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Introduction



Dark matter search

We need broad ideas for broad energy scales

axion-like particle
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Fig. 4. Magnon spectra for the symmetric directions k 1 [1101, [100] and for the values of the exchange constants (1.28). T = OK [5].

The spectrum ~d1 (k) is not linear and anisotropic only in the vicinity of the edge of the Brillouin
zone. This part of the spectrum is not universal, it depends on all the values of exchange integrals
a1ad, Jdd, and faa. Nevertheless, the volume of that part of the Brillouin zone where the spectrum
deviates from the linear behavior (1.30) is negligibly small for most quantities.

1.4.2. Ferromagnon and ant~ferromagnonmodes
In an overview of the spectra it strikes one that the antiferromagnetic Wai (k) branch runs almost

parallel to the ferromagnetic branch wdl(k) and they both are not noticeably perturbed in their
multiple crossing of other branches. In the language of perturbation theory this means that the
eigenvectors of the FM and AFM modes are practically unmixed with the other eigenvectors.
Neglecting such an intermixing, we can obtain simple analytical expressions for the frequencies
~~a1 (k) and ~d1 (k) of the FM and AFM branches over the entire Brillouin zone. To do this we
assume that in (1.15) the oscillation amplitudes of all eight a and all twelve d spins are equal
(a
1 = = a8,a9 = = a20) and obtain

da. da*i-j~=Aiat+Biaf~ —i-~-=B1a,+D1a, i=1,...,8,j=9,...,20. (1.31)

Hence, we obtain for d1 (k) and a1 (k) the expressions (6) given in the introduction. The notation
used for the coefficients is given in eq. (7).
Our assumptions about the equality of the amplitudes of the oscillations of the spins of the a and

d ions is equivalent to the replacement of the 20-sublattice ferrite by a two-sublattice model. Here,
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Figure 2. Phonon dispersion curves for GaAs. The experimental data at T = 12 K are given 
by the crosses; the experimental uncertainty is typically 0.02 THz (less than the height of the 
crosses). The lines give the results of model calculations using the rigid-ion model  RIM^. The 
letters R on top of the figure gives the notation for the symmetry directions or points, and 
the numbers i refer to the symmetry representations R, of the corresponding branches or  
points. 

roughly equal weight. Since in the X-W direction the symmetries of the different 
branches could not be determined (§ 4.5), these data have not been used at all in the 
minimisation procedure. (The data for this latter direction will turn out to serve as an 
interesting testing ground for the various models, cf §§ 4.5 and 4.6.) The resulting 
parameters and their variances are listed in tables7-11 along with the originally published 
numbers (see, e.g. ,  chapter 14 of Press etal(1986) for the meaning of the variances in the 
context of non-linear least-squares fitting and non-standard experimental deviations). 

Dispersion curves calculated from these models are shown in figures 2-6 together 
with the experimental data. 
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Figure 3. As figure 2, but the model calculations are with the 14-parameter shell model a ( i i ) .  

NQNLQCAL PSEUDQPQTENTIAL CALCULATIQNS FQR THE. . .
where

z„„(k)=z„(k)—z„(k)

X) r2s

a' f&~„k[V[s„k&J'

is the interband oscillator strength. The sum is
over the initial valence-band index n„and the final

conduction-band states n, . 8 is a surface in k
space of constant interband energy. Four valence
bands and six conduction bands were included in
the sum. The Gilat-Raubheimer scheme" was
used to evaluate the integral. The expression for
e,((a) is based upon several assumptions such as
neglecting excitonic effects, but has been quite
satisfactory for the purpose of analyzing reflec-
tivities.
Once an imaginary part of the dielectric function

has been evaluated, the real part and the reflectiv-
ity may be calculated from a Kramers-Kronig
transformation. To compare the theoretical re-
sults to the experimental derivative spectra, the
logarithmic derivative of the ref lectivity is
computed by numerical means.

D. Electronic density of states

—10
The density of states is given by

L A r X U,K X

where the sum is over wave vector and ba.nd index.

0-
TABLE II. Eigenvalues for diamond-structure semi-

conductors at I', X, andL. Energies are in eV.

Point Level
Compound

Ge

Local Nonlocal

-12.53 -12.36 -12.66 -11.34
-0.29 -0.80

—10

—12 pC

0.00
4.17

0.00
4.10

0.00
0.90 —0.42

3.43 3.22 2.66

-8.27
-2.99

-7.69
-2.86

-8.65 —7.88
-3.29 —2.75

1.22 1.17 1.16 0.90

—10

r Z X U,K X

WAVE VECTOR k

-10.17
-7.24

2.15

-9.55
-6.96

2.23

-10~39 -9.44
-7.61 -6.60
-1.63 -1.68
-1.43 -1.20
0.76

FIG. 1. Band structures for Si, Ge, and e-Sn. In
the case of silicon two results are presented: nonlocal.
pseudopotential |'solid line) and local pseudopotential
(dashed hne). Spin-orbit corrections not included.
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Rich structure: useful for new particle search !



Towards light DM detection

Low detection threshold

Low reaction threshold
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Quantum Sensor Development – Devices under investigation

Opto-
Mechanical 
cavities

He Quantum Evaporation         He  surface emission

Topological Transition sensing

Electron surface states in LHe

film-stopping setup 
to suspend
dry sensor above 
LHe bath is 
up and running.

ATAP-Princeton 
collaboration (Schenkel)
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(see Appendix)
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FIG. 2. Estimated reach of a germanium (green lines) and silicon (blue lines) target at 90% CL for 1-kg-year exposure,
assuming solar neutrino backgrounds only, for absorption of kinetically mixed hidden photon dark matter. For absorption of
halo DM (solid lines), we show the reach considering multi-phonon excitations for mV = 0.01�0.2 eV, and electron excitations
for mV > 0.6 eV. The dashed lines show the reach for absorption of dark photons emitted from the sun. Our recast of constraints
from CDMSlite (germanium) for mV > 56 eV and DAMIC (silicon) for mV > 100 eV are indicated by the shaded green and
blue regions, respectively. We also show bounds from Xenon10 and Xenon100, including those from Ref. [21] (lighter shaded
red) and our own updated Xenon100 limits for 50-700 eV (darker shaded red); the projected reach for 1-kg-year exposure of
an aluminum superconducting target (grey line) [23]; and stellar emission constraints (shaded orange) [21, 46].

the strong 4 dependence of the signal, this reach is rel-
atively weak compared to existing constraints. We note
that a ton-scale xenon experiment can achieve a similar
sensitivity to semiconductors only if the electronic energy
threshold of the former can be lowered to ⇠100 eV.

Existing limits on absorption of halo DM from
Xenon10 and Xenon100 data are shown in Fig. 2
for masses above the ionization threshold in xenon of
12 eV. We include constraints obtained from Ref. [21],
which used 15 kg-day of Xenon10 data [51] for mV =
12 eV�1 keV and the Xenon100 solar axion search [52]
for mV > 1 keV. In addition, we have recast the recent
Xenon100 low-threshold analysis [53], which had a total
exposure of 30 kg-year, to obtain updated limits in the
mass range 50 � 700 eV. Ref. [53] provides their data
in the form of observed photoelectrons (PE) for each
event. For a deposited energy of mV , we obtain the dis-
tribution in PE using Refs. [54, 55], which gives a sig-
nal peaked at (mV /13.5eV)⇥ 20 PE and with a width of
� ⇡

p
mV /13.5eV⇥7 PE. Accounting for the experimen-

tal e�ciency, we compare the signal with the observed
counts in a bin of size 4� to obtain the 90% CL limit. Our
result is roughly an order of magnitude stronger than the
Xenon10 limit from Ref. [21], and is shown as the dark
red shaded region in Fig. 2.

For comparison, we demonstrate that existing semi-
conductor targets already start to probe new parameter
space for DM mass down to 100 eV. Re-interpreting re-
cent results from CDMSlite [24], with 70 kg-day exposure
on germanium, and DAMIC [25], with 0.6 kg-day expo-
sure on silicon, we obtain limits on absorption of DM in
the halo, shown as the shaded green and blue regions in
Fig. 2.

For DAMIC, we derive 90% CL limits by comparing
the DM signal with the observed counts in a single energy
bin of width 100 eV. For the mono-energetic absorption
signal, we apply the given experimental e�ciency and
also account for the finite energy resolution of the exper-
iment. Following Ref. [25], we model the energy resolu-
tion by a Fano model, �2(E) = �2

0 + (3.77eV)FE with
F = 0.133 ± 0.005. With typical total energy resolution
of ⇠ 50 eV, this introduces an additional O(1) e�ciency
for the DM signal to fall in a single bin. Assuming the
best-fit background of ⇡0.5 events/bin, we then obtain
upper limits of the DM signal following Ref. [58], as de-
picted in Fig. 2.

We follow a similar procedure to obtain 90% CL lim-
its from CDMSlite. Here we model the energy resolu-
tion with a modified Fano model [43], given by �2(E) =
�2
0+↵E+�E2. We fit these constants to the measured en-

✏
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[Hochberg, Lin, Zurek (2016)]
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FIG. 11. A comparison of the reach for absorption of kinetically-mixed dark photon dark matter. The lines shown are the
95% CL cross section reach with kg-yr exposure and zero background. (Left) For phonon excitations, we show here the reach
obtained using data on the ELF. As noted in the text, a number of these curves are approximate, given that there is limited data
available at zero temperature. (Right) We show here the reach for electron excitations using the Mermin oscillator method
for the ELF, and there can be small di↵erences in comparing with DFT methods or direct optical measurements. The grey
shaded regions are limits from XENON10/100 [96] and SENSEI [1].

and first-principles calculations. We aim to add more
ELF tables in the future, and our package makes it con-
venient for users to import their own extractions of the
ELF as well.

The currently available dark matter processes, the
regime of validity of the calculations, and possible future
directions are summarized below:

• DM-electron scattering is determined by the ELF
above the electron band gap. We provide ELFs
computed in the isotropic limit with a DFT-based
method (GPAW) and a data-driven approach (Mer-
min). Both these approaches start to have large
uncertainties at high momentum transfer (k >

⇠ 20
keV) which impacts DM-electron scattering at high
energies (! >

⇠ 15 eV) and for scattering via massive
mediators. In this regime, improved theoretical cal-
culations and/or data extractions are needed. For
instance, to increase the reliability of the Mermin
method, a dedicated fit to high k data from a high
energy synchrotron facility would be desirable. It
is also possible to generalize beyond the isotropic
approximation and obtain directionally-dependent
scattering rates, which would give rise to a daily
modulation in strongly anisotropic materials.

