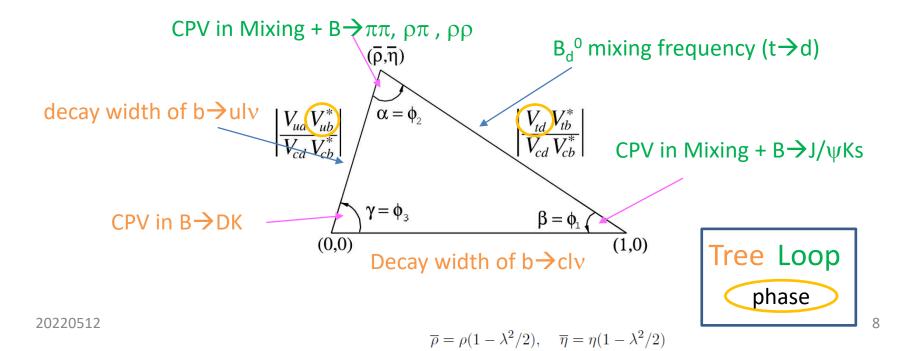
- $B^0-\overline{B^0}$ mixing proceeds via loop diagrams with V_{td} and V_{tb} in the SM.
- New particles, such as SUSY particles (gluino-sbottom-sdown) or charged Higgs, can enter in the loop
- Two approaches to search for NP in B⁰-B⁰ mixing (assuming no NP in tree level processes)
 - Unitarity Triangle
 - NP amplitude and phase (h and σ)

$$M_{12}^{d,s} = (M_{12}^{d,s})_{\rm SM} \times \left(1 + h_{d,s} \, e^{2i\sigma_{d,s}}\right)$$

Goto, Kitazawa, Okada, and Tanaka, Phys.Rev. D53 (1996) 6662-6665



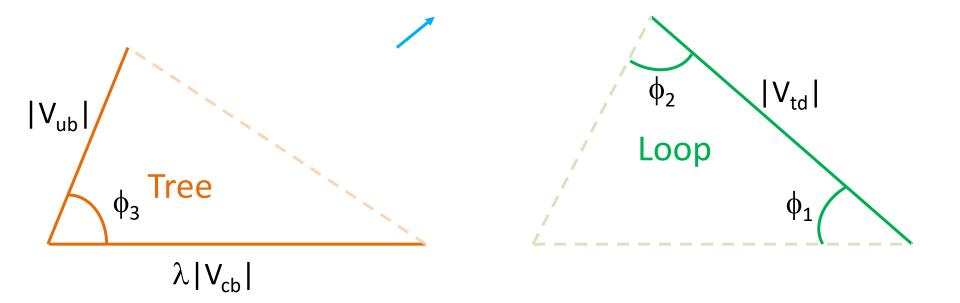
CKM matrix and Unitarity Triangle


$$V_{\rm CKM} \equiv V_L^u V_L^{d\dagger} = \begin{pmatrix} V_{ud} \\ V_{cd} \\ V_{td} \end{pmatrix} V_{us} \begin{pmatrix} V_{ub} \\ V_{cb} \\ V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Wolfenstein parameterization

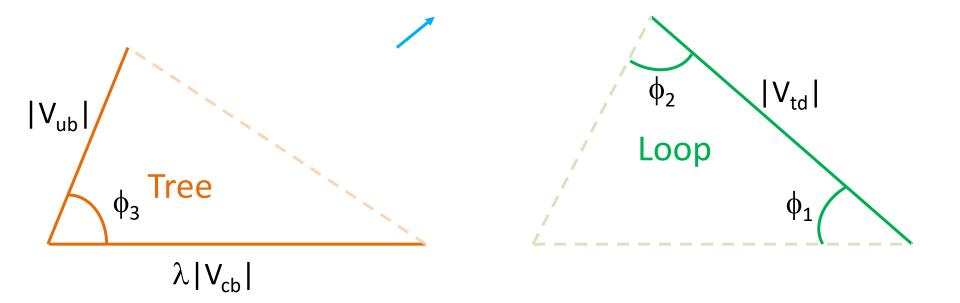
$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

Unitarity Triangles : Tree VS Loop


- We can measure six observables
 - three angles (CPV) and three sides (|amplitude|).
- Can make two triangles from the measurements
 - tree measurements ($|V_{cb}|$, $|V_{ub}|$, ϕ_3)
 - mixing measurements ($|V_{td}|$, φ_1 , φ_2)
- If not consistent, it is clear NP signal !

