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• Shift symmetry (NG boson)     +      Chern-Simons coupling 

1

𝑓
𝜙𝐺𝜇𝜈𝐺

𝜇𝜈  

𝑉 𝜙 = Λ𝑏
4 cos

𝜙

𝑓
 

• Strong CP problem, QCD axion 

• Naturalness of electroweak scale, Relaxion 

• Axion monodromy 

• Axion inflation 

• … 

𝜙 →  𝜙 + 𝛿𝜙 

• Shift symmetry breaking 

               by strong dynamics 

Axion (-like) particle 

• Theoretical motivation,  interesting phenomenology, … 

(𝐺𝜇𝜈 is gauge field of either QCD or new strong dynamics) 

Axion field :  𝜙 

[ 2 / 33 ] 



Axion (-like) particle & cosmology 

Dynamics of axion field is interesting 

• Axion dark mattter 

• Relaxion : dynamical expanation of electroweak scale 

• … 

Solving EOM  𝜙 + 3𝐻𝜙 + 𝑉′(𝜙) = 0 with some initial condition 
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𝜙 + 3𝐻𝜙 +
Λ𝑏
4 𝑇

𝑓
sin

𝜙

𝑓
= 0 

The axion starts to oscillate when 3𝐻(𝑇) ∼ 𝑚(𝑇) 

𝜌𝐷𝑀 ∼ 𝑚𝑎 ×
𝑎 𝑇𝑜𝑠𝑐
𝑎0

3

×
Λ𝑏 𝑇𝑜𝑠𝑐

4𝜃𝑖
2

𝑚𝑎 𝑇𝑜𝑠𝑐
 w/   𝑚𝑎 𝑇𝑜𝑠𝑐 ∼ 3𝐻 𝑇𝑜𝑠𝑐  

𝜙 = 𝜙0 ≠ 0 

𝜙 = 0 

Initial condition 

[taken from Co, Hall, Harigaya (2019)] 

[Preskill, Wise, Wilczek (1983)] 

[Abbott, Sikivie (1983)] 

[Dine, Fischler (1983)] 

• Misalignment mechanism 

EOM 

Number density at 𝑇 = 𝑇𝑜𝑠𝑐 Dilution factor mass 

ex) Axion (-like) particle DM scenario 
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The axion starts to oscillate when 3𝐻(𝑇) ∼ 𝑚(𝑇) 
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𝑚𝑎 𝑇𝑜𝑠𝑐
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𝜙 = 𝜙0 ≠ 0 

𝜙 = 0 

Initial condition 

[taken from Co, Hall, Harigaya (2019)] 

[Preskill, Wise, Wilczek (1983)] 

[Abbott, Sikivie (1983)] 

[Dine, Fischler (1983)] 

• Misalignment mechanism 

EOM 

Number density at 𝑇 = 𝑇𝑜𝑠𝑐 Dilution factor mass 

What happens if 𝜙 > Λ𝑏
2

?  

ex) Axion (-like) particle DM scenario 
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𝜙 + 3𝐻𝜙 +
Λ𝑏
4 𝑇

𝑓
sin

𝜙

𝑓
= 0 

The axion starts to oscillate when 𝜙 2(𝑇) ∼ Λ𝑏
4 (𝑇) 

𝜌𝐷𝑀 ∼ 𝑚𝑎 ×
𝑎 𝑇𝑜𝑠𝑐
𝑎0

3

×
Λ𝑏 𝑇𝑜𝑠𝑐

4

𝑚𝑎 𝑇𝑜𝑠𝑐
 w/    𝜙 2 𝑇𝑜𝑠𝑐 ∼ Λ𝑏

4 (𝑇𝑜𝑠𝑐) 

Initial condition 

[taken from Co, Hall, Harigaya (2019)] 

• Kinetic Misalignment mechanism 

EOM 

Number density at 𝑇 = 𝑇𝑜𝑠𝑐 Dilution factor mass 

[Co, Hall, Harigaya (2019)] 

[Chang, Cui (2019)] 

𝜙 > Λ𝑏
2

 

Delay of onset of oscillation → larger 𝜌𝐷𝑀 

ex) Axion (-like) particle DM scenario 
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Axion fluctuation? 