• DM-nucleus scattering with Migdal electrons de-
pends on the ELF through the probability for a
recoiling ion to produce Migdal electrons. The rate
to produce Migdal electrons is calculated here for
the mass range 30 MeV <

⇠ m�
<
⇠ GeV. This restric-

tion in mass is due in part to the impulse approxi-
mation, which treats the recoiling ion wavefunction
as a plane wave. For low nuclear recoil energies that

are comparable to typical acoustic phonon energies,
a calculation of the Migdal e↵ect with multiphonon
production is needed. This will be important if we
wish to obtain accurate rates for DM-nucleus scat-
tering via massless mediators and for DM masses
below 30 MeV.

• DM-phonon scattering is determined by the ELF in
the phonon regime, below the electron band gap.
Our calculations are valid for DM coupled to a
massless kinetically-mixed dark photon mediator,
since we use ELF data in the optical limit. While
there are already many studies with DFT-based
calculations of this process, using existing measure-
ments or calculations of the ELF gives a fast and
accurate alternate approach. This approach also in-
corporates multiphonon contributions, which dom-
inate for non-polar materials and are more chal-
lenging to calculate.

• Absorption of dark photon DM has a rate propor-
tional to the ELF in the optical limit (k = 0). Ex-
cept for the DFT-based calculations in a few cases,
the ELFs included are generally obtained either by
fitting to optical data or directly from optical data
itself. As a result, the ELFs included should de-
scribe absorption well in both the phonon and elec-
tron regimes.
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Figure 1. Projected reach from single phonon excitations (dashed) and electron transitions (solid) for DM scattering mediated
by a kinetically mixed light dark photon (the smallest-gap target InSb su↵ers from slow convergence in the electronic transition
calculation at m� < 1MeV, for which we show results of the two most accurate runs with solid and dotted curves, see
Appendix A 1 for details). Nuclear recoils (not shown) can also probe this model, but the conclusion on which targets are
superior is the same as for the light hadrophilic mediator model. A detector threshold of 1meV is used for the phonon
calculations, and all transitions with energy deposition greater than the band gaps are included in electron excitations. The
freeze-in benchmark is taken from Refs. [12, 80], corrected by including plasmon decay for sub-MeV DM [81]. Stellar constraints
are from Ref. [82] and direct detection constraints are from DAMIC [61], DarkSide-50 [83], SENSEI [62], SuperCDMS [68],
XENON10 [14, 21], and XENON100 [83, 84].2

est optical mode,3

m�,min ⇠ 3 keV

✓
!O

10meV

◆
. (24)

Thus materials having low energy optical phonon modes
are desirable to search for light dark matter; CsI, for
example, has particularly low-lying optical phonon exci-
tations, and its sensitivity to the lightest DM masses is
seen in Fig. 1.
We can also see that at higher masses, single optical

phonon production rates vary widely between materials.
This can be understood analytically. Consider first the

3One has to be careful with this estimate, as the lowest optical mode
is generally not the dominant mode, rather it is the mode which
is most “longitudinal,” or maximizes q · ✏. For simple diatomic
materials, there is one precisely longitudinal mode in the low q
limit, but the same is not true for more complex materials such as
Al2O3, as many gapped modes have a longitudinal component. A
general rule of thumb is that the highest energy optical mode is the
most longitudinal.

simplest case of a diatomic polar crystal (e.g. GaAs).
The dominant contribution to the q integral in Eq. (20)
is well within the 1BZ and therefore we can set G = 0,
Wj ' 0, and g(q,!) / q�1. Approximating Z⇤

j
' Z⇤

j
1,

and noting that Z⇤
1
= �Z⇤

2
⌘ Z⇤, we see that the rate

is dominated by the longitudinal optical (LO) mode, for
which one can show ✏LO,k,1 and ✏LO,k,2 are anti-parallel,
and |✏LO,k,j | =

p
µ12/mj in the limit k ! 0, where µ12 is

the reduced mass of the two ions. Further approximating
the phonon dispersion as constant and "1 ' "1 1, the
rate simplifies to

R /
q4
0

mcell

⇢�
m�

�e

"21!LO

Z⇤2

µ2
�e
µ12

log

✓
m�v20
!LO

◆

/
Z⇤2

A1A2"21

✓
meV

!LO

◆
⌘ Q . (25)

We call Q a quality factor, since it is the combination
of material-specific quantities that determines the direct
detection rate. A higher-Q material has a better reach

DM scatter

[Griffin et al. (2019)]

Phonon Electron
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スピンのゆらぎの量子化＝マグノン
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✓スピンのゆらぎ＝スピン波 12 Ferromagnetism and Antijerromagnetism 

Figurc 9 A spin wave on a line of spins. (a) The spins viewed in perspective. (b) Spins viewed 
from ahow, showing U I I ~  wavclcngth. The wave is drawn through the ends of the spin vectors. 

Here J is the exchange integral and hSp is the angular ~no~nentum of the 
spin at sitc p .  If we treat the spins Sp as classical vectors, then in the ground 
statc Sp . Spt = SP and the exchange energy of the system is Uo = -2NJS2. 

What is the energy of the first excited state? Consider an excited state with 
one particular spin reversed, as in Fig. 8b. We see from ( 1 2 )  that this increases 
the energy by ~JS', so that U 1  = Uo + 8]s2. Rut we can form an excitation of 
mudl lower energy- i1 we let all the spins share the reversal, as in Fig. 8c. The 
elementary excitations of a spin system have a wavelike form and are called 
maglions (Fig. 9). These are analogous to lattice vibrations or phonons. Spin 
waves are oscillations in the relative orientations of spins on a lattice; lattice vi- 
brations are oscillations in the relative positions of atoms on a lattice. 

We now give a classical derivation of the magnon dispersion relation. The 
terms in ( 1 2 )  which involve the pth spin are 

117e write magnetic mornent at site p as /+ = -gpBSp Then (13) becomes 

which is of the form -pp . Bp, where the effective magnetic field or exchange 
field that acts on the pth spin is 

Fro111 ~llechanics the rate of change of the angular momerltu~n fiSp is equal 
to the torquc pp X Bp which acts on the spin: fi dS,ldt = ~ c ,  X B,,, or 

In Cartesian components 

arid si~~lilarly for dSzMt and dS;ldt. These equations involve products of spin 
components and are nonlinear. 

C. Kittel ”Introduction to Solid State Physics [8th ed]”

✓反強磁性体のHolstein-Primakoff変換
S+

ℓ = 2s − a†
ℓaℓ aℓ

S−
ℓ = a†

ℓ 2s − a†
ℓaℓ

Sz
ℓ = s − a†

ℓaℓ

S+
ℓ′� = b†

ℓ′ � 2s − b†
ℓ′ �bℓ′�

S−
ℓ′� = 2s − b†

ℓ′�bℓ′� bℓ′�

Sz
ℓ′� = − s + b†

ℓ′ �bℓ′�
副格子A 副格子B

ポイントはボソンの演算子（マグノン）
とスピンの演算子を結びつけること

[aℓ, a†
m] = δℓm ⇒ [Si

ℓ, Sj
m] = iϵijkSk

ℓδℓm

[bℓ′�, b†
m′�] = δℓ′�m′� ⇒ [Si

ℓ′�, Sj
m′�] = iϵijkSk

ℓ′�δℓ′�m′�

Heisenberg model for ferromagnet

Fluctuation around the ground state : collective spin wave

with the sum of the vector ~G is taken over all the reciprocal vectors,#1 the inverse transfor-
mation is given by

c
j,~k

=
1

p
N

X

`

e
i~k·~x`jec`j, c

†
j,~k

=
1

p
N

X

`

e
�i~k·~x`jec†

`j
. (10)

Using the above relations, we can rewrite the Hamiltonian in a convenient form. Terms
quadratic in c

j,~k
and c

†
j,~k

represent the free Hamiltonian of the magnon, as soon shown below,

and higher order terms represent its self interactions. Note that, under the existence of non-
zero matrix element R

z,x

j
, R

z,y

j
or dipole interaction D

↵�

``0jj0 , there are terms of the form of

c
j,~k
c
j0,~k0 and c

†
j,~k
c
†
j0,~k0

in the quadratic part of the Hamiltonian. Thus we perform a Bogoliubov

transformation to go to the canonical basis:
 

c
j,~k

c
†
j,�~k

!
=

✓
u~k v~k

v
⇤
�~k

u
⇤
�~k

◆ 
�
⌫,~k

�
†
⌫,�~k

!
, (11)

where u~k = {u
j⌫,~k

} and v~k = {v
j⌫,~k

} are n⇥n matrices with ⌫ labeling n di↵erent excitation
modes. By choosing proper matrices u~k and v~k, we diagonalize the quadratic part of the

Hamiltonian, which we denote by H
(�)
0 , as

H
(�)
0 =

X

⌫

X

~k

!
⌫,~k
�
†
⌫,~k
�
⌫,~k
. (12)

Thus �
⌫,~k

and �
†
⌫,~k

represent the annihilation and creation operators of a quanta around the

ground state, which is called magnon, and !
⌫,~k

denotes the dispersion relation of the magnon
mode ⌫. In general, the magnon dispersion relation is anisotropic, i.e., !

⌫,~k
depends not only

on |~k| but also on the direction of ~k [52, 53].
As we will see later, only the lowest energy magnon mode around k ' 0 is important

for our discussion. This mode, which is a Nambu-Goldstone (NG) mode resulting from the
symmetry breaking of the spatial rotation, can be expressed in a much simpler e↵ective
Hamiltonian. We define the total spin operator ~S` of the `-th magnetic unit cell and the
e↵ective Hamiltonian

He↵ = �gµB

X

`

~B
0
· ~S` �

J

2

X

`,`0

~S` ·
~S`0 , (13)

where the second sum is taken over the adjacent cells. The above e↵ective Hamiltonian
describes the NG mode as the unique magnon mode. We can consider the Holstein-Primako↵

#1
Note that the unique contribution to the calculation throughout this paper comes from ~G = 0 since the

sum over the magnon momentum covers only the first Brillouin zone.

4

Heisenberg Hamiltonian

J>0 : spins are aligned for T=0 and B=0（Ferromagnet）



Quantized Hamiltonian in momentum space

: Larmor frequency

transformation of the total spin operator as
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h
ec`,ec†`0

i
= �``0 . (17)

Here, s is the size of the total spin of electrons inside a magnetic unit cell. With Fourier
expanding ec` and ec†

`
as Eq. (7), we can see that the quadratic part of He↵ , which we call free

Hamiltonian, is given by

H0 =
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(1� cos(~k · ~ap))
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where !L ⌘ gµBB
0
z
is the Larmor frequency with B

0
z
being the z component of the magnetic

field ~B
0, and ~ap (p = 1, 2, 3) are fundamental translation vectors that generate magnetic

unit cells. For the YIG, we can use s = 10 and J = 0.35meV, and the magnetic unit cell is
a cube with L ⌘ |~a1| = |~a2| = |~a3| = 12.56 Å [54].