Consistency btw Two Triangles

NP contribution in B⁰ mixing can be measured (assuming no NP in tree). Both real and imaginary parts (h and σ) can be determined


$$M_{12}^{d,s} = (M_{12}^{d,s})_{\rm SM} \times \left(1 + h_{d,s} \, e^{2i\sigma_{d,s}}\right)$$

Consistency btw Two Triangles

NP contribution in B⁰ mixing can be measured (assuming no NP in tree). Both real and imaginary parts (h and σ) can be determined

$$M_{12}^{d,s} = (M_{12}^{d,s})_{\rm SM} \times \left(1 + h_{d,s} \, e^{2i\sigma_{d,s}}\right)$$

Precisions of the Angles and Sides

- Ultimate precisions except for ϕ_3
- Precision will be limited by theory or lattice QCD except for ϕ_3
 - Uncertainties of the angles ~1deg
 - Uncertainties of the sides ~1%

Including theory and LQCD uncertainties

- We experimentalists should reduce QCD uncertainties together with theorists

_	Precisions	Belle 0.7ab ⁻¹	LHCb 23fb ⁻¹ (2025)	Belle II 50ab ⁻¹ (2031)	
angles –	ϕ_1 [deg]	1.1	0.45	0.20	
	ϕ_2 [deg]	5		0.6	
	ϕ_3 [deg]	13	1.4	1.5	
sides	V _{cb} [%]	1.8	See below	1.2	
	V _{ub} [%]	3.9	3 (only ratio $ V_{ub} / V_{cb} $)	1.2	
	V _{td} is already lattice QCD dominant				
20220512	Theoretical uncertainties not included in ϕ_1 and $\phi_2^{ 11}$				

UT Before/After Belle II

Before Belle II

0.7 Δm & Δm φ3 fitter Δm_{e} ε_{ν} 0.6 sin 20 0.5 sol_w/cos 20, <0 (excl. at CL > 0.95) 0.4 ١E 0.3 0.2 0.1 0.0 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 ρ After Belle II $\overline{\rho}$ 0.7 $\Delta m_{a} \& \Delta m_{s}$ CKM fitter 0.6 ϕ_3 0.5 sol. w/ cos 20, < 0 (excl. at CL > 0.95) 0.4 ٦L 0.3 0.2 0.1 0.0

-0.2

-0.4

0.0

0.2

0.4

 $\overline{\rho}$

0.6

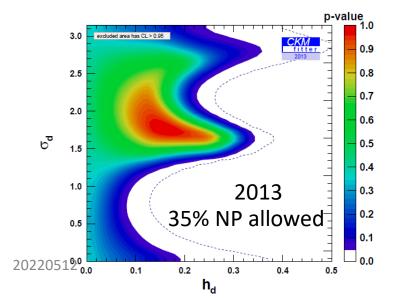
1.0

16 1.0

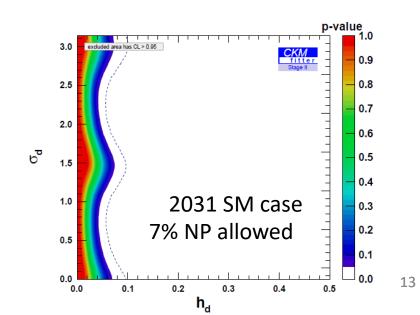
0.87

• Still uncertainties are large to conclude

• Extrapolating 2013 WA values, we see clear deviation of some observables

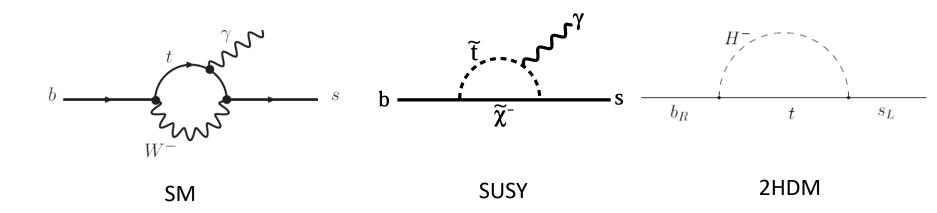

NP Interpretations

- UT measurements $\rightarrow h$ and σ $M_{12}^{d,s} = (M_{12}^{d,s})_{\text{SM}} \times (1 + h_{d,s} e^{2i\sigma_{d,s}})$
- With an EFT analysis, 2000TeV (200TeV) NP scale in tree (loop) is accessible


$$\mathcal{L} = \ \frac{C_{ij}^2}{\Lambda^2} \, (\bar{q}_{i,L} \gamma^\mu q_{j,L})^2 \label{eq:L}$$

