Quantum sensing for particle and astrophysics

Physics in LHC and Beyond May 14, 2022 Tatsumi Nitta (University of Tokyo, ICEPP)

Quantum Sensor

Quantum states ~ basically low energy -> ideal for application to the low energy measurement

Quantum sensors

"A device, the measurement capabilities of which are enabled by our ability to manipulate and read out its quantum states. " M. Doser

Quantum sensors enable us to search: - new physics in unprecedented sensitivity - new physics which we've never searched

Quantum Sensing for HEP

Superconducting device Magnetometer: SQUID (ABRACADABRA) Amplifier: JPA, TWPA (ADMX, HAYSTAC, etc) Photon counting: Transmon (FNAL/Chicago), Rydberg Atom (CARRACK, Yale), SNSPD, TES, MKID, QCDet, etc

Atom Interferometer MAGIS-100, AION, MIGA, ZAIGA **Optomechanical sensors**

Wind chime

SQUID

ABRACADABRA PRL 122, 121802 (2019) PRD 99, 052012 (2019) PRL 127, 081801 (2021)

ABRACADABRA-10cm

Sensitive to axion DM having mass below $1 \mu eV$ DM-radio collaboration is aiming to reach DFSZ axions with m³ size detector

JPA/TWPA

ADMX PRL 122, 151301 (2018) PRL 124, 1013013 (2020) PRL 127, 261803 (2021) etc

HAYSTAC

PRL 118, 061302 (2017)

Nature 590, 238-242 (2021)

ADMX-sidecar arXiv:2110.10262 (2021)

300 K 4 K 1 K 500 mK 100 mK

JPA (Josephson Parametric Amplifier)

works at GHz 30 dB gain

TWPA (Traveling Wave Parametric Amplifier)

Broadband amplification ~ O(GHz) (but less gain)

Amplifier only adds idler temperature ~ 200 mK ~ 10^{-24} W/Hz

SQL (Standard Quantum Limit)

Standard quantum amplifiers' Quantum Limited Amps

JPA/TWPA itself

$$\Delta n \Delta \phi \ge \frac{1}{2}: ~30 \text{ mK@1GHz},$$

~300 mK@10GHz

Phys. Rev. D 23, 1693 (1981)

Standard quantum amplifiers' performance is limited by SQL

Defeating SQL

Quantum Squeezing

TAMA/LIGO/ Virgo/KAGRA HAYSTAC Single Photon Detection

Rydberg Atom Superconducting Qubit etc

Quantum Squeezing

LIGO nonlinearity: PPKTP crystal (OPO) 2 dB improvement against SQL

Frequency (Hz)

LIGO Nature 7, 613-619 (2013) PRL 123, 231107 (2021) HAYSTAC

Nature 590, 238-242 (2021)

nonlinearity: Josephson Junction (JPA) 4 dB improvement against SQL

HAYSTAC

Loss of intermediate device limits their squeezing quality $\epsilon \gamma_{\text{squeezed}} + (1 - \epsilon) \gamma_{\text{circulator}}$

Single Photon Detection (Superconducting qubit) $\mathcal{H}/\hbar = \omega_c a^{\dagger} a + \frac{1}{2} (\omega_q + 2\chi a^{\dagger} a) \sigma_z$

Detecting one photon \rightarrow phase uncertainty goes ∞ **Evading the SQL**

a

Measured \overline{n}

b

 10°

10⁻⁴

0

10⁻³

Injected \overline{n}

 $\lambda_{\rm thresh} = 10^5$

 $\delta = 4.3 \times 10^{-10}$

 $\eta = 40.9\%$

10⁻⁵

SQL

10⁻¹

Single Photon Detection (Rydberg Atom)

Rydberg Atom (n~100):

- can detect single photon
- long life time ($\propto n^3$)
- Tunable 10-1000 GHz (*n* & Zeeman shift)

- $4S 5P_{1/2}$ @405 nm closed: can be locked to sat absrp.
- $5P_{1/2} nS$ @970 nm
 - technically easy to deliver high power at 970 nm

CARRACK PLA 349 488 (2006) Yale (Maruyama lab) arXiv: 2112.04614 (2021)

195

170

145

120

95

70

45

20

10

Single Photon Detection BREAD PRL 128, 131801 (KID, QCDet, SNSPD) ν [THz] \int 100 0.001 0.01 10 1000 ().] 10^{-8} . 10^{-9} CAST 10^{-10} elescop 10^{-1} GeVBext 10^{-12} $\frac{\overbrace{}^{}}{\underbrace{}^{}}_{10} 10^{-13}$ BREAD Haloscope $2\sqrt{2}R$ $A_{\rm dish} = 10 \ {\rm m}^2$ c,D axion models $B_{\rm ext} = 10 \text{ T}$ 10^{-14} , SNR = 5, $\epsilon_{sig} = 0.5$ 10 days 10^{-15} , 1000 days 1000 days, NEP/100 10^{-16} 0.001 0.011 0.1100 1000 10 $m_a \, [\mathrm{meV}]$

Single Photon Detection (KID, QCDet, SNSPD)

N N N

(a)

TiN mesh

37

-37

33

Important advantage about Single Photon Counting

Dark Photon,

Background

ADMX etc ~ Relative power detector \rightarrow Can't detect any broadband signals

Single Photon Detector ~ Absolute Power Detector \rightarrow Sensitive to broadband signals

> Then what physics makes broadband signals?

(Basically)

Broadband signals

Cosmic axion background (CaB)

Axion does not necessary to be DM (nonrelativistic)

-> it can be relativistic dark radiation

Phys. Rev. D 103, 115004

arXiv:2112.11465v1

High Frequency Gravitational Wave (~GHz) PBH merger or PBH superradiance maypmakesr Games GW

It can reach $h \sim 10^{-22}$

Quantum sensing enable us to search new physics we've never searched

Atomic Interferometer

MAGIS-100 (USA) AION (UK) MIGA (France) ZAIGA (China)

wavelike DM search

Frequency (Hz)

1

GGN

- 10

Accelerometers

torsion balance (Eöt-Wash)

Can detect force produced by wavelike DM 10⁻³⁸ N/neutron

Phys. Rev. D **93**, 075029 (2016) arXiv:1908.04797v2 16

Wind chime

Phys. Rev. D 102, 072003

Search for Planck scale DM with gravitational interaction

The most robust detection technique

Have to read out signals from dill fridge #Channels ~ ATLAS pixel

maybe setup like

Ultimate quantum detector!

Summary

Introduced some use-cases of quantum sensors:

- Classical to quantum sensing isn't jump but step-by-step.
- Each step will have great science result.

Quantum sensors enable us to search:

- new physics in unprecedented sensitivity - new physics which we've never searched

Backup

An example: Axion haloscope

https://cajohare.github.io/AxionLimits/

An example: Axion haloscope

https://cajohare.github.io/AxionLimits/

Limitation

Aaron S. Chou, U.Tokyo workshop, March 9, 2022

22

Expected sensitivity

Already reported ~15 dB better than SQL for Dark Photon search (Phys. Rev. Lett. **126**, 141302)

This eventually enable to search - axion dark matter even if it composes 3% of total dark matter

- or 5x smaller coupling than DFSZ - or 1000x faster scan speed