𝜙 + 3𝐻𝜙 + 𝑉′(𝜙) = 0 Solving EOM for spatially homogeneous field :  

What people usually do 

However… 

Even we start from (almost) homogeneous field configuration, 

fluctuations can grow later. 
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Velocity as U(1) charge 

Velocity 𝜙  is U(1) charge :  𝜌shift = 𝑓
𝜕𝐿

𝜕0𝜙
= 𝑓𝜙  𝜙 → 𝜙 + 𝑓 𝛿 

Shift transf. 

Explicit breaking of U(1) : 𝑉 𝜙 = Λ𝑏
4 cos

𝜙

𝑓
+ ⋯ 

U(1) charge will be lose = energy dissipation 

Axion fragmentation [Fonseca, Morgante, RS, Servant (2019)] 

For related earlier works, see 

[Green, Kofman, Starobinsky (1998)] 

[Flauger, McAllister, Pajer, Westphal, Xu (2009)] 

[Jaeckel, Mehta, Witkowski (2016)] 

[Arvanitaki, Dimopoulos, Galanis, Lehner, Thompson, Van Tilburg (2019)] 
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1. Introduction 

2. Perturbative analysis 

3. Non-perturbative analysis 
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𝜙0
   : initial velocity 

𝑓  : decay constant 

Λ𝑏
4

  : height of barrier 

Let us investigate the simplest case. 

• 𝐻 = 0   (no cosmic expansion) 

• 𝑉 𝜙 = Λ𝑏
4 cos(𝜙/𝑓) 

We have only three parameters :  

EOM of axion :  

𝑑2𝜙

𝑑𝑡2
− 𝛻2𝜙 −

Λ𝑏
4

𝑓
sin

𝜙

𝑓
=    0 

Axion fragmentation 
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𝑑2𝛿𝜙𝑘

𝑑𝑡2
+ 3𝐻

𝑑𝛿𝜙𝑘

𝑑𝑡
+ 𝑒−2𝐻𝑡𝑘2 +

Λ𝑏
4

𝑓2
cos𝜙 𝛿𝜙𝑘 = 0 𝜙 𝑥 , 𝑡 = 𝜙 𝑡 +  

𝑑3𝑘

2𝜋 3
𝛿𝜙𝑘 𝑡 𝑒𝑖𝑘𝑥 + ℎ. 𝑐.  We decompose 

𝑑2𝜙

𝑑𝑡2
− 𝛻2𝜙 −

Λ𝑏
4

𝑓
sin

𝜙

𝑓
=    0 

EOM of axion 
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𝑑2𝛿𝜙𝑘

𝑑𝑡2
+ 3𝐻

𝑑𝛿𝜙𝑘

𝑑𝑡
+ 𝑒−2𝐻𝑡𝑘2 +

Λ𝑏
4

𝑓2
cos𝜙 𝛿𝜙𝑘 = 0 

𝑑2𝜙 

𝑑𝑡2
−
Λ𝑏
4

𝑓
sin

𝜙 

𝑓
=    

1

2

Λ𝑏
4

𝑓3
sin

𝜙 

𝑓
 
𝑑3𝑥

𝑉𝑣𝑜𝑙
𝛿𝜙 𝑥 2

 

𝜙 𝑥 , 𝑡 = 𝜙 𝑡 +  
𝑑3𝑘

2𝜋 3
𝛿𝜙𝑘 𝑡 𝑒𝑖𝑘𝑥 + ℎ. 𝑐.  We decompose 

𝑑2𝛿𝜙

𝑑𝑡2
− 𝛻2𝛿𝜙 −

Λ𝑏
4

𝑓2
cos

𝜙 

𝑓
𝛿𝜙   =    0 

Back reaction 

At the leading order of 𝛿𝜙𝑘, 

EOM of axion 
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At the leading order of 𝛿𝜙𝑘, 

