Investigating new physics effects by loop corrected decays of the heavier CP-even Higgs boson

Mariko Kikuchi (Nihon U.)

Collaborators : Shinya Kanemura (Osaka U.) Kei Yagyu (Osaka U.)

arXiv:2203.08337 [hep-ph]

Physics in LHC and Beyond 2022/05/13

Introduction

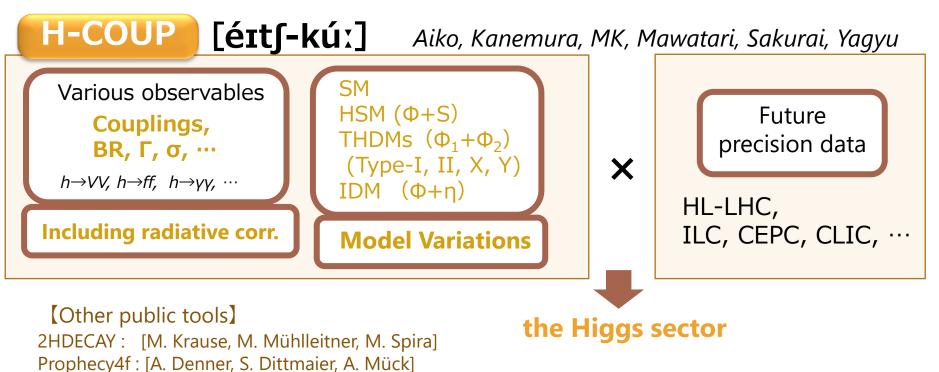
- Clear evidence of New physics [DM, Neutrino mass, BAU, ...]
- One of the important candidates is "Extended Higgs sector".
 - There is no principle to require the minimal Higgs sector (the SM one).
 - In new physics models, the Higgs sector is often extended.
- Structure of Higgs sector is determined by new physics scenarios.
 ⇒ To clarify the structure of the Higgs sector is important in order to determine the direction of new physics

How to test extended Higgs sector ³

Various extended Higgs models Φ+S(singlet), Φ+Φ, Φ+Δ(triplet), ...

Additional Higgs bosons

 $H,\,A,\,H^{\pm},\,H^{\pm\pm},\,\ldots$


⇒ Direct searches at colliders (LHC, HL-LHC, ILC, CEPC, ...)

*h*₁₂₅-couplings deviate via mixing effects

$$\lambda_{hXX} = \kappa_X \lambda_{hXX}^{SM}$$

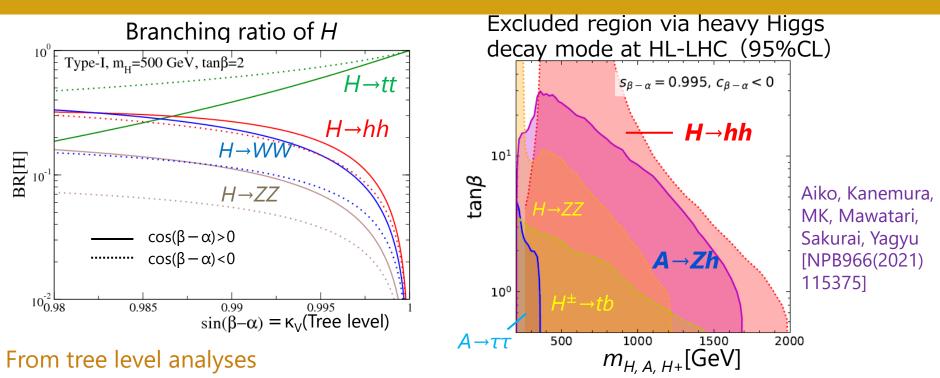
EX. *hWW (hZZ)*
THDM(Φ+Φ) $\kappa_V = \sin(\beta - \alpha)$

⇒ Indirect tests by future precision measurements

Numerical program for determining Higgs Sector

sHDECAY : [R. Costa, M. Mühlleitner, M. Sampaio, R. Santos]

Done : Calculations of decays of *h(125)*.
 Next step : Calculations for decays of additional Higgs bosons (*H*, *A*, *H*[±])


In this talk, we show new results of decays of H including loopcorrections in THDM.A, H[±] decays are discussed in Aiko-san's talk.

