Bell inequality violation detection with flavor entanglement of B⁰-B⁰ pairs at ATLAS experiment in LHC Run-3

Yoshiaki Tsujikawa (Kyoto Univ.), Toshi Sumida (Kyoto Univ.), Yosuke Takubo (KEK), Kunihiro Nagano (KEK)

2022.5.12

@Physics in LHC and Beyond

Hidden variable theory

- Einstein's consideration on quantum mechanics
 - Quantum Mechanics (QM) is approximation of a complete theory.
 - In the complete theory, each element of the physical reality (e.g. spin, flavor) is a function of hidden variable λ

- Premise in HVT
 - Locality condition : A measurement on one particle does not influence the other.
 - "Free will" : An experimenter has freedom to choose a measurement condition.

Bell developed a formula that HVT must satisfy.

Bell inequality

• $A(t_a)$, $B(t_b)$: eigenvalues of two particles (e.g. meson flavors)

measured in certain conditions (e.g. measured time t_a, t_b).

$$\mathbf{A}(t_a) \longleftrightarrow \mathbf{B}(t_b)$$

• Expectation value of $A(t_a)B(t_b)$: $C(t_a, t_b) = \sum_{A,B} ABP_{t_at_b}(A, B)$

PDF (Probability Density Function) of A(t_a)B(t_b)

• In HVT, (A, B) are functions of hidden variable λ :

$$P_{t_{a}t_{b}}(A,B) = \int P_{t_{a}}(A,\lambda)P_{t_{b}}(B,\lambda)P(\lambda)d\lambda$$

$$= \int \sum_{A} AP_{t_{a}}(A,\lambda) \sum_{B} BP_{t_{b}}(B,\lambda)P(\lambda)d\lambda$$
Free will
Locality condition

Bell inequality

$$|S| = |C(t_a, t_b) + C(t'_a, t_b) + C(t_a, t'_b) - C(t'_a, t'_b)| \le 2$$

If HVT is correct, $|S| \leq 2$.

Flavor mixing in B meson

• B^0 mesons are flavor eigenstates (B^0 , $\overline{B^0}$) and make CP eigenstates with different mass (B_H , B_L). (B^0 , $\overline{B^0}$) are expressed by the CP eigenstates :

$$|B^{0}\rangle = \frac{|B_{H}\rangle + |B_{L}\rangle}{\sqrt{2}}, |\bar{B}^{0}\rangle = \frac{|B_{H}\rangle - |B_{L}\rangle}{\sqrt{2}}$$

(Assuming CP conservation) B^{0}

• B^0 and \overline{B}^0 are mixed during time evolution. ($\Delta M = M_H - M_L$, $\Gamma = \Gamma_H - \Gamma_L$)

$$P(B^{0} \rightarrow B^{0}, t) = \frac{e^{-\Gamma t}}{2} (1 + \cos \Delta M t)$$
$$P(B^{0} \rightarrow \overline{B}^{0}, t) = \frac{e^{-\Gamma t}}{2} (1 - \cos \Delta M t)$$

Flavor mixing in entangled state

• In QM, a $B^0\bar{B}^0$ pair (e.g. created from Υ (4S) or gluon) is in entangled state \rightarrow If one is B^0 , the other is \bar{B}^0 .

$$\psi(t_a, t_b) = \frac{1}{\sqrt{2}} (|B^0(t_a)\rangle |\bar{B}^0(t_b)\rangle - |\bar{B}^0(t_a)\rangle |B^0(t_b)\rangle)$$
$$B^0 \leftarrow \bar{B}^0 \leftarrow \bar{B}^0 \leftarrow \bar{B}^0 \to \bar{B}^0 \longrightarrow \bar{B}^0$$

• If B_a decays into B^0 eigenstate, the state of B_b at that timing is \overline{B}^0 (vice versa).

$$\underbrace{B_a}_{B^0} \xrightarrow{B_b} \overline{B}_{B^0} \xrightarrow{B_b} \overline{B}_{B^0}$$

• The flavor of $B_{a,}B_{b}$ is mixed during its travel and the flavor is determined at the timing of its decay.

$$\underbrace{B^{0}}_{B^{0}} \xrightarrow{B^{0}}_{B^{0}} \xrightarrow{B^$$

Bell inequality in flavor correlation

• Flavor correlation at decay times (ta/b)

$$C^{Q}(t_{a}, t_{b}) = \sum_{A,B} ABP_{t_{b} t_{b}}^{Q}(A, B) \qquad P_{t_{a} t_{b}}^{Q}(A, B) = \frac{P_{t_{a} t_{b}}^{Q}(A, B)}{N_{t_{a} t_{b}}^{B^{0}B^{0}} + N_{t_{a} t_{b}}^{B^{0}B^{0}} + N_{t_{b} t_{b}}^{B^{0}B$$

