

Light dark matter detection with collective excitation in matter

Kazunori Nakayama (Tohoku Univ & QUP)

Physics in LHC and beyond (2022/5/14)

Introduction

Dark matter search

Dark matter mass range

• We need broad ideas for broad energy scales

Direct detection, cosmic rays, accelerator experiments, astronomical/cosmological observations,...

Dark matter search

• We need broad ideas for broad energy scales

Direct detection, cosmic rays, accelerator experiments, astronomical/cosmological observations,...

Dark matter direct detection

Dark matter direct detection

Dark matter direct detection

In this talk I will focus on magnetic collective excitations.

Dispersion of (quasi)particles in solids

Dispersion of (quasi)particles in solids

Rich structure: useful for new particle search !

Towards light DM detection

Low reaction threshold

DM detection with electron/phonon

DM absorption (hidden photon)

$$\mathcal{L} = -\frac{\epsilon}{2} F_{\mu\nu} H^{\mu\nu}$$

DM detection with electron/phonon

DM absorption (hidden photon)

$$\mathcal{L} = -\frac{\epsilon}{2} F_{\mu\nu} H^{\mu\nu}$$

DM detection with electron/phonon

DM scatter

[Griffin et al. (2019)]

I. DM detection with magnon

[Chigusa, Moroi, KN (2020)]

2. DM detection with condensed-matter axion

[Chigusa, Moroi, KN (2021)]

I. DM detection with magnon

Heisenberg model for ferromagnet

Heisenberg Hamiltonian

$$H_{\text{eff}} = -g\mu_B \sum_{\ell} \vec{B^0} \cdot \vec{S_\ell} - \frac{J}{2} \sum_{\ell,\ell'} \vec{S_\ell} \cdot \vec{S_{\ell'}},$$

J>0 : spins are aligned for T=0 and B=0 (Ferromagnet)

Fluctuation around the ground state : collective spin wave

Magnon

Quantized Hamiltonian in momentum space

$$S_{\ell}^{+} = \sqrt{2s - \tilde{c}_{\ell}^{\dagger} \tilde{c}_{\ell}} \quad S_{\ell}^{-} = \tilde{c}_{\ell}^{\dagger} \sqrt{2s - \tilde{c}_{\ell}^{\dagger} \tilde{c}_{\ell}} \quad S_{\ell}^{z} = s - \tilde{c}_{\ell}^{\dagger} \tilde{c}_{\ell} \quad (S_{\ell}^{\pm} \equiv S_{\ell}^{x} \pm i S_{\ell}^{y})$$

$$H = \sum_{k} \left[\omega_L + Js \sum_{\vec{a}} (1 - \gamma_{\vec{k}}) \right] c_{\vec{k}}^{\dagger} c_{\vec{k}} = \sum_{k} \omega_k c_{\vec{k}}^{\dagger} c_{\vec{k}}$$

 $\gamma_{\vec{k}} = \frac{1}{z} \sum_{\vec{\delta}} e^{i \vec{k} \cdot \vec{\delta}}$

Magnon dispersion relation:

$$\omega_{\vec{k}} \simeq \omega_L + JsL^2k^2 \equiv \omega_L + \frac{k^2}{2M}$$

$$\omega_L \equiv g\mu_B B_z^0 \simeq 1.2 \times 10^{-4} \,\mathrm{eV}\left(\frac{B_z^0}{1\,\mathrm{T}}\right)$$
 : Larmor frequency

Magnon dispersion (YIG)

$$\mathbf{YIG} = \mathbf{Y}_3 \mathbf{Fe}_5 \mathbf{O}_{12}$$

- 20 Fe³⁺ ions in magnetic unit cell
- "Ferri-magnet"

Fe

Y

Fe

 \mathbf{O}

Cherepanov, Kolokolov, L'vov (1993)

Axion-magnon conversion

[Barbieri et al (1989,2016), Chigusa, Moroi, KN (2020)]

Axion-electron interaction

$$\mathcal{L} = \frac{\partial_{\mu} a}{2f} \overline{\psi} \gamma^{\mu} \gamma_5 \psi \longrightarrow H_{\text{int}} = \frac{1}{f} \sum_{\ell} \vec{\nabla} a(\vec{x}_{\ell}) \cdot \vec{S}_{\ell}$$

Axion-magnon interaction Hamiltonian

$$H_{\rm int} = \frac{m_a a_0 \sin(m_a t + \delta)}{f} \sqrt{\frac{s}{2}} \sum_{\ell} \left(v_a^- \widetilde{c}_\ell + v_a^+ \widetilde{c}_\ell^\dagger \right)$$

Axion DM: $a(\vec{x}, t) = a_0 \cos(m_a t - m_a \vec{v}_a \cdot \vec{x} + \delta)$

Resonant conversion

- 2-level system
 - $|0\rangle$: 0-magnon state $|1\rangle$: 1-magnon state (k=0 mode)