With SUSY, ~10 TeV scale can be exploited

Tanimoto and Yamamoto 2014, 2015


Couplings	NP loop	Scales (in TeV) probed by		
Couplings	order	B_d mixing	B_s mixing	
$ C_{ij} = V_{ti}V_{tj}^* $	tree level	17	19	
(CKM-like)	one loop	1.4	1.5	
$ C_{ij} = 1$	tree level	$2 imes 10^3$	$5 imes 10^2$	
(no hierarchy)	one loop	2×10^2	40	

arXiv:1309.2293

 $B \rightarrow X_{s} \gamma$

- At LHCb, exclusive $B \rightarrow K^* \gamma$ or $K\pi\pi\gamma$ decays can be reconstructed.
- At Belle II, both Inclusive and exclusive $b \rightarrow s\gamma$ can be measured.
- Inclusive $b \rightarrow s\gamma$ has smaller theoretical uncertainty

$BF(B \rightarrow X_{\varsigma} \gamma)$

- **Current situation**
 - Exp and thory in good agreement
 - Exp ~5% Thoery ~5%
- Belle II
 - With large data, can reduce the uncertainty to ~3%

 10°

BF (b -> s γ)

10

0.0

0.5

1.0

1.5

m [TeV]

2.0

M. Misiak et al, 2002.01548

- Theory
 - Uncertainty reducible to ~3.5% in 2025
- Constraints on NP

- Private communication with M.Misiak
- H^+ in 2HDM type-II : $M_H > 900GeV$ AI private estimation
- Stop in Natural SUSY
- Baer, Bager, Nagata and Savoy 1611.08511

× $15 < \Delta_{\rm EW} \le 30$ + $\Delta_{FW} \le 15$

3.0

200

3.5

400

600

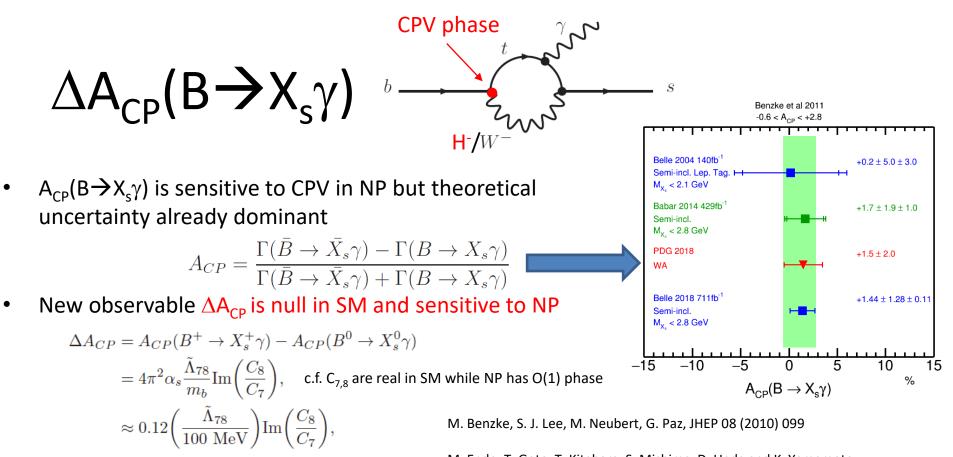
-- Belle - Belle $\pm 2\sigma$

2.5

SUSY with large L-R mixing

Eberl, Hidaka, Ginina, and AI 2106.15228

..... Belle 2015 711fb⁻¹ 3.75 ± 0.18 ± 0.35 Semi-incl. M_{xe} < 2.8 GeV Babar 2012 429fb⁻¹ 3.52 ± 0.20 ± 0.51 Semi-incl. M_{xs} < 2.8 GeV Belle 2009 605fb⁻¹ $3.47 \pm 0.15 \pm 0.40$ Full-incl. E_y > 1.7 GeV Babar 2012 347fb $3.32 \pm 0.16 \pm 0.31$ Full-incl. E_v > 1.8 GeV CLEO 2001 9.1fb⁻¹ $3.29 \pm 0.44 \pm 0.29$ Full-incl. E. > 2.0 GeV Babar 2008 210fb⁻¹ $3.90 \pm 0.91 \pm 0.64$ Full-incl. had. tag E, > 1.9 GeV PDG 2021 3.49 ± 0.19 E, > 1.6 GeV **HFLAV 2019** 3.32 ± 0.15 WA F > 1.6 GeV Belle II 2031 $3.40 \pm 0.01 \pm 0.11$ > 1.8 GeV 1.5 2 2.5 3 3.5 4.5 $\times 10^{-4}$ $B(B \rightarrow X_s \gamma)_{E_{\gamma} > 1.6 \text{ GeV}}$ 2020 2031 tanß 40 30 20 ATLAS 95% C s exclusions Stop mass VS $B(B \rightarrow Xs\gamma)^{-1}$ 10 $H^+ \rightarrow \tau v.tb$ bserved, τν hMSSM Expected, τv √s = 13 TeV 3 bserved. tb 36.1 fb⁻¹ 2 Expected, tb 0.6