 \rightarrow QM violates Bell inequality

-0.5^{t_1_1_}

3.5

∆t[ps]

2 2.5

Previous experiments

- B meson (Belle) [arXiv:030192(2003)]
 - A measurement only for Δt, where
 (t_a, t_b) were not measured separately.
 - |S| has the maximum value of 4 and includes that of QM.
- K meson (CPLEAR) [PLB422, 339-348]
 - A measurement only for C^Q(t_a, t_b) so is not a Bell test.
 - Most of 2 mesons are not space-like and the locality is not ensured in both experiments

The previous experiments were not enough for Bell test on the flavor entanglement

LHC and ATLAS detector

LHC-ATLAS experiment

- Experiment for discovery of new particles and new physics
- Planning the low-luminosity run this year in addition to usual high luminosity run
 - The number of p-p collisions when bunches of proton cross ("pile-up") is about 1 in low-luminosity run.

Validation of Bell inequality violation

- Validation in LHC-ATLAS experiment
 - Correlation of B⁰ flavor in events with gg/qq \rightarrow bb \rightarrow B⁰B⁰, B⁰ \rightarrow D^{*} $\mu \nu$
 - Measure the decay time, reconstructing vertex with μ and π ($\sigma_t \sim 0.11 \text{ ps}$)
 - Identify the flavor of B⁰ by the charge sign of μ and K particles in the events
 - Count the events in which two B⁰ particles with same(different) flavor is identified

Simulation study in ATLAS

- Simulation in the truth level was performed based on the ATLAS experiment with PYTHIA8.245
- The low-luminosity ("pile-up"~1) operation with 1 fb⁻¹ of data was assumed for background rejection.
- The sensitivity to Bell inequality violation was evaluated with $B^0 \overline{B}^0$ events from "gg/qq \rightarrow bb"(69 μ b) and "gg/qq \rightarrow jj" (319 μ b).
- Selection criteria used in "D* μX" analysis at ATLAS was assumed. [Nucl. Pays. B 864 (2012) 341-381]
 - "p⊤(μ) > 6 GeV" was modified to "p⊤(μ) > 4 GeV".
 (→ Development of new muon trigger to get low-p⊤ μ)
 - "pT(K $\pi \pi$) > 4.5 GeV" was modified to "pT(μ) > 3 GeV"
- Results : [Phys.Rev. D 104, 056004]
 - More than 99% B meson pairs are space-like in ATLAS
 - ► |S(1.5±0.25 ps)| = 2.89 ± 0.17 (stat.) ± -0.13 (syst.)
 - Deviation from |S| = 2 can be detected with 4.2 σ significance at 1.55 ps.

Trigger system in ATLAS

Structure

- ► Frequency of collision is 40 MHz, but maximum rate for data recording is about 1 kHz.
- Select as many significant events for recording as possible

- Upgrade for LHC Run-3
 - LHC Run-3 will start in June, 2022. We upgraded the muon trigger system.
 - For improvement of sensitivity of low-momentum μ and rejection of background

Muon trigger decision wi

• Identification of muon candidate with transverse momentum (p_{T})

判定

2/3

判定 Trigger

ector

- Using deference of hit position ($\Delta R: \Delta \phi$) between three stations
- Defined by hit maps generated by simulation samples
 - Setting 15 thresholds using predefined look-up tables (LUT)

Summary & conclusions

- Bell inequality provides upper limit of correlation between two particles that HVT should satisfy.
- Entangled state with two meson flavors in QM violates Bell inequality.
- The previous experiments on meson flavor entanglement were inconclusive for Bell inequality violation
 - Only with Δt measurement without satisfying the locality condition
- Simulation study concluded that Bell test on B meson flavor is possible at the ATLAS experiment.
 - Bell inequality violation can be tested with 4.2 σ precision.
- We organized analysis group in ATLAS and aim the measurement during Run-3(2022-24)
- We developed and evaluated the new low-p⊤ muon trigger in Run-3
 - ~ **30% trigger rate reduction** expected for 3 GeV threshold in whole region
 - High efficiency in the plateau

Back up slides

Q&A in Bell test with meson flavor

- Q1 |S| has the maximum value at 1.55 ps. Is the oscillation frequency is too long with respect to lifetime of B_d^0 (1.5 ps)?
- A1 No problem since $C^Q(t_a, t_b)$ is normalized by # of events at (t_a, t_b) .
- Q2 HVT assumes free will of experimenter in a measurement but decay of B_d^0 is determined by nature. Can it be assumed as free will?
- A2 We assumed that B_d^0 decay randomly and it corresponds to free will of the particle. Also in Aspect experiment, a random generator is used to operate the detector and it is assumed as free will.