Two Higgs doublet model

THDM * Softly broken Z_2 syms. * CP conserving * Mass eigenstates : h_{125} , H, A, H[±] * Parameters : m_H m_A m_{H^+} a β M^2

- Higgs Alignment $sin(\beta - \alpha) = \kappa_V \rightarrow 1 \cdot \cdot \cdot$ (Higgs) alignment limit [Couplings of *h* are aligned to those of SM.] LHC data indicate nearly-alignment "sin($\beta - \alpha$) ~ 1".
- Couplings of additional CP-even Higgs (*H*) Couplings with SM particles $\begin{array}{c} HWW, HZZ \\ HWW, HZZ \end{array} \qquad \kappa_V^H = \frac{g_{HVV}^{NP}}{g_{hVV}^{SM}} = \cos(\beta - \alpha) \rightarrow 0 \\ \hline Hff \\ \kappa_f^H = \cos(\beta - \alpha) - \cot\beta\sin(\beta - \alpha) \rightarrow -\cot\beta \\ \hline Hhh \\ \lambda_{Hhh} = -\frac{\cos(\beta - \alpha)}{2v\sin 2\beta} \left\{ (2m_h^2 + m_H^2 - 3M^2)\sin 2\alpha + M^2\sin 2\beta \right\} \rightarrow 0 \end{array}$

Decay modes in nearly-alignment

- Slight variation in mixing parameters can significantly change BR[H].
- Wide parameter region is expected to be surveyed by "Higgs to Higgs decays" such as $H \rightarrow hh$ and $A \rightarrow Zh$.

To do

Radiative corrections to both the discovered Higgs boson couplings and the decay BRs of additional Higgs bosons

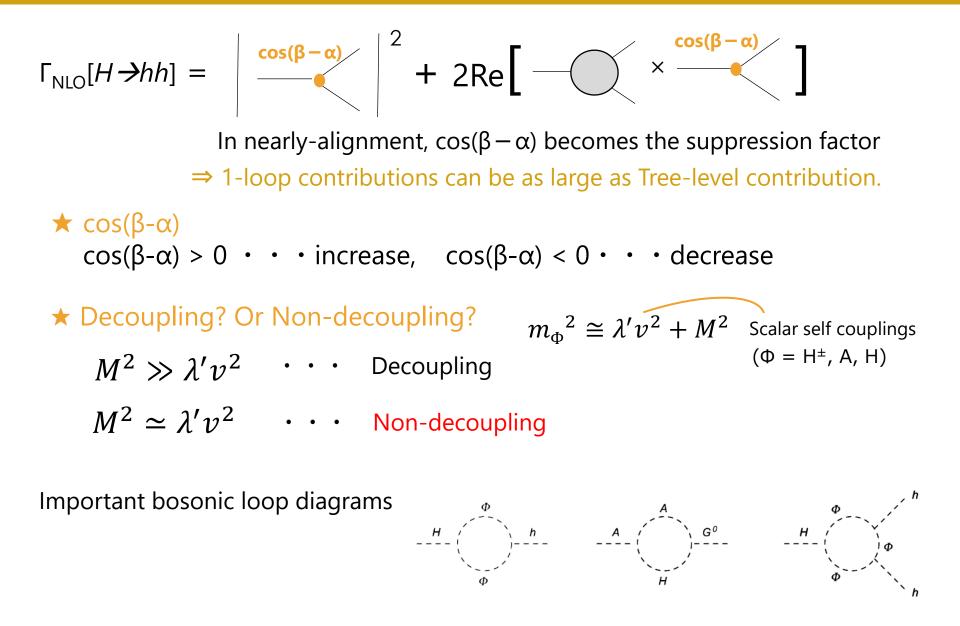
We show the results for decays of *H* with $h \rightarrow WW^*$, hhh

Calculations of loop corrections

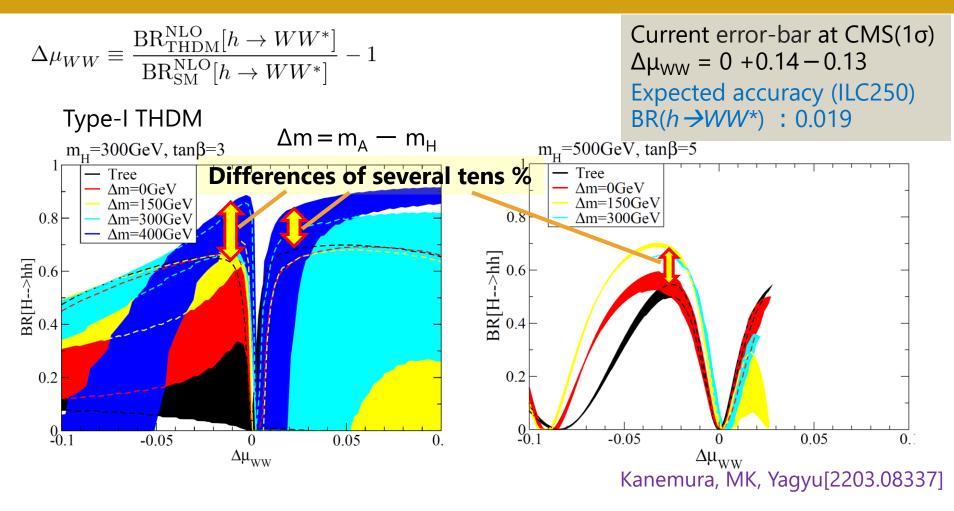
We calculate the full set of BRs of *H* with EW, scalar and QCD corrections.