800

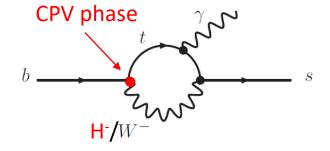
1000 1200 5 400

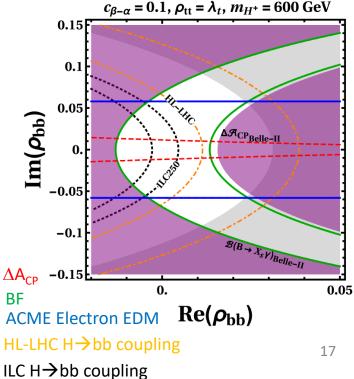
m_{H⁺} [GeV]5

Misiak et al 2020 3.40 ± 0.17

20220512

- Ex. SUSY with flavor violating trilinear couplings
 M. Endo, T. Goto, T. Kitahara, S. Mishima, D. Ueda and K. Yamamoto, JHEP 04 (2018) 019.
- Belle measured the observable in 2018
 - − Found dominant syst error can be reducible \rightarrow Belle II further improve the measurement


 $\Delta A_{CP} = \begin{bmatrix} +3.69 \pm 2.65 (\text{stat.}) \pm 0.76 (\text{syst.}) \end{bmatrix} \% \quad \text{Watanuki, Ishikawa et al, PRD 99, 032012 (2019)}$ $\hline \text{Observables} \qquad \qquad \text{Belle } 0.71 \text{ ab}^{-1} \quad \text{Belle II } 5 \text{ ab}^{-1} \quad \text{Belle II } 50 \text{ ab}^{-1}$ $\Delta A_{CP} (B \to X_s \gamma)_{\text{sum-of-ex}} \qquad 2.7\% \qquad 0.98\% \qquad 0.30\%$


$\Delta A_{CP}(B \rightarrow Xs\gamma)$ and EW Baryogensis

 Additional Yukawa coupling ρ appears in general 2HDM (no Z₂ symmetry)

$$\begin{split} y_{hij}^{f} &= \frac{\lambda_{i}^{f}}{\sqrt{2}} \delta_{ij} s_{\beta-\alpha} + \frac{\rho_{ij}^{f}}{\sqrt{2}} c_{\beta-\alpha}, \\ y_{Hij}^{f} &= \frac{\lambda_{i}^{f}}{\sqrt{2}} \delta_{ij} c_{\beta-\alpha} - \frac{\rho_{ij}^{f}}{\sqrt{2}} s_{\beta-\alpha}, \\ y_{Aij}^{f} &= \mp \frac{i \rho_{ij}^{f}}{\sqrt{2}}, \end{split}$$

- If p has complex phase, this could generate CPV and thus EW Baryogensis is possible
- ΔA_{CP} is sensitive to phase in ρ
- Combining H→bb coupling measurements at HL-LHC/ILC, additional bottom Yukawa and phase can be searched
 - − If found it → Higgs self coupling measurments at ILC550 Δ

20220512

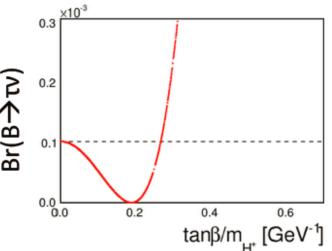
 $B^+ \rightarrow \tau^+ \nu$

• Helicity suppressed decays

$B \rightarrow \tau \nu, \mu \nu$ in SM and 2HDM

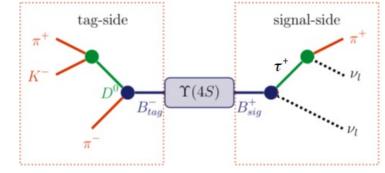
- BF(B $\rightarrow \tau v$) in SM
 - Helicity suppression : Amp $\propto m_{\tau}$

$$\mathcal{B}(B \to \ell \nu) = \frac{G_F^2 m_B}{8\pi} m_\ell^2 (1 - \frac{m_\ell^2}{m_B^2})^2 f_B^2 |V_{ub}|^2 \tau_B$$