Let us focus on the material with the cubic unit cell for simplicity. In the long wavelength
limit |~k|L ⌧ 1, the dispersion relation is given by

!~k
' !L + JsL

2
k
2
⌘ !L +

k
2

2M
, (19)

with k ⌘ |~k|. The k = 0 mode corresponds to the homogeneously rotating mode around
the external magnetic field with Larmor frequency, which is called the Kittel mode. In a
typical material, M ⇠ O(1)MeV; for example, using the values shown above, we obtain
M ⇠ 3.5MeV for the YIG. The Larmor frequency is evaluated as

!L =
eB

0
z

me

' 1.2⇥ 10�4 eV

✓
B

0
z

1T

◆
. (20)

For the purpose of DM detection discussed below, the DM detection rate is enhanced if the
Larmor frequency is close to the DM mass, and hence we are interested in the DM mass of
meV range.#2

#2
Ref. [55] considered DM scattering with an electron as an excitation process of magnon. It may be

interpreted as the magnon emission by DM. On the other hand, we consider DM absorption by the electron,

which may be regarded as the DM conversion into a magnon. In the latter case, it is essential to apply the

magnetic field to control the gap of the magnon dispersion relation.
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Magnon dispersion relation:
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a cube with L ⌘ |~a1| = |~a2| = |~a3| = 12.56 Å [54].
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with k ⌘ |~k|. The k = 0 mode corresponds to the homogeneously rotating mode around
the external magnetic field with Larmor frequency, which is called the Kittel mode. In a
typical material, M ⇠ O(1)MeV; for example, using the values shown above, we obtain
M ⇠ 3.5MeV for the YIG. The Larmor frequency is evaluated as
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For the purpose of DM detection discussed below, the DM detection rate is enhanced if the
Larmor frequency is close to the DM mass, and hence we are interested in the DM mass of
meV range.#2

#2
Ref. [55] considered DM scattering with an electron as an excitation process of magnon. It may be

interpreted as the magnon emission by DM. On the other hand, we consider DM absorption by the electron,

which may be regarded as the DM conversion into a magnon. In the latter case, it is essential to apply the

magnetic field to control the gap of the magnon dispersion relation.
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Fig. 4. Magnon spectra for the symmetric directions k 1 [1101, [100] and for the values of the exchange constants (1.28). T = OK [5].

The spectrum ~d1 (k) is not linear and anisotropic only in the vicinity of the edge of the Brillouin
zone. This part of the spectrum is not universal, it depends on all the values of exchange integrals
a1ad, Jdd, and faa. Nevertheless, the volume of that part of the Brillouin zone where the spectrum
deviates from the linear behavior (1.30) is negligibly small for most quantities.

1.4.2. Ferromagnon and ant~ferromagnonmodes
In an overview of the spectra it strikes one that the antiferromagnetic Wai (k) branch runs almost

parallel to the ferromagnetic branch wdl(k) and they both are not noticeably perturbed in their
multiple crossing of other branches. In the language of perturbation theory this means that the
eigenvectors of the FM and AFM modes are practically unmixed with the other eigenvectors.
Neglecting such an intermixing, we can obtain simple analytical expressions for the frequencies
~~a1 (k) and ~d1 (k) of the FM and AFM branches over the entire Brillouin zone. To do this we
assume that in (1.15) the oscillation amplitudes of all eight a and all twelve d spins are equal
(a
1 = = a8,a9 = = a20) and obtain

da. da*i-j~=Aiat+Biaf~ —i-~-=B1a,+D1a, i=1,...,8,j=9,...,20. (1.31)

Hence, we obtain for d1 (k) and a1 (k) the expressions (6) given in the introduction. The notation
used for the coefficients is given in eq. (7).
Our assumptions about the equality of the amplitudes of the oscillations of the spins of the a and

d ions is equivalent to the replacement of the 20-sublattice ferrite by a two-sublattice model. Here,

Magnon dispersion (YIG) YIG=Y3Fe5O12

20 Fe^3+ ions in magnetic unit cell

dispersion relation (20 magnon branches)

12 Fe :

8 Fe :

“Ferri-magnet”

Cherepanov,  Kolokolov, L’vov (1993)

5

2
µB ⇥ 12

�5

2
µB ⇥ 8

Wikipedia
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I / ~ ,

~\ ~

Fig. I. Elementary cell ofgarnet. (I): (a) positions, (2): (c) positions, (3): (d) positions, (4): 0 ions.

octant are (~,0, ~), (~,~, 0), and (0, ~, ~). One can find some more detailed information about YIG
and related magnetic garnets in ref. [15].

1.1.2. Exchange interaction and spin Hamiltonian
In YIG the nearest magnetic neighbours are Fe ions in a and d sites. Each ion in a site has six

nearest neighbours in d sites and each ion in d site has four nearest neighbours in a sites. The
distance between nearest a and d sites is 3.46 A I~15j.Next nearest neighbours are Fe ions in
tetrahedral sites, the distance between them is 3.79 A [15]. There are four next nearest neighbours.
The distance between two nearest sites a is 5.37 A, there are eight neighbouring sites a for each
a site. The superexchange interaction decreases rapidly with the increase of the distance between
magnetic ions because electron configurations at Fe and 0 ions are well localized. An analysis of
various experimental data: inelastic neutron scattering, temperature dependence ofmagnetization,.
and magnon spectrum in the microwave range, carried out in the review showed that the a—d
exchange interaction is the strongest. The constant of d—d interaction is four times smaller, and the
constant of a—a interaction is one order smaller than that of a—d interaction. Interaction between
more distant magnetic moments is negligible.
As a result, the Heisenberg Hamiltonian Hex is written in the form

/ 8 820

Hex _2~.(\faa ~ Si(Rin)>Sj(Rin+dij)+ fad ~ ~ ~
n i,j=1,j>i ~ i=1 j=9 d11’

20
+ ~Jdd ~ S.(R1~)~ SJ(RU, + d~~)). (1.1)

i.j=9,j>i ~

Here n numbers the primitive cell, I and j number the sublattices (i = 1, ... , 8 number the a ions,
= 9, ... ,20 number the d ions), S~(R1~)are the spin and coordinate of an ion of the ith sublattice in
the nth cell and d.~is the distance to the nearest neighbour in the jth sublattice. For the exchange

Fe Fe OY

! ' k2

2M

M ⇠ 7MeV



Axion-magnon conversion

Axion-electron interaction

3 Axion conversion into magnon

First, we consider the case of axion DM which interacts with the electron and calculate
the axion-magnon conversion rate. In Ref. [29], a classical calculation was used to estimate
the axion-magnon conversion rate. We take a quantum mechanical method to calculate the
conversion rate and show that it reproduces the result of Ref. [29]. A quantum mechanical
calculation of the conversion rate with a slightly di↵erent manner has been done in Ref. [56]
and the result is also consistent with ours. An advantage of the quantum mechanical cal-
culation is that it is applicable even in the case where only a small number of magnons are
excited during the time scale of our interest. We then apply the same method to the hidden
photon DM.

3.1 Formulation

The axion (denoted by a) is assumed to interact with the electron, as in the DFSZ model [57,
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|1i

|0i
!L

ma

Resonant conversion

2-level system

|0i : 0-magnon state

|1i : 1-magnon state (k=0 mode)

The probability that we find the state |1i at the time t is given by P (t) = |↵1(t)|2. Clearly,
the probability is enhanced for !L ' ma. In this case, we have#3

P (t) '
|V |

2
t
2

4
. (34)

Since the Kittel mode is maximally hybridized with the cavity mode, half of the power may
be detected as the photon. Thus the power obtained by this transition is given by

dEsignal

dt
=

!LP (t)

2t
=

!L|V |
2
t

8
. (35)

It is consistent with classical calculation in [29] (see also Appendix B). Note that t is lim-
ited by the axion coherence time ⌧a or the magnon-polariton relaxation time ⌧m (due to
spin-lattice and spin-spin interactions and dissipation of cavity mode), whichever is smaller
determines the e↵ective coherence time through ⌧ ⌘ min[⌧a, ⌧m]. The event rate is then


dNsignal

dt

�

spin

=
P (⌧)

2⌧
=

|V |
2
⌧

8
=

sN

4

⇢DM(vx2a + v
y2
a
)⌧

f 2
. (36)

To derive more convenient expression, we convert the factor sN to the target mass Mtarget

through

M(T )Mtarget = g
e

2m
sN, (37)

where M(T ) is the magnetization of the target. Hereafter, we assume the target material
to be YIG at temperature T ⇠ 100mK according to the QUAX proposal, which yields
M ' 38 emu/g [54]. Substituting all the above, we obtain


dNsignal

dt

�

spin

' 0.05 s�1

✓
Mtarget

1 kg

◆✓
1010 GeV

f

◆2 ✓
⌧

2µs

◆⇣
va

10�3

⌘2

sin2
✓, (38)

where ✓ is the angle between ~va and z direction.

3.2 Sensitivity

So far we have discussed the axion-spin interaction. One should note that the cavity setup
also works as a standard haloscope [11,12] if the axion has a Chern-Simons coupling like

L = �Ca�

↵e

8⇡

a

f
Fµ⌫

eF µ⌫ = Ca�

↵e

2⇡

a

f

~B · ~E, (39)

#3
In the QUAX setup, the cavity photon mode is chosen such that the cavity frequency !cav coincides

with !L. In this case, the hybridization (or the mixing) between cavity and Kittel mode takes place, and

the magnon should be regarded rather as a polariton (or “magnon-polariton”) [61–63].

8

Signal power at resonance:
where we used the fact that (mava)�1 is expected to be much larger than the size of the
ferromagnetic material. In addition, we define

v
±
a
⌘ v

x

a
± iv

y

a
, V ⌘

r
sN

2

maa0v
+
a

f
, (26)

with choosing the direction of ~S` in the ground state as the z-axis. The total magnon-axion
Hamiltonian is

H = H0 +Hint, (27)

where the magnon free Hamiltonian H0 is given in Eq. (18).
Now let us estimate the axion-magnon conversion rate based on the Hamiltonian derived

above. For the axion-magnon conversion, only the k ' 0 mode matters since the axion
momentum is negligible compared with its mass. The magnon has a dispersion relation
!k = !L + k

2
/(2M) and !L is chosen such that !L ' ma. The system can be approximated

by a two-level system: the ground state |0i and the excited state |1i which is defined by

c
†
0 |0i. In principle, there are higher excited states

⇣
c
†
0

⌘n

|0i (n � 2), but the probability to

reach to these states is negligibly small for the situation of our interest. The quantum state
| (t)i is, in general, a linear superposition of them:

| (t)i = ↵0(t) |0i+ ↵1(t) |1i . (28)

The initial condition is taken to be ↵0(t = 0) = 1 and ↵1(t = 0) = 0. The Schrodinger
equation is

i
@

@t
| (t)i = (H0 +Hint) | (t)i . (29)

It is convenient to go to the interaction picture: let us define |�(t)i ⌘ e
iH0t | (t)i. Then the

Schrodinger equation becomes

i
@

@t
|�(t)i = e

iH0tHinte
�iH0t |�(t)i . (30)

From this, we obtain the di↵erential equation

i↵̇0 = V
⇤ sin(mat+ �)↵1, (31)

i↵̇1 = !L↵1 + V sin(mat+ �)↵0. (32)

Assuming |V | ⌧ !L, which is valid in parameters of our interest, it is solved as

↵1(t) '
iV

2

e
i�(ma � !L)(eimat � e

�i!Lt) + e
�i�(ma + !L)(e�imat � e

�i!Lt)

m2
a
� !