Back reaction 

𝑑2𝜙 

𝑑𝑡2
−
Λ𝑏
4

𝑓
sin

𝜙 

𝑓
=    

1

2

Λ𝑏
4

𝑓3
sin

𝜙 

𝑓
 
𝑑3𝑥

𝑉𝑣𝑜𝑙
𝛿𝜙 𝑥 2

 

Mathieu equation 

𝑑2𝛿𝜙𝑘

𝑑𝑡2
+ 𝑘2 −

Λ𝑏
4

𝑓2
cos

𝜙  𝑡

𝑓
𝛿𝜙𝑘    =    0 

EOM of axion 
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𝑑2𝛿𝜙𝑘

𝑑𝑡2
+ 3𝐻

𝑑𝛿𝜙𝑘

𝑑𝑡
+ 𝑒−2𝐻𝑡𝑘2 +

Λ𝑏
4

𝑓2
cos𝜙 𝛿𝜙𝑘 = 0 

Mathieu equation 

There exist resonant solutions for this. 

It’s like a swing! 

𝑑2𝛿𝜙𝑘

𝑑𝑡2
+ 𝑘2 −

Λ𝑏
4

𝑓2
cos

𝜙  𝑡

𝑓
𝛿𝜙𝑘    =    0 

EOM of axion 

Λ𝑏
4

𝑓2
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𝑑2𝛿𝜙𝑘
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𝑘 −
𝜙 

2𝑓
<

Λ𝑏
4

2𝑓𝜙 
 

Large velocity Small velocity 

Exponential growth 

Exponential growth 

Exponential growth 

Oscillation 

Oscillation 

Oscillation 

Oscillation 

𝑑2𝛿𝜙𝑘

𝑑𝑡2
+ 𝑘2 −

Λ𝑏
4

𝑓2
cos

𝜙  𝑡

𝑓
𝛿𝜙𝑘    =    0 

EOM of axion 
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Growth of fluctuation 

Back reaction to zeromode 
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As long as 𝜙  is constant,  𝛿𝜙𝑘 ∼ exp
Λ𝑏
4 𝑡

𝑓𝜙 
 for 

𝑘 

𝑘𝑐𝑟 =
𝜙  

2𝑓
 

𝛿𝑘𝑐𝑟 ≃
Λ𝑏
4

𝑓𝜙  
 

No growth No growth Unstable 

𝑡 = 0 

𝑘 −
𝜙 

2𝑓
<

Λ𝑏
4

2𝑓𝜙 
 

By using dimensional analysis 

𝜌𝑓𝑙𝑢𝑐(𝑡) ∼ 𝑘𝑐𝑟
3 𝛿𝑘𝑐𝑟exp

Λ𝑏
4 𝑡

𝑓𝜙  
 

Naïve estimation on back reaction 
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As long as 𝜙  is constant,  for 

𝑘 

𝑘𝑐𝑟 =
𝜙  

2𝑓
 

No growth No growth Unstable 

Instability band moves to IR… 

𝑡 > 0 

𝑘 −
𝜙 

2𝑓
<

Λ𝑏
4

2𝑓𝜙 
 𝛿𝜙𝑘 ∼ exp

Λ𝑏
4 𝑡

𝑓𝜙 
 

𝛿𝑘𝑐𝑟 ≃
Λ𝑏
4

𝑓𝜙  
 

By using dimensional analysis 

𝜌𝑓𝑙𝑢𝑐(𝑡) ∼ 𝑘𝑐𝑟
3 𝛿𝑘𝑐𝑟exp

Λ𝑏
4 𝑡

𝑓𝜙  
 

Naïve estimation on back reaction 
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As long as 𝜙  is constant,  