- BF(B $\rightarrow \tau v$) in 2HDM type-II
 - No helicity suppression with Higgs exchange
 - Higgs coupling $\propto m_{\tau}$

$$\mathcal{B}(B \to \tau \nu) = \mathcal{B}(B \to \tau \nu)_{\text{SM}} \times r_H$$
$$r_H = (1 - \frac{m_B^2}{m_H^2} \tan^2 \beta)$$

- BF only dependent on r_H (function of $tan\beta/m_H$)
- The same can be applied to $B \rightarrow \mu v$
 - LFU (or 2HDM type-II) can be tested with a ratio of BFs


$$\begin{aligned} R_{\rm pl} &= \frac{\mathcal{B}(B^- \to \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(B^- \to \mu^- \bar{\nu}_{\mu})} \\ &= \frac{m_{\tau}^2}{m_{\mu}^2} \frac{(1 - m_{\tau}^2 / m_B^2)^2}{(1 - m_{\mu}^2 / m_B^2)^2} \big| 1 + r_{\rm NP}^{\tau} \big|^2 \simeq 222.37 \, \big| 1 + r_{\rm NP}^{\tau} \big|^2 \end{aligned}$$

 W^+ v u W^+ v u v

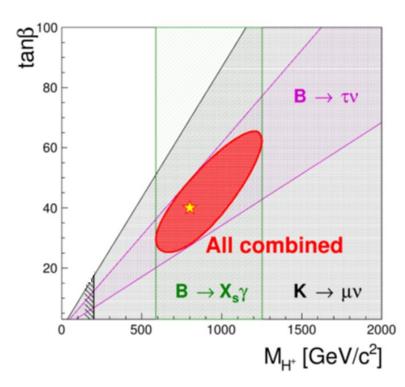
20220512

$\mathsf{BF}(\mathsf{B} \rightarrow \tau \nu)$

- Since two neutrinos are in the final states, the other B meson should be tagged.
- The tagging efficiency improved twice from Belle Improvement of Detector and

Improvement of Algorithm

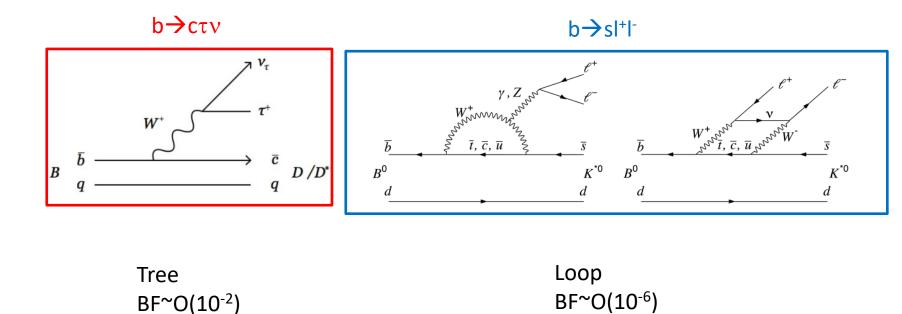
Increase of Background effects


Tag	FR^4 @ Belle	FEI @ Belle MC	FEI @ Belle II MC
Hadronic B^+	0.28~%	0.49~%	0.61~%
Semileptonic B^+	0.67~%	1.42~%	1.45~%
Hadronic B^0	0.18~%	0.33%	0.34~%
Semileptonic B^0	0.63~%	1.33%	1.25~%

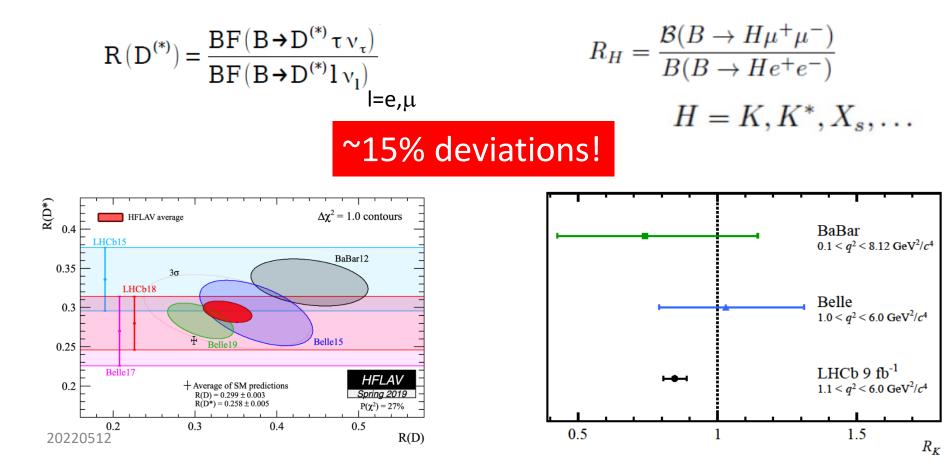
• Precision of $BF(B \rightarrow \tau v)$ at Belle II