2
L

. (33)
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HS. By comparing the two plots of Fig. 1, one can see that
the model appropriately describes the system, allowing
us to extract the linewidths, frequencies and couplings of
the modes through a fit. The typical measured values are
�1 ' 1.9MHz and gcm ' 638MHz, yielding ⌧s ' 84 ns
and Ns ' 1.0⇥ 1021 spins, respectively. Remarkably, the
mode !1 is not altered by other modes, thus we will use
it to search for axion-induced signals. For a fixed B0 the
linewidth of the hybrid mode is the haloscope sensitive
band. By changing B0, we can perform a frequency scan
along the dashed line of Fig. 1.
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FIG. 2: Schematics of the apparatus. The cavity is reported
in orange, the ten YIG spheres are in black, and the blue
shaded region is permeated by a uniform magnetic field. The
cryogenic and room temperature HEMT amplifiers are A1 and
A2, respectively, and the JPA ports are the signal (s), idler (i)
and pump (p). Superconducting cables are brown, the red-
circled T s are the thermometers, SO is a source oscillator, and
attenuators are shown with their reduction factor in dB. As
inset, we show the calibration of the system gain and noise
temperature, obtained by injecting signals in the SO line. The
power injected in the HS is given in terms of an e↵ective
temperature proportional to Acal. The errors are within the
symbol dimension. See text for further details.

The electronic schematics, shown in Fig. 2, consists in
four rf lines used to characterize, calibrate and operate
the haloscope. The HS output power is collected by a
dipole antenna (D1), connected to a manipulator by a
thin steel wire and a system of pulleys to change its cou-
pling. The source oscillator (SO) line is connected to a

weakly coupled antenna (D2) and used to inject signals
into the HS, the Pump line goes to a Josephson paramet-
ric amplifier (JPA), the Readout line amplifies the power
collected by D1, and Aux is an auxiliary line. The Read-
out line is connected to an heterodyne as described in
[35], where an ADC samples the down-converted power
which is then stored for analysis. The JPA is a quan-
tum limited amplifier, with resonance frequency of about
10GHz resulting in a noise temperature of 0.5K. Its gain
is close to 20 dB in a band of order 10MHz, and its work-
ing frequency can be tuned thanks to a small supercon-
ducting coil [44]. Excluding some mode crossings, hybrid
mode and JPA frequencies overlap between 10.2GHz and
10.4GHz, and allow us to scan the corresponding axion
mass range.
The procedure to calibrate all the lines of the setup is:

(i) the transmittivity of the Aux-Readout path KAR is
measured by decoupling D1 or by detuning !1; (ii) for
the Aux-SO and SO-Readout paths, KAS and KSR are
obtained by critically coupling D1 to the mode !1. The
transmittivity of the SO line is KSO '

p
KSRKAS/KAR.

If a signal of power Ain is injected in the SO line,
the fraction of this power getting into the HS results
Acal = AinKSO. Since Acal is a calibrated signal, it can
be used to measure gain and noise temperature of the
Readout line. From this measurement we obtain a sys-
tem noise temperature Tn = 1.0K, and a gain of 70.4 dB
from D1 to Readout (see Fig. 2). In our setup, the cou-
pling of D1 can be varied of 8 dB, thus we estimate a
calibration uncertainty of 16%. We measured the JPA
gain, the HEMTs noise temperature, and the cavity tem-
perature to get the noise budget detailed in Tab. I. The
0.12K di↵erence may be due to unaccounted losses, or
non-precise temperature control.

Source Estimated
Quantum noise 0.50K
Thermal noise 0.12K
HEMTs noise 0.25K

Expected total 0.87K

Measured total Tn 0.99K

TABLE I: Noise budget of the apparatus. The measured noise
is compatible with the estimated one.

To double check the accuracy of the result, we measure
the thermal noise of the HS. The noise di↵erence for !1

on and o↵ the JPA resonance (dark blue and light blue)
gives the noise added by the hybrid mode (orange curve),
as shown in Fig. 3. The excess noise is compatible with
a temperature of the HS ⇠ 10mK higher than the one
of the nearest load, which is realistic. Similar results are
obtained by changing the D1 antenna coupling for a fixed
B0.
The axion search consisted in fifty-six runs, each one

QUAX experiment
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FIG. 4: Exclusion plot at 95% CL on the axion-electron coupling obtained with the present prototype (excluded region reported
in blue and error in light blue), and overview of other searches for the axion-electron interaction. The other results are from
[35] (orange) and [45] (green), while the DFSZ axion line is at about gaee ' 10�15. The inset is a detailed view of the reported
result.
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[14] Szabolcs Borsányi, Z Fodor, J Guenther, K-H Kampert,

SD Katz, T Kawanai, TG Kovacs, SW Mages, A Pasztor,
F Pittler, et al. Calculation of the axion mass based
on high-temperature lattice quantum chromodynamics.
Nature, 539(7627):69, 2016.

[15] Evan Berkowitz, Michael I Bucho↵, and Enrico Rinaldi.
Lattice qcd input for axion cosmology. Physical Review

D, 92(3):034507, 2015.
[16] P. Sikivie. Experimental tests of the ”invisible” axion.

Phys. Rev. Lett., 51:1415–1417, Oct 1983.
[17] N. Du, N. Force, R. Khatiwada, E. Lentz, R. Ottens,

L. J Rosenberg, G. Rybka, G. Carosi, N. Woollett,
D. Bowring, A. S. Chou, A. Sonnenschein, W. Wester,
C. Boutan, et al. Search for invisible axion dark matter
with the axion dark matter experiment. Phys. Rev. Lett.,
120:151301, Apr 2018.

[18] S. J. Asztalos, G. Carosi, C. Hagmann, D. Kinion, K. van
Bibber, M. Hotz, L. J Rosenberg, G. Rybka, J. Hoskins,
J. Hwang, P. Sikivie, D. B. Tanner, R. Bradley, and
J. Clarke. Squid-based microwave cavity search for dark-
matter axions. Phys. Rev. Lett., 104:041301, Jan 2010.

[19] T. Braine, R. Cervantes, N. Crisosto, N. Du, S. Kimes,
L. J Rosenberg, G. Rybka, J. Yang, D. Bowring, A. S.
Chou, R. Khatiwada, A. Sonnenschein, W. Wester,
G. Carosi, et al. Extended search for the invisible ax-
ion with the axion dark matter experiment, 2019.

[QUAX collaboration (2020)]



Figure 1: Sensitivity plot for SNR = 3 under Ttotal = 10 years. Left : Sensitivity of the
magnon detector on the axion-electron coupling gaee as a function of the axion mass ma.
The green and blue regions show the sensitivity for an ideal setup. The colors and styles of
regions represent different setups; the observation time for each scan is set to be Tobs = 103 s
(green) or 104 s (blue), and the cavity temperature is Tcav = 1K (dark-meshed) or 0.1K
(light). The orange dashed lines show the sensitivity for a realistic setup with Tobs = 103 s
and Tcav ! ma. Throughout the figure, the setup of Mtarget = 1kg, τ = 2µs, va = 10−3,
and sin2 θ = 0.5 is assumed. Besides, the gray regions show the parameter region already
excluded by other searches and the yellow region and the black solid line correspond to
the prediction of the DFSZ model with 0.28 ! tan β ! 140 and that of the KSVZ model,
respectively. Right : Sensitivity of the cavity detector on the axion-photon coupling gaγγ as a
function ofma. Similar to the left panel, the green and blue regions and orange lines show the
sensitivities with B0 = 1T, VcavGcav = 100 cm3, and τcav = 2µs. The other shaded regions
show the region excluded by other searches and the black dashed (solid) line corresponds to
the prediction of the DFSZ (KSVZ) model.

va = 10−3, and sin2 θ = 0.5. Gray regions correspond to the parameter space excluded by
other searches using the bremsstrahlung from white dwarfs [70], the brightness of the tip of
the red-giant branch in globular clusters [71], and the direct detection of solar axions at the
EDELWEISS-II [72], the XENON100 [73], and the LUX [74] collaborations. Besides, the
yellow region and the black solid line show the prediction for the DFSZ and KSVZ models,
respectively. To obtain the DFSZ prediction, we variate tan β, which is the ratio between
vacuum expectation values of the two Higgs doublets, within 0.28 ! tan β ! 140 as required
by the perturbative unitarity of Yukawa couplings [75]. By comparing with the right panel
we will explain below, we can see that the axion search using the cavity mode has a better
sensitivity than that using magnon excitation for the DFSZ and KSVZ models. At the
same time, however, the sensitivity of the magnon detector reaches the DFSZ prediction
for a relatively heavy mass due to the Boltzmann suppression of the noise rate according to
Eq. (44). Thus, the figure shows the potential to probe the axion-electron coupling depending
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Figure 2: Sensitivity of the magnon (left) and cavity (right) detectors in the mH vs. ✏ plane.
We use Mtarget = 1kg and Ttotal = 10 years. The other parameters are chosen as vH = 10�3,
⌧ = 2µs, and sin2

✓ = sin2
' = 1/2. The green and blue colors correspond to an ideal setup

case with (SNR) = 3 and Tobs = 103 s and 104 s, respectively, and the dark-meshed and the
light regions show those with Tcav = 1K and 0.1K, respectively. The orange dashed lines
correspond to a realistic setup with Tobs = 103 s and Tcav ⌧ ma. The gray region corresponds
to the parameter space already excluded by other experiments. Magenta region shows the
expected sensitivity of polar materials, while purple and light green lines show that of Dirac
materials.

photon DM. Conversely, if the DM signal is discovered in a cavity without magnetic material
and the sizable spin-induced signal is also present, one can rule out the hidden photon DM.