By using dimensional analysis 

for 

𝑘 

𝑘𝑐𝑟 =
𝜙  

2𝑓
 

No growth Growth stopped! No growth Unstable 

𝜌𝑓𝑙𝑢𝑐 𝑡𝑠𝑡𝑜𝑝 ∼
1

2
𝜙 2 −

1

2
𝜙  − 2𝑓𝛿𝑘𝐶𝑟

2
 

The growth stops when 

𝑡 = 𝑡𝑠𝑡𝑜𝑝 

of mode with k=kcr 

𝑘 −
𝜙 

2𝑓
<

Λ𝑏
4

2𝑓𝜙 
 𝛿𝜙𝑘 ∼ exp

Λ𝑏
4 𝑡

𝑓𝜙 
 

𝛿𝑘𝑐𝑟 ≃
Λ𝑏
4

𝑓𝜙  
 

𝜌𝑓𝑙𝑢𝑐(𝑡) ∼ 𝑘𝑐𝑟
3 𝛿𝑘𝑐𝑟exp

Λ𝑏
4 𝑡

𝑓𝜙  
 

𝜌𝑓𝑙𝑢𝑐 𝑡𝑠𝑡𝑜𝑝 ∼
1

2
𝜙2 ×

𝛿𝑘𝑐𝑟
𝑘𝑐𝑟

 

Naïve estimation on back reaction 
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𝑡𝑠𝑡𝑜𝑝 ∼
𝑓𝜙  

Λ𝑏
4 log

𝑓4

𝜙  2
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3 𝛿𝑘𝑐𝑟exp
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Naïve estimation on back reaction 
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𝜌𝑓𝑙𝑢𝑐 𝑡𝑠𝑡𝑜𝑝 ∼ 𝜙 2 ×
𝛿𝑘𝑐𝑟
𝑘𝑐𝑟

, 𝑡𝑠𝑡𝑜𝑝 ∼
𝑓𝜙  

Λ𝑏
4 log

𝑓4

𝜙  2
 

𝑑

𝑑𝑡
𝜙 2   ∼ − 

𝜌𝑓𝑙𝑢𝑐 𝑡𝑠𝑡𝑜𝑝

𝑡𝑠𝑡𝑜𝑝 
 

Naïve estimation on back reaction 

∼ −
Λ𝑏
8

𝑓𝜙 
log

𝑓4

 𝜙 2

−1

 

𝑑

𝑑𝑡
𝜙   ∼ −

Λ𝑏
8

𝑓𝜙2 
log

𝑓4

 𝜙 2

−1

 

c.f.) WKB approx. with  𝜙 ≫ Λ𝑏
2
 gives 

𝑑𝜙 

𝑑𝑡
=  −

𝜋

2

Λ𝑏
8

𝑓𝜙 2
log

32𝜋2𝑓4

𝜙 2

−1

 

(see 1911.08472 for details) 

Δ𝜙𝑓𝑟𝑎𝑔   ∼   𝜙0
 Δ𝑡𝑓𝑟𝑎𝑔   ∼   𝑓

𝜙 0
4

Λ𝑏
8 log

𝑓4

𝜙 0
2
 Δ𝑡𝑓𝑟𝑎𝑔   ∼   𝑓

𝜙 0
3

Λ𝑏
8 log

𝑓4

𝜙 0
2
 

Time scale of fragmentation :  Field excursion: 

Time scale of growth of single mode :  Energy stored in fluctuations :  
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It works! 

𝑓

Λ𝑏
= 1000 

𝑑𝜙 

𝑑𝑡
=  −

𝜋

2

Λ𝑏
8

𝑓𝜙 2
log

32𝜋2𝑓4

𝜙 2

−1

 Solution of  

[Fonseca, Morgante, RS, Servant (2019)] 

Numerical Example 

Time evolution of zeromode Energy in fluctuation 
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1. Introduction 

2. Perturbative analysis 

3. Non-perturbative analysis 

[ 24 / 33 ] 



Non-linear analysis 

Inittial kinetic energy :  

Typical wavenumber :  

Energy conservation :  

𝜙 0
2/2 

𝜙 0/𝑓 

𝛿𝜙 2 × 𝜙 0/𝑓
2
∼ 𝜙0

 2 

𝛿𝜙 ∼ 𝑓 Typical field variation :  

• Perturbation expansion is OK in the early stage. 