	Integrated Luminosity (ab^{-1})	1	5	50
hadronic tag	statistical uncertainty (%)	29	13	4
	systematic uncertainty $(\%)$	13	7	5
	total uncertainty (%)	32	15	6
semileptonic tag	statistical uncertainty (%)	19	8	3
	systematic uncertainty $(\%)$	18	9	5
	total uncertainty (%)	26	12	5

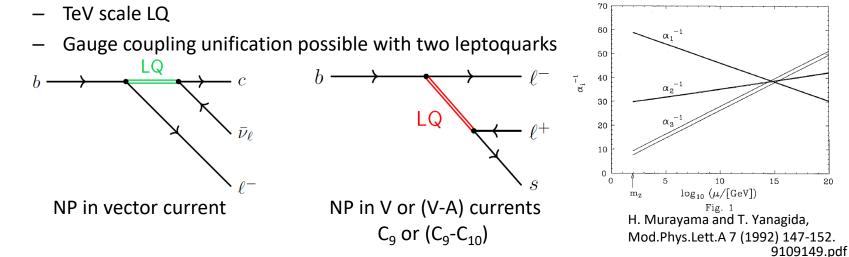
A Scenario of Evidence for Charged Higgs


- $B \rightarrow X_s \gamma$: tan β independent
- $B \rightarrow \tau v$: tan β/m_{H} = const.
- With 50/ab, M_{H+} =800GeV and tan β =40 can be found.

Belle II Physics book 1808.10567


Lepton Flavor Universality in B decays

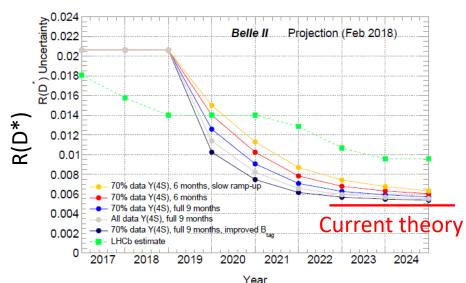
- Recently, two hints of LFU Violation are found in $b \rightarrow c\tau v$ and $b \rightarrow sl^+l^-$
 - Anomaly in $b \rightarrow c\tau v$ by LHCb, Babar and Belle.
 - − Anomaly in $b \rightarrow sl^+l^-$ by LHCb

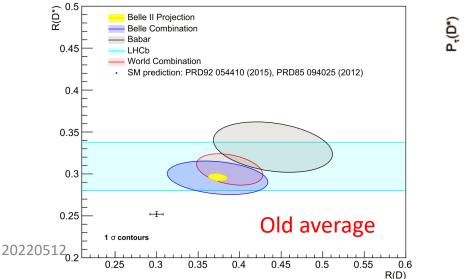

LFUV in B decays

- Recently, two hints of LFU Violation are found in $b \rightarrow c\tau v$ and $b \rightarrow sl^+l^-$
 - Anomaly in b \rightarrow c $\tau\nu$ by LHCb, Babar and Belle. $\sim 4\sigma$
 - − Anomaly in b→sl^{+l⁻} by LHCb Naïve combination of R_{K} and R_{K*} ~4.5 σ

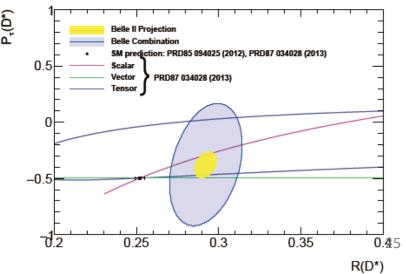
LFUV in B decays

- Recently, two hints of LFU Violation are found in $b \rightarrow c\tau v$ and $b \rightarrow sl^{+}l^{-}$
 - Anomaly in b \rightarrow c $\tau\nu$ by LHCb, Babar and Belle.
 - − Anomaly in b→sl^{+l-} by LHCb Naïve combination of R_{K} and R_{K*} ~4.5 σ
- Leptoquark and flavorful W'/Z' models can explain the deviation