Let us estimate the experimental sensitivity as done in Sec. 3.2. In Fig. 2, we show the
sensitivity of the magnon (left) and the cavity (right) detectors on the hidden photon with
Mtarget = 1kg and Ttotal = 10 years. The center of the scan is fixed to be mH = 200µeV.
To derive the sensitivity, we use the parameter choices vH = 10�3, ⌧ = 2µs, and sin2

✓ =
sin2

' = 1/2. For an ideal setup, we again use two di↵erent choices of the observation time
Tobs = 103 s (green) and 104 s (blue), while the dark-meshed and light regions show the
sensitivities with Tcav = 1K and Tcav = 0.1K, respectively. The orange dashed lines show
the sensitivities of a realistic setup with Tobs = 103 s and Tcav ⌧ ma. Also shown in gray
color is the parameter region already excluded [79]; this includes constraints from spectral
distortions [2], modifications to Ne↵ [2], and stellar cooling [80–82]. The magenta region
shows the expected sensitivity using polar materials with phonon excitation by the hidden
photon absorption [47]. The purple (light green) solid line shows the expected sensitivity
using Dirac materials with a band gap of � = 2.5meV (� = 0) [48], while the light green
dotted line is an extrapolation of the sensitivity assuming that the electron excitation with
energy of O(10�4) eV can be detected. From the figure, we can see the strong potential of
this setup on the hidden photon search. Even if we use a much shorter value of Tobs than
the canonical value adopted in the QUAX proposal, a much stronger bound on the kinetic

15

[Chigusa, Moroi, KN (2020)]

Ultimate sensitivity from DM-magnon conversion
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condensed-matter axion



Topological insulator

“Axion” in topological (anti-)ferromagnet
[Li, Wang, Qi, Zhang (2009)]

[Kane, Mele (2005), Fu, Kane, Mele (2007)]

Axion in condensed-matter

L = ✓
↵e

4⇡
Fµ⌫

eFµ⌫
✓ = 0

✓ = ⇡

: normal insulator

: topological insulator 8

Symmetry d

AZ ⇥ ⌅ ⇧ 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z
BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII �1 1 1 Z2 Z2 Z 0 0 0 Z 0

AII �1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII �1 �1 1 Z 0 Z2 Z2 Z 0 0 0

C 0 �1 0 0 Z 0 Z2 Z2 Z 0 0

CI 1 �1 1 0 0 Z 0 Z2 Z2 Z 0

TABLE I Periodic table of topological insulators and super-
conductors. The 10 symmetry classes are labeled using the
notation of Altland and Zirnbauer (1997) (AZ) and are spec-
ified by presence or absence of T symmetry ⇥, particle-hole
symmetry ⌅ and chiral symmetry ⇧ = ⌅⇥. ±1 and 0 denotes
the presence and absence of symmetry, with ±1 specifying
the value of ⇥2 and ⌅2. As a function of symmetry and space
dimensionality, d, the topological classifications (Z, Z2 and 0)
show a regular pattern that repeats when d ! d+ 8.

3. Periodic table

Topological insulators and superconductors fit to-
gether into a rich and elegant mathematical structure
that generalizes the notions of topological band theory
described above (Schnyder, et al., 2008; Kitaev, 2009;
Schnyder, et al., 2009; Ryu, et al., 2010). The classes
of equivalent Hamiltonians are determined by specifying
the symmetry class and the dimensionality. The symme-
try class depends on the presence or absence of T sym-
metry (8) with ⇥2 = ±1 and/or particle-hole symmetry
(15) with ⌅2 = ±1. There are 10 distinct classes, which
are closely related to the Altland and Zirnbauer (1997)
classification of random matrices. The topological clas-
sifications, given by Z, Z2 or 0, show a regular pattern
as a function of symmetry class and dimensionality and
can be arranged into the periodic table of topological in-
sulators and superconductors shown in Table I.

The quantum Hall state (Class A, no symmetry; d =
2), the Z2 topological insulators (Class AII, ⇥2 = �1;
d = 2, 3) and the Z2 and Z topological superconductors
(Class D, ⌅2 = 1; d = 1, 2) described above are each
entries in the periodic table. There are also other non
trivial entries describing di↵erent topological supercon-
ducting and superfluid phases. Each non trivial phase is
predicted, via the bulk-boundary correspondence to have
gapless boundary states. One notable example is super-
fluid 3He B (Volovik, 2003; Roy, 2008; Schnyder, et al.,
2008; Nagato, Higashitani and Nagai, 2009; Qi, et al.,
2009; Volovik, 2009), in (Class DIII, ⇥2 = �1, ⌅2 = +1;
d = 3) which has a Z classification, along with gapless 2D
Majorana fermion modes on its surface. A generalization
of the quantum Hall state introduced by Zhang and Hu
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FIG. 5 Edge states in the quantum spin Hall insulator. (a)
shows the interface between a QSHI and an ordinary insula-
tor, and (b) shows the edge state dispersion in the graphene
model, in which up and down spins propagate in opposite
directions.

(2001) corresponds to the d = 4 entry in class A or AII.
There are also other entries in physical dimensions that
have yet to be filled by realistic systems. The search is
on to discover such phases.

III. QUANTUM SPIN HALL INSULATOR

The 2D topological insulator is known as a quantum
spin Hall insulator. This state was originally theorized
to exist in graphene (Kane and Mele, 2005a) and in 2D
semiconductor systems with a uniform strain gradient
(Bernevig and Zhang, 2006). It was subsequently pre-
dicted to exist (Bernevig, Hughes and Zhang, 2006), and
was then observed (König, et al., 2007), in HgCdTe quan-
tum well structures. In section III.A we will introduce
the physics of this state in the model graphene system
and describe its novel edge states. Section III.B will re-
view the experiments, which have also been the subject
of the review article by König, et al. (2008).

A. Model system: graphene

In section II.B.2 we argued that the degeneracy at the
Dirac point in graphene is protected by inversion and
T symmetry. That argument ignored the spin of the
electrons. The spin orbit interaction allows a new mass
term in (3) that respects all of graphene’s symmetries. In
the simplest picture, the intrinsic spin orbit interaction
commutes with the electron spin Sz, so the Hamiltonian
decouples into two independent Hamiltonians for the up
and down spins. The resulting theory is simply two copies
the Haldane (1988) model with opposite signs of the Hall
conductivity for up and down spins. This does not violate
T symmetry because time reversal flips both the spin and
�xy. In an applied electric field, the up and down spins
have Hall currents that flow in opposite directions. The
Hall conductivity is thus zero, but there is a quantized
spin Hall conductivity, defined by J

"
x � J

#
x = �

s
xyEy with

�
s
xy = e/2⇡ – a quantum spin Hall e↵ect. Related ideas

were mentioned in earlier work on the planar state of
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Example: Fu-Kane-Mele-Hubbard model

where e� schematically represents the array of spin, e.g., e� = (. . . , ", ", #, . . . ) and so on.
There are 2Ne degenerate ground states corresponding to the spin degree of freedom at each
site.

We want to consider an e↵ective Hamiltonian regarding Ht as a perturbation. Noting
he�|Ht |e�i = 0, the nontrivial e↵ect appears at the second-order in Ht. The e↵ective Hamil-
tonian is given by

He↵ = �PHt
1

HU
HtP = � t2

U
P

X

hi,ji��0

⇣
c†i�cj�c

†
j�0ci�0 + c†j�ci�c

†
i�0cj�0

⌘
P , (3.7)

where P denotes the projection operator to the Hilbert space spanned by the ground state
(3.6). The physical meaning is that, for � 6= �0, it exchanges the spin at the adjacent sites i
and j for a given ground state. This is rewritten in terms of the spin operator as

He↵ =
4t2

U

X

hi,ji

~Si · ~Sj, (3.8)

where we have defined

Sz
i =

1

2
(c†i"ci" � c†i#ci#), S+

i ⌘ Sx
i + iSy = c†i"ci#, S�

i ⌘ Sx � iSy = c†i#ci". (3.9)

Since the coe�cient t2/U is positive, it represents the Heisenberg anti-ferromagnet model
with J = �t2/U . Thus, the half-filling Hubbard model may describe both the metal phase
in the limit U ! 0 and the anti-ferromagnetic insulator phase in the large U limit.

4 A model of condensed matter axion

4.1 Energy band in Fu-Kane-Mele-Hubbard model

A three-dimensional topological insulator has been proposed in Refs. [39, 40]. An example
is the diamond lattice with a strong spin-orbit coupling. On the other hand, taking account
of the Hubbard on-site interaction between electrons may lead to the anti-ferromagnetic
phase, leading to the topological anti-ferromagnet. Such a model is called the Fu-Kane-
Mele-Hubbard model and studied in Ref. [46]. Actually, it is found in Ref. [46] that there is
a topological anti-ferromagnetic phase depending on the interaction strength, in which the
spin-wave excitation (magnon) has an axionic coupling to the electromagnetic field.

Now, we briefly review the Fu-Kane-Mele-Hubbard model on the diamond lattice. We
assume the half-filling case, i.e., there is only one electron at the electron orbitals of our
interest at each site. The model Hamiltonian is given by H = H0 +HU :

H0 =
X

hi,ji�

tijc
†
i�cj� + i

4�

a2

X

hhi,jii

c†i~� · (~d1ij ⇥ ~d2ij)cj, (4.1)

HU = U
X

i

ni"ni#, (4.2)
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When the strength U is intermediate, it has been shown that
the spin liquid phase emerges22–26 and pointed out the pos-
sibility of the fractional topological insulator phase.21 In an-
other model of a 2D topological insulator with on-site interac-
tion, the Bernevig-Hughes-Zhang-Hubbard model, the exis-
tence of the topological antiferromagnetic insulator phase has
been pointed out.27 On the other hand, in the case of three-
dimensions, the Fu-Kane-Mele model on the diamond lattice,
the 3D analog of the Kane-Mele model, is known as a model
for a 3D topological insulator.28, 29 What is the properties
of an interacting Fu-Kane-Mele model, the Fu-Kane-Mele-
Hubbard model? So far there has been no study on this model,
although interesting phenomena are expected to emerge.