• Signal power at resonance: $m_a = \omega_L$

 $\frac{dE_{\text{signal}}}{dt} = \frac{\omega_L P(t)}{2t} = \frac{\omega_L |V|^2 t}{8} \qquad V \equiv \sqrt{\frac{sN}{2}} \frac{m_a a_0 v_a^+}{f}$

- Limitation:
 - Axion coherence time $au_a \sim (m_a v_a^2)^{-1}$
 - Magnon relaxation time $au_{
 m magnon} \sim (1/ au_{
 m spin-spin} + 1/ au_{
 m spin-lattice})^{-1}$

QUAX experiment

[QUAX collaboration (2020)]

Ultimate sensitivity from DM-magnon conversion

[Chigusa, Moroi, KN (2020)]

2. DM detection with condensed-matter axion

Axion in condensed-matter

• Topological insulator

[Kane, Mele (2005), Fu, Kane, Mele (2007)]

$$\mathcal{L} = \theta \frac{\alpha_e}{4\pi} F_{\mu\nu} \widetilde{F}^{\mu\nu}$$

 $\theta = 0$: normal insulator $\theta = \pi$: topological insulator

• Can θ be dynamical? [Wilczek (1987)]

- Arbitrary value if there is no T, P invariance
- Magnetic ordering can violate T, P-invariance

Dynamical axion

(axion quasi-particle, condensed-matter axion,...)

• "Axion" in topological (anti-)ferromagnet

First proposal: Fe-doped Bi2Se3 [Li, Wang, Qi, Zhang (2009)]

Example: Fu-Kane-Mele-Hubbard model

Dirac-like electron interacts with spin through

$$S = \int d^4x \sum_{r=1,2,3} \overline{\psi}_r \left[i\gamma^\mu (\partial_\mu - ieA_\mu) - \delta t - i\gamma_5 Um_r \right] \psi_r$$

 $\left\langle \vec{S}_{i,A} \right\rangle = -\left\langle \vec{S}_{i,B} \right\rangle \equiv \vec{m}$: anti-ferromagnetic order for U/t>>I

• Chiral rotation of Dirac fermion gives axion-photon interaction:

$$S = \int d^4x \,\theta \frac{\alpha_e}{4\pi} F_{\mu\nu} \widetilde{F}^{\mu\nu}$$
$$\theta \equiv \theta_0 + \sum_r \theta_r = \theta_0 + \sum_r \tan^{-1} \left(\frac{Um_r}{\delta t}\right)$$

Axion ~ magnon in FKMH anti-ferromagnet model.

Dirac-like electron interacts with spin through

$$S = \int d^4x \sum_{r=1,2,3} \overline{\psi}_r \left[i\gamma^\mu (\partial_\mu - ieA_\mu) - \delta t - i\gamma_5 Um_r \right] \psi_r$$

 $\left\langle \vec{S}_{i,A} \right\rangle = -\left\langle \vec{S}_{i,B} \right\rangle \equiv \vec{m}$: anti-ferromagnetic order for U/t>>I

• Chiral rotation of Dirac fermion gives axion-photon interaction:

$$S = \int d^4x \,\theta \frac{\alpha_e}{4\pi} F_{\mu\nu} \widetilde{F}^{\mu\nu}$$
$$\theta \equiv \theta_0 + \sum_r \theta_r = \theta_0 + \sum_r \tan^{-1} \left(\frac{Um_r}{\delta t}\right)$$

Fluctuation of magnetic order parameter = dynamical axion

Axion ~ magnon in FKMH anti-ferromagnet model.

DM-axion to CM-axion

[Marsh et al (2018), Schutte-Engel et al. (2021), Chigusa, Moroi, KN (2021)]

Axion DM

Hidden photon DM

Scan of magnetic field: $1 \mathrm{T} < B_0 < 10 \mathrm{T}$ Each time step: $\Delta t = 10^2 \mathrm{s}$ Total observation time: $1 \mathrm{yr}$ Target volume: $V = (10 \mathrm{cm})^3$ Noise rate: $dN_{\mathrm{noise}}/dt \sim 10^{-3} \mathrm{s}^{-1}$

[Chigusa, Moroi, KN (2021)]

Summary

Quantum fields in condensed-matter
 : useful for DM detection!

New particle search frontier in particle and condensed-matter interdisciplinary field ?

Appendix

Development of sensors

Additional sensors of interest besides TES APDs

we're close to achieving 1eV energy threshold in a large area (3" dia.) This is the current world's best microcalorimeter

MKIDs

Limited by readout-dominated noise. Need to reduce and apply squeezing

SNSPDs

Have to increase area while keeping threshold low. Want to reach 20meV threshold

1sq.mm. SNSPD with GaAs crystal on top

Still others with longer term potential in backup

Slide by M. Garcia-Sciveres @ KEK IPNS-IMSS-QUP joint workshop

Development of sensors

Additional quantum sensors under investigation

He Quantum Evaporation emission

film-stopping setup to suspend dry sensor above LHe bath is up and running.

He surface

15

Slide by M. Garcia-Sciveres @ KEK IPNS-IMSS-QUP joint workshop