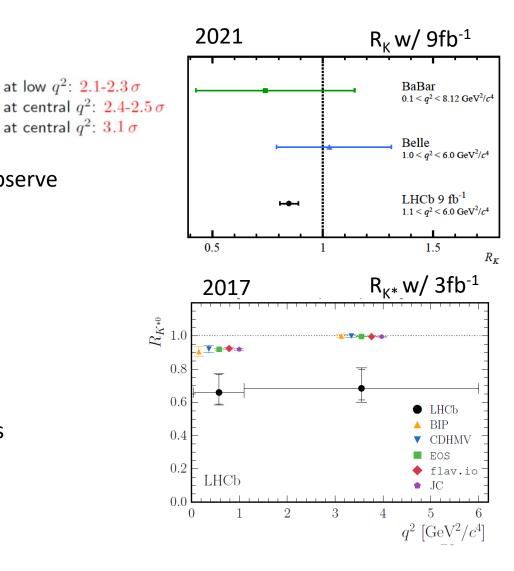

- Belle II has better sensitivities to R(D), R(D*) and the polarizations
 - LHCb can test the LFU with B_c and Λ_b
- LHCb has better sensitivities to R_K and R_{K*}
 - Belle II can test the LFU with the inclusive $B \rightarrow Xsl+l$ and angular observables

 $\sim 4\sigma$


Future Prospects on R(D^(*)) at Belle II

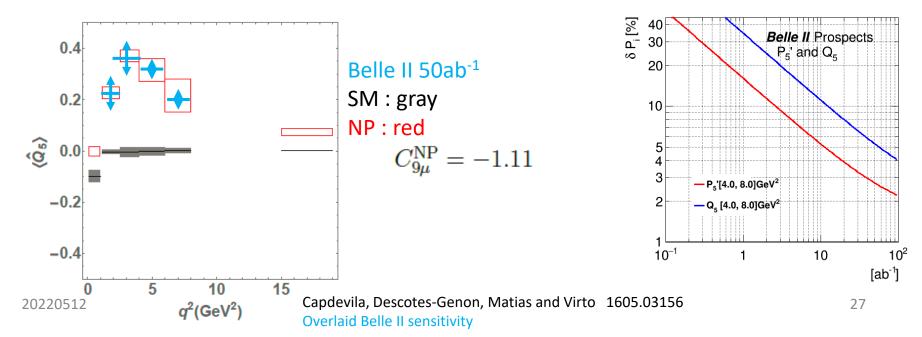
- At least two neutrinos in the final states
 - \rightarrow tagging needed
- Tagging efficiency improved by factor 2
- We could observe 5σ deviation of R(D) VS R(D*) with 5ab⁻¹ in 2026 if central value unchanged
 - After that LHCb will confirm with R(D*)
- Then, model discrimination with polarization measurements

E. Kou et al. 1808.10567

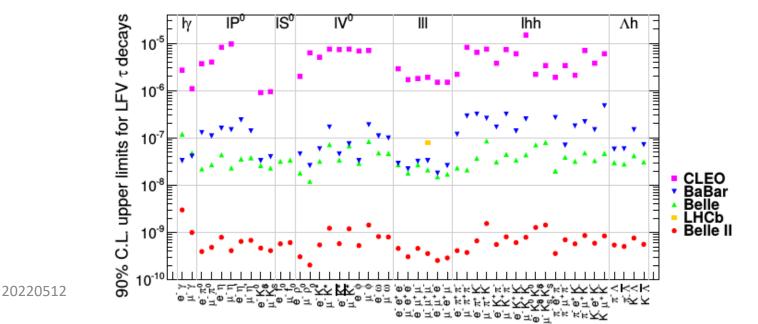

2year delay, Blue one is nominal scenario

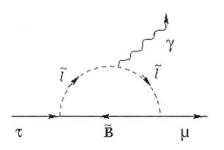
Prospects of R_{κ} and $R_{\kappa*}$ at LHCb

• Current LHCb measurements


 $R_{K^*}(0.045 < q^2 < 1.1 \,\text{GeV}^2) = 0.66^{+0.11}_{-0.07} \pm 0.03$ $R_{K^*}(1.1 < q^2 < 6.0 \,\text{GeV}^2) = 0.69^{+0.11}_{-0.07} \pm 0.05$ $R_K(1.1 < q^2 < 6.0 \,\text{GeV}^2/c^4) = 0.846^{+0.042}_{-0.039} + 0.012_{-0.012}$

- Assuming above values, LHCb will observe 5σ deviation of
 - R_{K^*} with 13fb⁻¹ in 2023
 - R_{K} with 23fb⁻¹ in 2025
- Then Belle II will confirm
 - R_{K*} with 20ab⁻¹ in 2028
 - R_{xs} with 30ab⁻¹ in 2029
 - R_K with 50ab⁻¹ in 2031
- And then LFU in angular observables