In this paper, we focus on the topological magnetoelectric
response of the antiferromagnetic insulator phase in the ex-
tended Fu-Kane-Mele-Hubbard model on a diamond lattice
at half-filling, within the mean-field approximation. This pa-
per is organized as follows. In Sec. 2, the model we adopt
is explained. We take into account the on-site and nearest-
neighbor repulsive electron-electron interactions. In Sec. 3,
the mean-field phase diagram is presented. In Sec. 4, we ob-
tain analytically the value of ✓ in the antiferromagnetic insula-
tor phase. First we show that we can derive the Dirac Hamil-
tonian in the antiferromagnetic insulator phase. Then based
on the Fujikawa’s method,30, 31 we obtain the theta term as
a consequence of the chiral anomaly. In Sec. 5, we discuss
the realization of the dynamical axion field in our model. we
also discuss the relation between our antiferromagnetic insu-
lator phase and the so-called “Aoki phase”, a symmetry bro-
ken phase induced by interactions in lattice QCD.32

2. Model

Let us consider a 3D lattice model with electron correlation
and spin-orbit coupling. The model we adopt is the extended
Fu-Kane-Mele-Hubbard model on a diamond lattice at half-
filling, in which the Hamiltonian is given by H = H0 + Hint
with the non-interacting part

H0 =
X

hi, ji,�

ti jc
†

i�c j� + i
4�
a2

X

hhi, jii

c
†

i
� · (d1

i j
⇥ d2

i j
)c j, (4)

and the interaction part

Hint = U

X

i

ni"ni# +
X

hi, ji

Vi jnin j, (5)

where c
†

i� is an electron creation operator at a site i with
spin �(=", #), ni� = c

†

i�ci�, ni = ni" + ni#, and a is the lat-
tice constant of the fcc lattice. The first and second terms
of H0 represent the nearest-neighbor hopping and the next-
nearest-neighbor spin-orbit coupling, respectively. d1

i j
and d2

i j

are the two vectors which connect two sites i and j of the
same sublattice. They are given by two of the four nearest-
neighbor vectors, a

4 (1, 1, 1), a

4 (�1,�1, 1), a

4 (1,�1,�1), and
a

4 (�1, 1,�1), with proper signs (directions of the vectors).
� = (�1,�2,�3) are the Pauli matrices for the spin degree
of freedom. The first and second terms of Hint describe the
on-site and nearest-neighbor repulsive electron-electron inter-
actions, respectively. The lattice structure of a diamond lattice
is shown in Fig. 1(a).

It is convenient to express the non-interacting part H0 of
the Hamiltonian in terms of the 4⇥4 alpha (gamma) matri-

Fig. 1. (Color online) (a) A diamond lattice, which consists of two sub-
lattices (red and blue), and each sublattice forms a fcc lattice. (b) The first
Brillouin zone of a fcc lattice. Green circles represent the X points.

ces. The diamond lattice consists of two sublattices (A and
B), with each sublattice forming a fcc lattice. In such a case,
we can define the basis ck ⌘ [ckA", ckA#, ckB", ckB#]T where
the wave vector k is given by the points in the first Brillouin
zone of the fcc lattice [see Fig. 1(b)]. Then the single-particle
HamiltonianH0(k) [H0 ⌘

P
k c
†

kH0(k)ck] is written as28, 29

H0(k) =
5X

µ=1

Rµ(k)↵µ, (6)

where the coe�cients Rµ(k) are given by

R1(k) = �[sin u2 � sin u3 � sin(u2 � u1) + sin(u3 � u1)],

R2(k) = �[sin u3 � sin u1 � sin(u3 � u2) + sin(u1 � u2)],

R3(k) = �[sin u1 � sin u2 � sin(u1 � u3) + sin(u2 � u3)],

R4(k) = t + �t1 + t(cos u1 + cos u2 + cos u3),

R5(k) = t(sin u1 + sin u2 + sin u3).

(7)

Here u1 = k · a1, u2 = k · a2, and u3 = k · a3 with
a1 =

a

2 (0, 1, 1), a2 =
a

2 (1, 0, 1) and a3 =
a

2 (1, 1, 0) being the
primitive translation vectors. In the following, we set a = 1.
The alpha matrices ↵µ are given by the chiral representation:

↵ j =

"
� j 0
0 �� j

#
, ↵4 =

"
0 1
1 0

#
, ↵5 =

"
0 �i

i 0

#
, (8)

where j = 1, 2, 3. In the present basis, the time-reversal op-
erator and spatial inversion (parity) operator are given by
T = 1 ⌦ (�i�2)K (K is the complex conjugation operator)
and P = ⌧1 ⌦1, respectively. We have introduced the hopping
strength anisotropy �t1 due to the lattice distortion along the
[111] direction. Namely, we have set such that ti j = t + �t1
for the [111] direction, and ti j = t for the other three di-
rections. When �t1 = 0, the system is a semimetal, i.e., the
energy bands touch at the three points X

r = 2⇡(�rx, �ry, �rz)
(r = x, y, z). Finite �t1 opens a gap of 2|�t1| at the X

r points.
The Z2 invariant of the system is given by

(�1)⌫0 =
8Y

i=1

sgn

2
6666664t + �t1 + t

3X

p=1

cos
⇣
�i · ap

⌘
3
7777775 , (9)

where �i are the eight time-reversal invariant momenta:
(0, 0, 0), (2⇡, 0, 0), (0, 2⇡, 0), (0, 0, 2⇡), (⇡, ⇡, ⇡), (⇡, ⇡,�⇡),
(⇡,�⇡, ⇡), and (�⇡, ⇡, ⇡). We see that the system is a topologi-
cal insulator (normal insulator) when 0 < �t1 < 2t (�t1 < 0 or
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Chiral rotation of Dirac fermion gives axion-photon interaction:

The Hamiltonian around the eX1 point is expressed as

H eX1
(~q) =

1

a
(eqx↵1 + eqy↵2 + eqz↵3) + �t↵4 + Um1↵5, (4.20)

where we have rescaled the momentum as tqx ! eqx/a, 2�qy ! eqy/a, 2�qz ! eqz/a. In
deriving Eq. (4.20), we have performed an appropriate change of the basis of the ↵ matrices
through a unitary transformation, with which ↵1 $ ↵5 (see App. B). The Hamiltonian
around the eX2 and eX3 points can also be reduced to the same form except for the last term,
which becomes Um2↵5 and Um3↵5, respectively. From this Hamiltonian, we can infer the
e↵ective action for the electron which mimics the action of the relativistic Dirac fermion as

S =

Z
d4x

X

r=1,2,3

 r [i�
µ(@µ � ieAµ)� �t� i�5Umr] r. (4.21)

One can make a chiral rotation of the fermion to eliminate the �5 dependent term,
 r ! ei�5✓r/2 r. Then, there appears a topological term:#5

S =

Z
d4x ✓

↵e

8⇡
Fµ⌫

eF µ⌫ , ✓ ⌘ ✓0 +
X

r

✓r = ✓0 +
X

r

tan�1

✓
Umr

�t

◆
, (4.22)

where ✓0 is either 0 or 1/2 depending on the sign of �t. (See App. C for another derivation
of ✓.) Note that the background magnetization ~m can fluctuate: it is a spin-wave or magnon
excitation, ~m(~x). Then, ✓(~x) is not a constant but a dynamical field and it has an ax-
ionic coupling to the electromagnetic field. Therefore, in this model, the magnon e↵ectively
behaves as an axion-like field (CM axion).

4.3 Axionic excitation as magnons

To relate the axionic excitation (or the CM axion) ✓ to the conventional magnons defined in
Sec. 2, we repeat the analysis in the previous subsection, taking into account the fluctuation
of the background magnetization in terms of magnon operators. We focus only on the
spatially homogeneous spin fluctuations and consider their interaction with electrons at
around a Dirac point ~k ⇠ ~k eXr

. Then, the relevant part of the Hubbard interaction term is
schematically expressed as

HU 3 U
X

r=1,2,3

X

~k⇠~k eXr

X

L=A,B

h
eFL(ni";~0)(c

†
~k#,L

c~k#,L) +
eFL(ni#;~0)(c

†
~k",L

c~k",L)

� eFL(c
†
i"ci#;~0)(c

†
~k#,L

c~k",L)� eFL(c
†
i#ci";~0)(c

†
~k",L

c~k#,L)
i
, (4.23)

where the Fourier transform of operators Oi is defined as

eFL(Oi; ~q) ⌘
1

N

X

i2L

Oie
i~q·~xi . (4.24)

#5Eq. (4.22) may not be applicable when Umr/�t � 1 [46].
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The Hamiltonian around the eX1 point is expressed as

H eX1
(~q) =

1

a
(eqx↵1 + eqy↵2 + eqz↵3) + �t↵4 + Um1↵5, (4.20)

where we have rescaled the momentum as tqx ! eqx/a, 2�qy ! eqy/a, 2�qz ! eqz/a. In
deriving Eq. (4.20), we have performed an appropriate change of the basis of the ↵ matrices
through a unitary transformation, with which ↵1 $ ↵5 (see App. B). The Hamiltonian
around the eX2 and eX3 points can also be reduced to the same form except for the last term,
which becomes Um2↵5 and Um3↵5, respectively. From this Hamiltonian, we can infer the
e↵ective action for the electron which mimics the action of the relativistic Dirac fermion as

S =

Z
d4x

X

r=1,2,3

 r [i�
µ(@µ � ieAµ)� �t� i�5Umr] r. (4.21)

One can make a chiral rotation of the fermion to eliminate the �5 dependent term,
 r ! ei�5✓r/2 r. Then, there appears a topological term:#5
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where ✓0 is either 0 or 1/2 depending on the sign of �t. (See App. C for another derivation
of ✓.) Note that the background magnetization ~m can fluctuate: it is a spin-wave or magnon
excitation, ~m(~x). Then, ✓(~x) is not a constant but a dynamical field and it has an ax-
ionic coupling to the electromagnetic field. Therefore, in this model, the magnon e↵ectively
behaves as an axion-like field (CM axion).

4.3 Axionic excitation as magnons

To relate the axionic excitation (or the CM axion) ✓ to the conventional magnons defined in
Sec. 2, we repeat the analysis in the previous subsection, taking into account the fluctuation
of the background magnetization in terms of magnon operators. We focus only on the
spatially homogeneous spin fluctuations and consider their interaction with electrons at
around a Dirac point ~k ⇠ ~k eXr

. Then, the relevant part of the Hubbard interaction term is
schematically expressed as
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where the Fourier transform of operators Oi is defined as

eFL(Oi; ~q) ⌘
1
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i2L

Oie
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#5Eq. (4.22) may not be applicable when Umr/�t � 1 [46].
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4.2 Axionic excitation in anti-ferromagnetic phase

It is expected that the inclusion of the Hubbard interaction HU may lead to the anti-
ferromagnetic ordering. Actually, it is found that the anti-ferromagnetic phase appears for
sizable U/t in the mean field approximation [46]. Under this approximation, the Hubbard
interaction term can be rewritten as

HU ' U
X
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, (4.12)

with hOi being the ensemble average of the operator O. We use the operator equations
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i +

1

2
(ni" + ni#), (4.13)

c†i"ci# = S
0x
i + iS
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i , (4.14)

c†i#ci" = S
0x
i � iS

0y
i , (4.15)

with ~S 0
i being spin operators in the coordinate system used in the previous subsection, with

which three Dirac points are defined. Note that, in the U ! 1 limit of a half-filling model,
we can safely restrict ourselves to states with hni" + ni#i = 1. Then, neglecting constant
terms, the Hubbard interaction becomes
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3X
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with mr are defined through
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which characterizes the anti-ferromagnetic ordering.
Under this background and assuming U |~m| ⌧ �, the Xr points (r = 1, 2, 3) are slightly

shifted as
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(4.18)

For example, the energy dispersion around the eX1 point is given by

E±(~q) = ±
q

(tqx)2 + 4�2(q2y + q2z) + (�t)2 + (Um1)2, (4.19)

where we have taken ~k = ~k eX1
+ ~q. It is seen that there is an additional gap due to the

anti-ferromagnetic order.
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where we have rescaled the momentum as tqx ! eqx/a, 2�qy ! eqy/a, 2�qz ! eqz/a. In
deriving Eq. (4.20), we have performed an appropriate change of the basis of the ↵ matrices
through a unitary transformation, with which ↵1 $ ↵5 (see App. B). The Hamiltonian
around the eX2 and eX3 points can also be reduced to the same form except for the last term,
which becomes Um2↵5 and Um3↵5, respectively. From this Hamiltonian, we can infer the
e↵ective action for the electron which mimics the action of the relativistic Dirac fermion as
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One can make a chiral rotation of the fermion to eliminate the �5 dependent term,
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where ✓0 is either 0 or 1/2 depending on the sign of �t. (See App. C for another derivation
of ✓.) Note that the background magnetization ~m can fluctuate: it is a spin-wave or magnon
excitation, ~m(~x). Then, ✓(~x) is not a constant but a dynamical field and it has an ax-
ionic coupling to the electromagnetic field. Therefore, in this model, the magnon e↵ectively
behaves as an axion-like field (CM axion).