• Non-perturbative analysis is needed in the late stage. 

In perturbative analysis OK? 

Classical lattice simulation 

𝜙 = 𝛻2𝜙 +
Λ𝑏
4

𝑓
sin

𝜙

𝑓
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[Morgante, RS, Stefanek, Ratzinger (in preparation)] 

𝑡𝑛𝑙 =
𝑓𝜙 0

3

Λ𝑏
8  

Velocity of zeromode 

• Confirmed energy dissipation in non-linear calculation. 

• Dissipation effect is stronger than linear analysis. 

[Morgante, RS, Ratzinger, Stefanek (2021)] 

[ 26 / 33 ] 



Growth of spectrum (early stage) 

𝛿𝑡𝑎𝑚𝑝 ≡
𝑓𝜙 

Λ𝑏
4 log

16𝑓4

𝜙 2
  

[Morgante, RS, Ratzinger, Stefanek (2021)] 
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Zoom of 1
st

 peak 

1
st

 peak 

Growth of spectrum (early stage) 

𝛿𝑡𝑎𝑚𝑝 ≡
𝑓𝜙 

Λ𝑏
4 log

16𝑓4

𝜙 2
  

[Morgante, RS, Ratzinger, Stefanek (2021)] 
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Zoom of 1
st

 peak 

1
st

 peak 

Fluctuation from 2to1 processs 

2
nd

 peak 

Growth of spectrum (early stage) 

𝛿𝑡𝑎𝑚𝑝 ≡
𝑓𝜙 

Λ𝑏
4 log

16𝑓4

𝜙 2
  

𝛿𝜙𝑝 

𝛿𝜙𝑝−𝑘 

𝛿𝜙𝑘 

[Morgante, RS, Ratzinger, Stefanek (2021)] 
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Zoom of 1
st

 peak 

1
st

 peak 

Fluctuation from 2to1 processs 

2
nd

 peak 

3
rd

 peak 

… 

Growth of spectrum (early stage) 

𝛿𝑡𝑎𝑚𝑝 ≡
𝑓𝜙 

Λ𝑏
4 log

16𝑓4

𝜙 2
  

𝛿𝜙𝑝 

𝛿𝜙𝑝−𝑘 

𝛿𝜙𝑘 

[Morgante, RS, Ratzinger, Stefanek (2021)] 
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Growth of spectrum (late stage) 

• We can see peak-like structure in the early stage 

• The spectrum becomes broad 

• Cascading towards UV (early stage of thermalization) 

𝛿𝑡𝑎𝑚𝑝 ≡
𝑓𝜙 

Λ𝑏
4 log

16𝑓4

𝜙 2
  

𝑡𝑓𝑟𝑎𝑔
𝑛𝑙

 is total stopping time 

[Morgante, RS, Ratzinger, Stefanek (2021)] 
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Physical implication? 

ALP dark matter 

• Periodic potential 

• Large kinetic energy 
Generic phenomena 

[Eröncel, RS, Sørensen, Servant, in preparation] 

Fragmentation could happen 

before axion starts to oscillate 

• Fluctuation → axion minicluster? 

• … 

(Work in progress) 

Relaxion fragmentation can be a source of friction to stop relaxion. 

Relaxion scenario 

Any other application? 

(1911.08473, Fonseca-Morgante-Sato-Servant) 
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> is generic phenomena 

> opens new parameter space for relaxion scenario 

> gives severe constraint on Higgs-independent barrier model 

> Non-linear effects? 

> Gravitational waves? 

> Implication on QCD axion? 

> Dark matter? 

Axion Fragmentation 

Future directions :  

Summary 

• Large axion velocity  →  growth of fluctuation 

• Zeromode kinetic energy dissipates into fluctuations 

 

• Generic phenomena w/ periodic potential and large velocity. 