Possible loophole in Bell test

• Free will loophole

This study is assumed that the decay of a particle happened randomly with particle's will.

• Efficiency loophole

About 82.8% $(2\sqrt{2} - 2)$ of efficiency is necessary to close the efficiency loophole. Since the efficiency in this study is only 2%, fair sampling assumption is assumed.

• Locality loophole

2 particles decay randomly and they are space-like, therefore, locality loop hole is closed successfully.

Acceptance cut of simulation study

- Selection criteria used in ^ΓD^{*+}μ⁻X J analysis at ATLAS was assumed [Nucl. Phys. <u>B 864 (2012) 341-381</u>].
- $\lceil pT(\mu) > 6 \text{ GeV} \rfloor$ was modified to $\lceil > 4 \text{ GeV} \rfloor$
- $\lceil pT(K^{\pm}\pi^{\mp}\pi^{\mp}) > 4.5 \text{ GeV} \rfloor$ was modified to $\lceil >3 \text{ GeV} \rfloor$

Cut	Total acceptance (A)	$\sigma \times A \text{ (pb)}$
No cut	1.0	247,611
$pT(\mu) > 4 \text{ GeV}$	5.03×10^{-3}	1,246
$ \eta(\mu) < 2.4$	2.79×10^{-3}	690
$pT(K^{\pm}\pi^{\mp}\pi^{\mp}) > 3 \text{ GeV}$	1.56×10^{-3}	385
$ \eta(K^-\pi^+\pi^+) < 2.5$	1.49×10^{-3}	369

Event selection of simulation study

	Effi	ciency	Con	nment
Track reconstruction (ε_{reco})		0.483	From $\lceil D^{*+}\mu^{-}X \rfloor$ analysis	
Trigger (ε _{trigger})		0.429	 (0.819 × 0.8)² was assumed. 0.819 is efficiency for single-μ trigger with pT>6GeV. 	
Selection criteria ($\varepsilon_{selection}$)		Total e	ff.	Comment
$pT > 1$ GeV for π^+/K^- in D^0 candidates		0.	.510	
pT > 250 MeV for π^+ from D^{*+}		0.	.452	
• $ m(K^{-}\pi^{+}) - m(D^{0}) < 64 \text{ MeV } (pT(K^{-}\pi^{+}\pi^{+})) > 12 \text{ GeV}, \eta(K^{-}\pi^{+}\pi^{+}) > 1.3)$ • $ m(K^{-}\pi^{+}) - m(D^{0}) < 40 \text{ MeV elsewhere}$		0.	.209	Assume σ^2 cut (0.46)
$2.5 \text{ GeV} < m(D^{*+}\mu^{-}) < 5.4 \text{ GeV}$		0.	.097	Assume σ^2 cut (0.46)

 $\varepsilon_{total} (\varepsilon_{reco} \times \varepsilon_{trigger} \times \varepsilon_{selection}) = 0.020$

 $(\sigma \times A) \times \varepsilon_{total} \times L(pb^{-1}) = 7.4L(pb^{-1})$ events \rightarrow 7.4k events with 1fb⁻¹.

Background & systematic errors

Background

- Contamination of $B^0 \overline{B}^0$ originated from different gluons is less than 0.1% (negligible)
- BG contamination in $\lceil D^{*+}\mu^{-}X \rfloor$ analysis was $\lceil 6.8 \pm 0.26\% \rfloor$, which is taken into account in this study.
 - > 6.2% is combinatorial BG (e.g.: $\lceil c \rightarrow D^{*+}X \rfloor$ and $\lceil \bar{c} \rightarrow \mu^{-}X' \rfloor$)

Systematic errors on |S|

- BG contamination
 - > Shifting the entries in one Δt bin by 0.26%, the maximum shift in |S| was adopted as the systematic error of BG contamination (most conservative evaluation).
 - > BG should be smaller for $\mu \sim 1$ since $\lceil D^{*+}\mu^{-}X \rfloor$ analysis used data with $\mu > 2$.
- Δt resolution
 - > Evaluated by fluctuating Δt with the resolution $(0.11\sqrt{2}ps)$ 1000 times.