4.3 Axionic excitation as magnons

To relate the axionic excitation (or the CM axion) ✓ to the conventional magnons defined in
Sec. 2, we repeat the analysis in the previous subsection, taking into account the fluctuation
of the background magnetization in terms of magnon operators. We focus only on the
spatially homogeneous spin fluctuations and consider their interaction with electrons at
around a Dirac point ~k ⇠ ~k eXr

. Then, the relevant part of the Hubbard interaction term is
schematically expressed as
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where the Fourier transform of operators Oi is defined as

eFL(Oi; ~q) ⌘
1

N

X

i2L

Oie
i~q·~xi . (4.24)

#5Eq. (4.22) may not be applicable when Umr/�t � 1 [46].

10

S =

Z
d4x ✓

↵e

4⇡
Fµ⌫

eFµ⌫

Axion ~ magnon in FKMH anti-ferromagnet model.

The Hamiltonian around the eX1 point is expressed as

H eX1
(~q) =

1

a
(eqx↵1 + eqy↵2 + eqz↵3) + �t↵4 + Um1↵5, (4.20)

where we have rescaled the momentum as tqx ! eqx/a, 2�qy ! eqy/a, 2�qz ! eqz/a. In
deriving Eq. (4.20), we have performed an appropriate change of the basis of the ↵ matrices
through a unitary transformation, with which ↵1 $ ↵5 (see App. B). The Hamiltonian
around the eX2 and eX3 points can also be reduced to the same form except for the last term,
which becomes Um2↵5 and Um3↵5, respectively. From this Hamiltonian, we can infer the
e↵ective action for the electron which mimics the action of the relativistic Dirac fermion as

S =

Z
d4x

X

r=1,2,3

 r [i�
µ(@µ � ieAµ)� �t� i�5Umr] r. (4.21)

One can make a chiral rotation of the fermion to eliminate the �5 dependent term,
 r ! ei�5✓r/2 r. Then, there appears a topological term:#5

S =

Z
d4x ✓

↵e

8⇡
Fµ⌫

eF µ⌫ , ✓ ⌘ ✓0 +
X

r

✓r = ✓0 +
X

r

tan�1

✓
Umr

�t

◆
, (4.22)

where ✓0 is either 0 or 1/2 depending on the sign of �t. (See App. C for another derivation
of ✓.) Note that the background magnetization ~m can fluctuate: it is a spin-wave or magnon
excitation, ~m(~x). Then, ✓(~x) is not a constant but a dynamical field and it has an ax-
ionic coupling to the electromagnetic field. Therefore, in this model, the magnon e↵ectively
behaves as an axion-like field (CM axion).

4.3 Axionic excitation as magnons

To relate the axionic excitation (or the CM axion) ✓ to the conventional magnons defined in
Sec. 2, we repeat the analysis in the previous subsection, taking into account the fluctuation
of the background magnetization in terms of magnon operators. We focus only on the
spatially homogeneous spin fluctuations and consider their interaction with electrons at
around a Dirac point ~k ⇠ ~k eXr
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schematically expressed as

HU 3 U
X

r=1,2,3

X

~k⇠~k eXr

X

L=A,B

h
eFL(ni";~0)(c

†
~k#,L

c~k#,L) +
eFL(ni#;~0)(c

†
~k",L

c~k",L)

� eFL(c
†
i"ci#;~0)(c

†
~k#,L

c~k",L)� eFL(c
†
i#ci";~0)(c

†
~k",L

c~k#,L)
i
, (4.23)

where the Fourier transform of operators Oi is defined as
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#5Eq. (4.22) may not be applicable when Umr/�t � 1 [46].

10

Dirac-like electron interacts with spin through
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It is expected that the inclusion of the Hubbard interaction HU may lead to the anti-
ferromagnetic ordering. Actually, it is found that the anti-ferromagnetic phase appears for
sizable U/t in the mean field approximation [46]. Under this approximation, the Hubbard
interaction term can be rewritten as

HU ' U
X

i

⇣
hni"ini# + hni#ini" � hni"i hni#i

�
D
c†i"ci#

E
c†i#ci" �

D
c†i#ci"

E
c†i"ci# +

D
c†i"ci#

ED
c†i#ci"

E⌘
, (4.12)

with hOi being the ensemble average of the operator O. We use the operator equations

ni"(#) = ±S
0z
i +

1

2
(ni" + ni#), (4.13)

c†i"ci# = S
0x
i + iS

0y
i , (4.14)

c†i#ci" = S
0x
i � iS

0y
i , (4.15)

with ~S 0
i being spin operators in the coordinate system used in the previous subsection, with
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For example, the energy dispersion around the eX1 point is given by

E±(~q) = ±
q

(tqx)2 + 4�2(q2y + q2z) + (�t)2 + (Um1)2, (4.19)

where we have taken ~k = ~k eX1
+ ~q. It is seen that there is an additional gap due to the

anti-ferromagnetic order.
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DM-axion to CM-axion

DM axion to CM axion conversion
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[Marsh et al (2018), Schutte-Engel et al. (2021), Chigusa, Moroi, KN (2021)]
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Figure 6: Proposed transmission experiment to detect the axion-polariton. Left: THz
source power spectrum. Centre: Transmission experiment concept. A source field, which
propagates along the negative z-direction is incident on a TMI. An external B-field Be

is applied parallel to the TMI surface. If AQs exist in the material, the dispersion
relation has a gap where no propagating modes exist, thus altering the spectrum of
the transmitted radiation. Right: Theoretical transmission spectrum. The green line
corresponds to the case where a dynamical AQ is present. The gap is indicated by the
vertical green dotted lines. The width on resonance, �res, serves to measure the polariton
losses.

3.1.1 General formulation
The macroscopic axion-Maxwell equations for a three-dimensional TMI are [42]

Ò · D = flf ≠ –

fi
Ò(”� + �0) · B , (3.1)

Ò ◊ H ≠ ˆtD = Jf + –

fi
(Bˆt(”� + �0) ≠ E ◊ Ò(”� + �0)) , (3.2)

Ò · B = 0 , (3.3)
Ò ◊ E + ˆtB = 0 , (3.4)

ˆ2
t ”� ≠ v2

i ˆ2
i ”� + m2

�”� = �E · B , (3.5)

where ”� is the pseudoscalar axion quasiparticle (AQ) field, �0 œ [0, fi] a constant, f2
�

the AQ decay constant, vi (with i = x, y, z) is the spin wave velocity, m� the spin wave
mass, E is the electric field, B the magnetic flux density, D the displacement field, H

the magnetic field strength, flf the free charge density, and Jf the free current density,

– 29 –

[Schutte-Engel et al. (2021)]
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Figure 1: Sensitivity of the magnon to the ALP DM in the ma vs. ga�� plane. The orange
(green) region corresponds to the sensitivity of the �-mode (↵-mode) with u~0 � v~0 = 10,
while the dot-dashed line in each region shows the sensitivity of the corresponding mode
with u~0 � v~0 = 1. We postulate the target volume V = (10 cm)3 and the magnetic field
scanned over 1T < B0 < 7T (1T < B0 < 10T) for the �-mode (↵-mode). For each step
of the scan, we use �t = 102 s for an observation, which requires ⇠ 1 yr for the whole scan.
See the text for more details of the material properties. Also shown as colored regions are
existing constraints, while the black solid (dashed) line shows the prediction for the KSVZ
(DFSZ) model.

for a single photon detector in the THz regime at the temperature T = 0.05K [52]. We
estimate the sensitivity by requiring the signal-to-noise ratio (SNR)

(SNR) ⌘ (dNsignal/dt)�tscanp
(dNnoise/dt)�tscan

, (5.18)

to be larger than 3 for each scan step.
In the figure, the orange and green regions correspond to the sensitivity using �- and

↵-modes, respectively, with u~0 � v~0 = 10, while the dot-dashed line in each region shows
the sensitivity of the corresponding mode with u~0 � v~0 = 1. The other colored regions
show existing constraints from the Light-Shining-through-Walls (LSW) experiments such as
the OSQAR [53] (yellow), the measurement of the vacuum magnetic birefringence at the
PVLAS [54] (pink), and the observation of the ALP flux from the sun using the helioscope
CAST [55] (blue). We also show the predictions of the KSVZ and DFSZ axion models with
black solid and dashed lines, respectively. We can see that the use of both ↵- and �-modes
gives a detectability over a broad mass range of 10�3–10�2 eV and the sensitivity may reach
both the KSVZ and DFSZ model predictions for some mass range. It is also notable that
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Figure 2: Sensitivity of the magnon to the DM hidden photon in the mH vs. ✏ plane. The
color and line style convention and the experimental set up are the same as those explained
in Fig. 1. The gray region is a combination of existing constraints, while the magenta region
shows a sensitivity of the polar material [61]. The purple and green lines correspond to the
sensitivity of the Dirac material [62] with gap sizes � = 2.5meV and 0, respectively.

6 Conclusions and discussion

Motivated by recent developments in the axion electrodynamics in the context of condensed
matter physics, we considered a possibility of DM detection through DM conversion into the
condensed-matter (CM) axion. We formulated a way how the CM axion degree of freedom
appears starting from the tight-binding model of the electrons on the lattice. In a particular
example, we have taken the model in [46], in which the CM axion may be interpreted as the
spin wave or the (linear combination of) magnons in an anti-ferromagnetic insulator.#11 For
the convenience of readers of particle physics side, we have reviewed the Heisenberg model
and half-filling Hubbard model in a self-consistent and comprehensive manner. Based on
these basic ingredients, we can derive the CM axion dispersion relation and its interaction
with electromagnetic fields.