• Applications 

• Relaxion 

• Axion dark matter scenario 

• … 
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Backup 



References 

Green, Kofman, Starobinsky, hep-ph/9808477 

 

 

Flauger, McAllister, Pajer, Westphal, Xu, 0907.2916 

 

 

Jaeckel, Mehta, Witkowski, 1605.01367 

 

 

Berges, Chatrchyan, Jaeckel, 1903.03116 

 

 

Arvanitaki, Dimopoulos, Galanis, Lehner, Thompson, Van Tilburg, 1909.11665 

Parametric resonance from large amplitude 

Parametric resonance from large amplitude 

Cosine + quadratic term, linear 

Cosine + quadratic term, non-perturbative 

Cosine + linear term, monodromy infl. 



= −
𝜋Λ𝑏

8

2𝑓𝜙 2
log

32𝜋2𝑓4

𝜙 2

−1

 

Hubble < slope < fragmentation : ! 

Hubble < fragmentation < slope : no pp 

Fragmentation < Hubble < slope : no pp 

Fragmentation < slope < hubble : hubble 

Slope < framgnetation < hubble : hubble 

Slope < Hubble < framgmentation : ! 

What happens for non-zero 𝜇3 & non-zero 𝐻? 

• Fragmentation  𝜙 𝑓𝑟𝑎𝑔 

• Acceleration by slope 𝜇3 

• Hubble expansion 3𝐻𝜙  

Fragmentation works if 

• During inflation (3𝐻𝜙 ∼ 𝜇3) 

• Not during inflation (3𝐻𝜙 ≪ 𝜇3) 

3𝐻𝜙 < ~|𝜙 𝑓𝑟𝑎𝑔| 

𝜇3 < ~|𝜙 𝑓𝑟𝑎𝑔| 

If not, axion keeps rolling with slow-roll velocity 

If not, axion is just accelerated by slope 

Non-zero slope & Hubble expansion 



Details on back reaction (1). 

𝜙 𝑥, 𝑡 = 𝜙 𝑡 + 𝛿𝜙(𝑥, 𝑡) 𝛿𝜙 𝑥, 𝑡 =  
𝑑3𝑘

2𝜋 3 𝑎𝑘𝑢𝑘 𝑡 𝑒𝑖𝑘𝑥 + ℎ. 𝑐. 

𝑎𝑘 , 𝑎𝑘′
∗ = 2𝜋 3𝛿 3 (𝑘 − 𝑘′)  

𝑢𝑘 →
𝑒−𝑖𝑘𝑡

2𝑘
 𝑡 → −∞ 

𝑎 0 = 0 

 
𝑑𝑥3

𝑉𝑣𝑜𝑙
𝛿𝜙 𝑥 2 =  

𝑑3𝑘

2𝜋 3 𝑢𝑘
2
 

Creation annihilation op :  

Boundary condition for Wave function :  

Bunch-Davies vacuum: 



Details on back reaction (2). 

𝑑2𝛿𝜙𝑘

𝑑𝑡2
+ 3𝐻

𝑑𝛿𝜙𝑘

𝑑𝑡
+ 𝑒−2𝐻𝑡𝑘2 +

Λ𝑏
4

𝑓2
cos𝜙 𝛿𝜙𝑘 = 0 

Asymptotic behavior of wave function 𝑢𝑘 :  

𝑢𝑘 →
𝑒−𝑖𝑘𝑡

2𝑘
 

𝑢𝑘 →
1

2𝑘
2 exp −

𝜋

4

Λ𝑏
8

𝜙 2𝜙 𝑓4
× cos 𝑘𝑡 

𝑑𝜌

𝑑𝑡
   =    −

𝑑

𝑑𝑡

𝜙 

2𝑓
×
4𝜋𝑘2

2𝜋 3

1

2
𝑢𝑘 

2 +
1

2
𝑘2 𝑢𝑘

2
 

=   −
𝜙 3𝜙 

32𝜋2𝑓4
exp −

𝜋

2

Λ𝑏
8

𝜙 2𝜙 𝑓4
 

𝑑𝜌

𝑑𝑡
   =    𝜙 𝜙  

𝜙 = −
𝜋Λ𝑏

8

2𝜙 2𝑓
log

32𝜋2𝑓4

𝜙 2

−1

  