LFU in Angular Obs. $Q_5 = P_5'^e - P_5'^\mu$


- Angular observable P_5' in $B \rightarrow K^* \mu \mu$ is also deviated from theoretical prediction but this is dirty observable in terms of QCD uncertainty.
- $Q_5 = P_5'^e P_5'^{\mu}$ is also LFU observable and thus clean.
 - first measured by Belle.
 https://arxiv.org/abs/1612.05014
 - 5.3% for q²=[1,6]GeV² with 50ab⁻¹
- This will be important discriminator for NP in P₅' at Belle II

Lepton Flavor Violating τ Decays

- Forbidden in the SM
 - Even with neutrino oscillation, the BF is tiny <O(10⁻⁵⁴)
 - If we find the decays at Belle II, it is clear NP signal
- Unique at Belle II.
 - Muon case, three experiments search for $\mu \rightarrow e\gamma$, $\mu \rightarrow eee$, and μ -e conv. while Belle II can do the three for τ case, $\tau \rightarrow \mu\gamma$, $\tau \rightarrow \mu$ I+I-, and $\tau \rightarrow \mu$ hh.
- Upper limits of O(10⁻⁹) are possible

Summary

- Heavy Flavor Physics is sensitive to NP
 - B⁰-B⁰ Mixing
 - 2000TeV tree level BSM, 10TeV SUSY
 - b→sγ
 - >1.7TeV stop with large flavor mixing, 900GeV charged Higgs
 - CPV \rightarrow EW Baryogenesis together with HL-LHC and ILC
 - $B \rightarrow \tau \nu$
 - charged Higgs : a limit on $tan\beta/m_H$
 - − LFUV in b \rightarrow c τ v and b \rightarrow sll
 - TeV scale Leptoquark \rightarrow LHC direct searches
 - → GUT
 - LFV τ decays
 - SUSY, Z', contact interaction
- 2020's is an exciting era for heavy flavor physics

backup

Light Flavors are also Interesting

- Electron EDM •
 - ACME, Fr EDM@RIKEN
- Neutron EDM •
 - n2EDM@PSI, TUCAN@TRIUMF, Cryogenic experiments
- Proton EDM
 - Storage Ring@CERN
- Muon •

To be covered by Mibe-san

- Muon g-2@Fermilab, muon g-2/EDM @ J-PARC, muon EDM@PSI
- mu2e@Fermilab, COMET@J-PARC, DeeMe@J-PARC
- MEG@PSI, mu3e@PSI
- Pion •
 - pienu@TRIUMP
- Kaons •
 - NA62@CERN, KOTO@J-PARC, KLEVER@CERN Sorry if I missed your favorite experiments

Belle II Physics Book

- Published in Dec 2019
 - <u>https://arxiv.org/abs/1808.10567</u>
 - <u>https://doi.org/10.1093/ptep/ptz106</u>

Prog. Theor. Exp. Phys. 2019, 123C01 (654 pages) DOI: 10.1093/ptep/ptz106

The Belle II Physics Book

E. Kou^{75,*,§,†}, P. Urquijo^{145,‡,†}, W. Altmannshofer^{135,§}, F. Beaujean^{79,§}, G. Bell^{122,§}, M. Beneke^{114,§}, I. I. Bigi^{148,§}, F. Bishara^{150,16,§}, M. Blanke^{49,51,§}, C. Bobeth^{113,114,§}, M. Bona^{152,§}, N. Brambilla^{114,§}, V. M. Braun^{50,§}, J. Brod^{112,135,§}, A. J. Buras^{115,§}, H. Y. Cheng^{43,§}, C. W. Chiang^{92,§}, M. Ciuchini^{59,§}, G. Colangelo^{128,§}, A. Crivellin^{102,§}, H. Czyz^{156,29,§}, A. Datta^{146,§}, F. De Fazio^{53,§}, T. Deppisch^{51,§}, M. J. Dolan^{145,§}, J. Evans^{135,§}, S. Fajfer^{109,141,§}, T. Feldmann^{122,§}, S. Godfrey^{7,§}, M. Gronau^{62,§}, Y. Grossman^{15,§}, F. K. Guo^{45,134,§}, U. Haisch^{150,11,§}, C. Hanhart^{21,§}, S. Hashimoto^{30,26,§}, S. Hirose^{89,§}, J. Hisano^{89,90,§}, L. Hofer^{127,§}, M. Hoferichter^{168,§}, W. S. Hou^{92,§}, T. Huber^{122,§}, T. Hurth

Joint effort of theorists and experimentalists. Some of you contributed to the book. Thank you!