As DM models, we considered two cases: the elementary particle axion (or ALP) and
the hidden photon. We calculated the DM conversion rate into the CM axion in a quantum
mechanical way and estimated the signal rate. It is possible to cover the parameter regions
which have not been explored so far in the DM mass range of about meV. It may be possible
to reach the QCD axion. One should note, however, that our calculation is just based on

#11In the original proposal of dynamical axion in Fe-doped topological insulators such as Bi2Se3 [35], the
CM axion is interpreted as an amplitude mode of the anti-ferromagnetic order parameter and not expressed
by a linear combination of magnons.
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[Chigusa, Moroi, KN (2021)]

Axion DM Hidden photon DM

the e↵ective coherence time ⌧ ⌘ min(⌧a, ⌧m). Then, the average magnon excitation rate is
evaluated as

dNsignal

dt
=

P (⌧)

⌧
=

|Ca|2⌧
4

. (5.13)

Numerically, the signal rate is evaluated as

dNsignal
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where V/N = Vunit with Vunit being the volume of the magnetic unit cell. Note that, from
Eq. (2.11), a straightforward calculation shows

(u~0 � v~0)
2 =

r
2!J + !A

!A
, (5.15)

and hence the signal rate is enhanced if !J � !A.
In Fig. 1, we show the sensitivity on the ALP parameter space taking (u~0 � v~0) = 1

and 10, Vunit = (0.3 keV)�3, and |D|2 = ✏ = 1 as the material properties and postulating
V = (10 cm)3. We also assume ⌧a < ⌧m and use

⌧ =
1

mav2a
⇠ 0.7µs

✓
10�3 eV

ma

◆
. (5.16)

As for the magnon dispersion relation, we use typical values

mm = 1.0± 0.12

✓
B0

1T

◆
meV, (5.17)

where the plus (minus) sign is selected for the ↵- (�-)mode. The magnetic field is assumed
to be scanned within the range 1T < B0 < 10T. The �-mode is used for our analysis
only when B0 < 7T to avoid the instability or the enhanced noise rate according to the low
frequency. For each step of the scan, we can search for a mass range of �ma ⇠ 2/⌧ ⇠ 10�8 eV
and we use �tscan ⇠ 102 s for an observation. Accordingly, in order to cover all the accessible
ALP mass, it takes ⇠ 1 year to scan the magnetic field. We do not discuss in detail the
detection method of generated magnons in this paper; they might be observed through the
conversion into photons at the boundary of the material as in [33], or might be detected
using some specific features for axionic insulators, such as the dynamical chiral magnetic
e↵ect [36]. For the estimation of the sensitivity, we just assume the noise rate for the
detection dNnoise/dt ⇠ 10�3 s�1 as is adopted in [33], which is an already demonstrated value
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Figure 1: Sensitivity of the magnon to the ALP DM in the ma vs. ga�� plane. The orange
(green) region corresponds to the sensitivity of the �-mode (↵-mode) with u~0 � v~0 = 10,
while the dot-dashed line in each region shows the sensitivity of the corresponding mode
with u~0 � v~0 = 1. We postulate the target volume V = (10 cm)3 and the magnetic field
scanned over 1T < B0 < 7T (1T < B0 < 10T) for the �-mode (↵-mode). For each step
of the scan, we use �t = 102 s for an observation, which requires ⇠ 1 yr for the whole scan.
See the text for more details of the material properties. Also shown as colored regions are
existing constraints, while the black solid (dashed) line shows the prediction for the KSVZ
(DFSZ) model.
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estimate the sensitivity by requiring the signal-to-noise ratio (SNR)
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to be larger than 3 for each scan step.
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the sensitivity of the corresponding mode with u~0 � v~0 = 1. The other colored regions
show existing constraints from the Light-Shining-through-Walls (LSW) experiments such as
the OSQAR [53] (yellow), the measurement of the vacuum magnetic birefringence at the
PVLAS [54] (pink), and the observation of the ALP flux from the sun using the helioscope
CAST [55] (blue). We also show the predictions of the KSVZ and DFSZ axion models with
black solid and dashed lines, respectively. We can see that the use of both ↵- and �-modes
gives a detectability over a broad mass range of 10�3–10�2 eV and the sensitivity may reach
both the KSVZ and DFSZ model predictions for some mass range. It is also notable that
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Figure 1: Sensitivity of the magnon to the ALP DM in the ma vs. ga�� plane. The orange
(green) region corresponds to the sensitivity of the �-mode (↵-mode) with u~0 � v~0 = 10,
while the dot-dashed line in each region shows the sensitivity of the corresponding mode
with u~0 � v~0 = 1. We postulate the target volume V = (10 cm)3 and the magnetic field
scanned over 1T < B0 < 7T (1T < B0 < 10T) for the �-mode (↵-mode). For each step
of the scan, we use �t = 102 s for an observation, which requires ⇠ 1 yr for the whole scan.
See the text for more details of the material properties. Also shown as colored regions are
existing constraints, while the black solid (dashed) line shows the prediction for the KSVZ
(DFSZ) model.

for a single photon detector in the THz regime at the temperature T = 0.05K [52]. We
estimate the sensitivity by requiring the signal-to-noise ratio (SNR)

(SNR) ⌘ (dNsignal/dt)�tscanp
(dNnoise/dt)�tscan

, (5.18)

to be larger than 3 for each scan step.
In the figure, the orange and green regions correspond to the sensitivity using �- and

↵-modes, respectively, with u~0 � v~0 = 10, while the dot-dashed line in each region shows
the sensitivity of the corresponding mode with u~0 � v~0 = 1. The other colored regions
show existing constraints from the Light-Shining-through-Walls (LSW) experiments such as
the OSQAR [53] (yellow), the measurement of the vacuum magnetic birefringence at the
PVLAS [54] (pink), and the observation of the ALP flux from the sun using the helioscope
CAST [55] (blue). We also show the predictions of the KSVZ and DFSZ axion models with
black solid and dashed lines, respectively. We can see that the use of both ↵- and �-modes
gives a detectability over a broad mass range of 10�3–10�2 eV and the sensitivity may reach
both the KSVZ and DFSZ model predictions for some mass range. It is also notable that
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the e↵ective coherence time ⌧ ⌘ min(⌧a, ⌧m). Then, the average magnon excitation rate is
evaluated as

dNsignal

dt
=

P (⌧)

⌧
=

|Ca|2⌧
4

. (5.13)

Numerically, the signal rate is evaluated as

dNsignal

dt
⇠ 0.002 s�1
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where V/N = Vunit with Vunit being the volume of the magnetic unit cell. Note that, from
Eq. (2.11), a straightforward calculation shows

(u~0 � v~0)
2 =

r
2!J + !A

!A
, (5.15)

and hence the signal rate is enhanced if !J � !A.
In Fig. 1, we show the sensitivity on the ALP parameter space taking (u~0 � v~0) = 1

and 10, Vunit = (0.3 keV)�3, and |D|2 = ✏ = 1 as the material properties and postulating
V = (10 cm)3. We also assume ⌧a < ⌧m and use

⌧ =
1

mav2a
⇠ 0.7µs

✓
10�3 eV

ma

◆
. (5.16)

As for the magnon dispersion relation, we use typical values

mm = 1.0± 0.12

✓
B0

1T

◆
meV, (5.17)

where the plus (minus) sign is selected for the ↵- (�-)mode. The magnetic field is assumed
to be scanned within the range 1T < B0 < 10T. The �-mode is used for our analysis
only when B0 < 7T to avoid the instability or the enhanced noise rate according to the low
frequency. For each step of the scan, we can search for a mass range of �ma ⇠ 2/⌧ ⇠ 10�8 eV
and we use �tscan ⇠ 102 s for an observation. Accordingly, in order to cover all the accessible
ALP mass, it takes ⇠ 1 year to scan the magnetic field. We do not discuss in detail the
detection method of generated magnons in this paper; they might be observed through the
conversion into photons at the boundary of the material as in [33], or might be detected
using some specific features for axionic insulators, such as the dynamical chiral magnetic
e↵ect [36]. For the estimation of the sensitivity, we just assume the noise rate for the
detection dNnoise/dt ⇠ 10�3 s�1 as is adopted in [33], which is an already demonstrated value
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Figure 1: Sensitivity of the magnon to the ALP DM in the ma vs. ga�� plane. The orange
(green) region corresponds to the sensitivity of the �-mode (↵-mode) with u~0 � v~0 = 10,
while the dot-dashed line in each region shows the sensitivity of the corresponding mode
with u~0 � v~0 = 1. We postulate the target volume V = (10 cm)3 and the magnetic field
scanned over 1T < B0 < 7T (1T < B0 < 10T) for the �-mode (↵-mode). For each step
of the scan, we use �t = 102 s for an observation, which requires ⇠ 1 yr for the whole scan.
See the text for more details of the material properties. Also shown as colored regions are
existing constraints, while the black solid (dashed) line shows the prediction for the KSVZ
(DFSZ) model.

for a single photon detector in the THz regime at the temperature T = 0.05K [52]. We
estimate the sensitivity by requiring the signal-to-noise ratio (SNR)

(SNR) ⌘ (dNsignal/dt)�tscanp
(dNnoise/dt)�tscan

, (5.18)

to be larger than 3 for each scan step.
In the figure, the orange and green regions correspond to the sensitivity using �- and

↵-modes, respectively, with u~0 � v~0 = 10, while the dot-dashed line in each region shows
the sensitivity of the corresponding mode with u~0 � v~0 = 1. The other colored regions
show existing constraints from the Light-Shining-through-Walls (LSW) experiments such as
the OSQAR [53] (yellow), the measurement of the vacuum magnetic birefringence at the
PVLAS [54] (pink), and the observation of the ALP flux from the sun using the helioscope
CAST [55] (blue). We also show the predictions of the KSVZ and DFSZ axion models with
black solid and dashed lines, respectively. We can see that the use of both ↵- and �-modes
gives a detectability over a broad mass range of 10�3–10�2 eV and the sensitivity may reach
both the KSVZ and DFSZ model predictions for some mass range. It is also notable that
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Appendix



Additional sensors of interest besides TES APDs

Golden reference 
TES athermal phonon detector

MKIDs

SNSPDswe’re close to achieving 1eV energy 

threshold in a large area (3” dia.)

This is the current world’s best 

microcalorimeter

Limited by readout-dominated 

noise. Need to reduce and

apply squeezing

Have to increase area while 

keeping threshold low. Want to 

reach 20meV threshold 1sq.mm.  SNSPD with GaAs 

crystal on top

10Still others with longer term potential in backup
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Development of sensors



Additional quantum sensors under investigation 

Opto-
Mechanica
l 
cavities

He Quantum Evaporation         He  surface 
emission

Electron surface states in LHe

film-stopping setup 

to suspend

dry sensor above 

LHe bath is 

up and running.
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