𝑡 → −∞ 

𝑡 → +∞ 

1) 𝑑𝜌/𝑑𝑡 from 𝑢𝑘 2) 𝑑𝜌/𝑑𝑡 from definition 

Consistency between 1) and 2) gives 



“Modified” Mathieu equation. 

𝑑2𝑢𝑘
𝑑𝑡2

+ 𝑘2 +𝑚2cos
𝜙 

𝑓
𝑢𝑘 = 0 with    𝜙  = 𝜙0

 + 𝜙  𝑡 

𝑢𝑘 →
𝑒−𝑖𝑘𝑡

2𝑘
 

𝑢𝑘 →
1

2𝑘
2 exp −

𝜋

4

Λ𝑏
8

𝜙 0
2𝜙  𝑓4

× cos𝑘𝑡 

𝑢𝑘 ≃
1

2𝑘
𝐴 𝑡 cos

𝜙 

2𝑓
+ 𝐵 𝑡 sin

𝜙 

2𝑓
 

1 + 𝑧𝜏 𝐴 +
𝑑𝐵

𝑑𝜏
= 0 

1 − 𝑧𝜏 𝐵 +
𝑑𝐴

𝑑𝜏
= 0 

𝜏 =
𝑓𝑚2𝑡

2𝜙  
 

𝑧 = −
2𝜙0

 𝜙  

𝑓3𝑚4
 

Boundary condition at 𝑡 → −∞ :  

Asymptotic behavior at 𝑡 → +∞ :  

Behavior at 𝜙  /𝑓 ≃ 2𝑘 :  



Setup. 

> The original GKR (non-QCD) model [Graham, Kaplan, Rajendran (2015)] 

𝑉 = − Λ2 − 𝑔′Λ𝜙 𝐻2 + 𝜆𝐻4    +    𝑔Λ3𝜙   +    Λ𝑏
4 𝐻 cos

𝜙

𝑓
 

Higgs potential slope Wiggles 

𝐿𝑒𝑓𝑓 =
𝑦2 𝐻 2

𝑀
𝑁𝑁 

𝑉 ≃
𝑦𝑦 Λ𝑠

3

𝑚𝐿
𝐻 2 cos

𝜙

𝑓
 

𝐿𝑒𝑓𝑓 = 𝑚𝑁𝑁 𝑁 +𝑚𝐿𝐿 𝐿 + 𝑦𝐻𝑁 𝐿 + 𝑦 𝐻∗𝐿 𝑁 +
𝜙

𝑓
𝐺′𝐺′  

(𝑚𝐿 > Λ𝑠 > 𝑚𝑁) 

New strong dynamics gives wiggle 



𝑉 = − Λ2 − 𝑔′Λ𝜙 𝐻2 + 𝜆𝐻4    +    𝑔Λ3𝜙   +    Λ𝑏
4 𝐻 cos

𝜙

𝑓
 

Higgs potential slope Wiggles 

𝜙 

Λ2 − 𝑔′Λ𝜙 < 0 Λ2 − 𝑔′Λ𝜙 > 0 

Λ𝑏(𝐻) = 0 Λ𝑏(𝐻) > 0 

𝐻 = 0 |𝐻| > 0 

Graham-Kaplan-Rajendran model 



Friction is required to stop relaxion scanning (because of energy conservation) 

when/where relaxion stops? 