Numerical results

$$\mathsf{BR}[H \rightarrow hh] \qquad \Delta \mu_{WW} \equiv \frac{\mathrm{BR}_{\mathrm{THDM}}^{\mathrm{NLO}}[h \rightarrow WW^*]}{\mathrm{BR}_{\mathrm{SM}}^{\mathrm{NLO}}[h \rightarrow WW^*]} - 1 \qquad \Delta \lambda_{hhh} = \frac{\lambda_{hhh}^{THDM}}{\lambda_{hhh}^{sm}} - 1$$

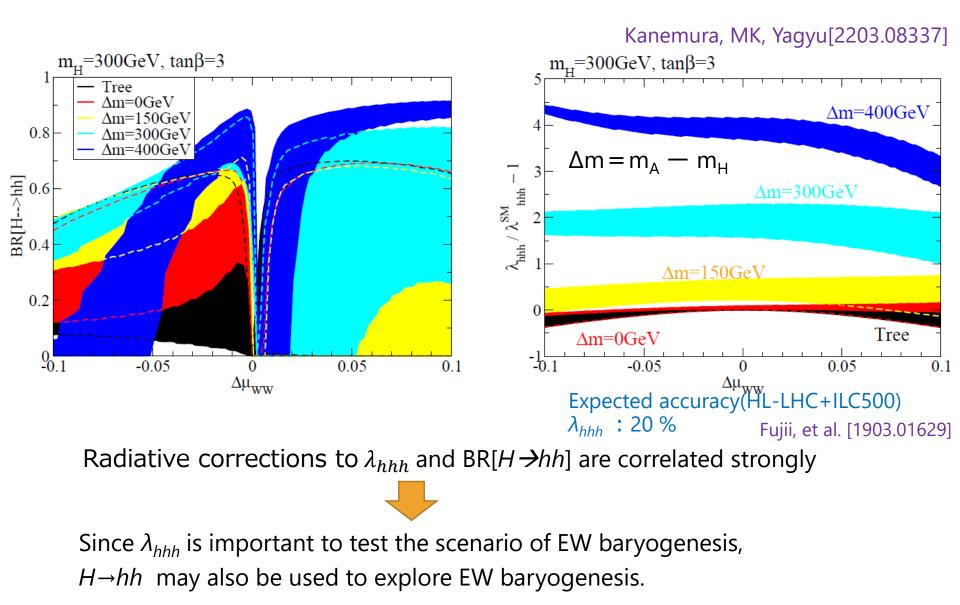

- EW and scalar-NLO (Decay rate)
- $\Gamma_{\text{NLO}}[H \rightarrow XX] = \left| -\frac{1}{\sqrt{1 + 2Re\left[-\sqrt{1 + 2Re\left[+2Re\left[-\sqrt{1 + 2Re\left[-\sqrt{1 + 2Re\left[+\sqrt{1 + 2Re\left[+\sqrt{1 + 2Re\left[+\sqrt{1 + 2Re\left[+\sqrt{1 + 2Re\left[+2Re\left[+2Re$

hhh


Calculations of loop diagrams

- \star UV divergence \rightarrow On-shell renormalizations
- \star Gauge dependence \rightarrow Pinch technique
- QCD corrections (for $H \rightarrow qq$, $H \rightarrow gg$, $H \rightarrow \gamma\gamma$, $H \rightarrow \gamma Z$) MS-bar scheme (NNLO)

Loop corrections to $\Gamma[H \rightarrow hh]$


Correlation between $H \rightarrow hh$ and $h \rightarrow WW$

For $\Delta m \neq 0$, NLO corrections can change the tree level predictions by several tens %.

Radiative corrections to BR[H] are quite important.

Correlation between $H \rightarrow hh$ and hhh

10

Conclusions

- We have computed the full set of decay rates of *H* with radiative corrections in the THDM.
- Radiative corrections to BR[H → hh] can drastically change its LO prediction due to non-decoupling effect of additional Higgs boson loops.
- Even in the case with very near alignment ($|\Delta \mu_{WW}| \sim 0.02$), $H \rightarrow hh$ can be the dominant decay mode.
- Radiative corrections to λ_{hhh} and BR[$H \rightarrow hh$] are correlated strongly.

Radiative corrections to decays of *H* is important for direct searches of additional Higgs bosons at future collider experiments such as HL-LHC.