Hubble friction (original GKR model) 

Large barrier (mild Hubble friction) 

Axion Fragmentation 

𝑔Λ3 ∼ Λ𝑏
4 (𝜙)/𝑓 

𝜙 𝑆𝑅
2 ∼ Λ𝑏

4 (𝜙) 

Δ𝜙𝑓𝑟𝑎𝑔   ∼  𝑓
𝜙 0
4

Λ𝑏
8 log

𝑓4

𝜙 0
2
 

Velocity 𝜙  always tracks 𝑉′/3𝐻 

Velocity 𝜙  does not track 𝑉′/3𝐻 

But the average velocity is maintained as 𝜙 𝑆𝑅 = 𝑔Λ3/3𝐻 

Why relaxion stops? 

Graham-Kaplan-Rajendran model 



Parameter space. 

𝑓 < ~
𝑚ℎ

2

2𝜋Λ𝑔′
 

𝑔Λ3 < ~
Λ𝑏
4

𝑓
 

Λ𝑏 < ~𝑣𝑒𝑤 

𝑓 > ~Λ 

𝜙0
 

2
> ~Λ𝑏

2
 

Δ𝑡𝑝𝑝 < ~𝐻−1
 

𝑓 ≃
2𝜋𝜆Λ𝑏

8𝑣𝑒𝑤

𝑔′Λ𝜙 0
4 × 𝑂(10)

 

Scanning with enough precision 

• Wiggle makes local minima 

• Potential stability against rad. corr. 

• Consistency of EFT 

• Initial kinetic energy is large enough 

• Particle production  is fast enough 

𝑓 is set to give correct EW scale :  

We also impose the following consistency conditions: 



GKR (Hubble friction). 



GKR (large barrier). 



GKR (relaxion fragmentation w/ inflation). 



GKR (relaxion fragmentation w/o inflation). 



2 to 1 process 

• 𝛿𝜙𝑝 with 𝑝 = 𝜙 /2𝑓 is amplified by resonance 

• 𝛿𝜙 becomes source term for 𝛿𝜙(2)
 

𝜙 𝑥, 𝑡 = 𝜙 𝑡 + 𝛿𝜙 𝑥, 𝑡 + 𝛿𝜙 2 𝑥, 𝑡 + … 

𝛿𝜙(2) + 𝑘2 + 𝑉′′ 𝛿𝜙(2) = −
1

2
𝑉′′′∫ 𝑑3𝑝 𝛿𝜙𝑝𝛿𝜙𝑘−𝑝 𝜙 − 𝛻2𝜙 = 𝑉′ 𝜙  

𝛿𝜙𝑘
(2)

 

𝛿𝜙𝑝 

𝛿𝜙𝑝−𝑘 



Lattice calc. w/ slope term 



Domain wall? 

𝛿𝜙 ∼ 𝑓 Field variance after fragmentation is not so small :  

Multiple run with finite size box 

Large box 

• 𝛿𝜙 in multiple run = 𝛿𝜙 of causally disconnected area 

• Extrapolation to 𝑉1/3 ≈ 𝛿𝑡frag 



Domain wall? 

𝛿𝜙 ∼ 𝑓 Field variance after fragmentation is not so small :  

Multiple run with finite size box 

• 𝛿𝜙 in multiple run = 𝛿𝜙 of causally disconnected area 

• Extrapolation to 𝑉1/3 ≈ 𝛿𝑡frag 

𝛿𝜙

2𝜋𝑓
∼ 𝑂 10 × 𝑉−1/2 ×

𝑓𝜙 0

Λ𝑏
2

3/2

 

Empirical formula of variance:  

Naïve extrapolation to 𝑉1/3 ∼ 𝑡𝑎𝑚𝑝 :  
𝜎

2𝜋𝑓
∼ 𝑂 10 × log

8𝜋𝑓2

𝜙 0

−
3
2

∼ 0.01 − 0.1 

Domain wall formation probability is ∼ 𝑒−100 − 𝑒−10 

Large box 



Energy cascade into UV 

Number counting of “bubble” Time evolution of variance 〈𝛿𝜙2〉 

• Fluctuation with long wave-length is exponentially suppressed. 

• The size of variance decreases in time. 



How non-linear effect changes? 


