Light dark matter detection with collective excitation in matter

Kazunori Nakayama (Tohoku Univ \& QUP)

Physics in LHC and beyond (2022/5/14)

Dark matter search

- Dark matter mass range

- We need broad ideas for broad energy scales

Direct detection, cosmic rays, accelerator experiments, astronomical/cosmological observations,...

Dark matter search

- We need broad ideas for broad energy scales

Direct detection, cosmic rays, accelerator experiments, astronomical/cosmological observations,...

Dark matter direct detection

Dark matter direct detection

Dark matter direct detection

In this talk I will focus on magnetic collective excitations.

Dispersion of (quasi)particles in solids

Dispersion of (quasi)particles in solids

Phonon
(GaAs)

Electron (Ge)

Magnon (YIG)

Rich structure: useful for new particle search!

Towards light DM detection

- Low reaction threshold

Dispersion of (quasi-)particles in material

$$
\begin{aligned}
& 1 \mathrm{meV} \lesssim m_{\mathrm{DM}} \lesssim 1 \mathrm{keV} \quad \text { (absorption : axion, hidden photon) } \\
& 1 \mathrm{MeV} \lesssim m_{\mathrm{DM}} \lesssim 1 \mathrm{GeV} \quad \text { (scatter) }
\end{aligned}
$$

- Low detection threshold

Developments of TES, Qubits, SNSPD, Opto-mechanical cavity, ...
\longrightarrow Single photon/phonon/electron detection

Figure from slides by M. Garcia-Sciveres (see Appendix)

DM detection with electron/phonon

DM absorption (hidden photon)

$$
\mathcal{L}=-\frac{\epsilon}{2} F_{\mu \nu} H^{\mu \nu}
$$

DM detection with electron/phonon

DM absorption (hidden photon)

$$
\mathcal{L}=-\frac{\epsilon}{2} F_{\mu \nu} H^{\mu \nu}
$$

Hidden photon dark matter

DM detection with electron/phonon

DM scatter

[Griffin et al. (2019)]

I.DM detection with magnon

[Chigusa, Moroi, KN (2020)]

2. DM detection with condensed-matter axion

[Chigusa, Moroi, KN (202I)]

I. DM detection with magnon

Heisenberg model for ferromagnet

- Heisenberg Hamiltonian

$$
H_{\mathrm{eff}}=-g \mu_{B} \sum_{\ell} \vec{B}^{0} \cdot \vec{S}_{\ell}-\frac{J}{2} \sum_{\ell, \ell^{\prime}} \vec{S}_{\ell} \cdot \vec{S}_{\ell^{\prime}}
$$

$$
\mathrm{J}>0 \text { : spins are aligned for } \mathrm{T}=0 \text { and } \mathrm{B}=0 \text { (Ferromagnet) }
$$

- Fluctuation around the ground state : collective spin wave

Magnon

- Quantized Hamiltonian in momentum space

$$
S_{\ell}^{+}=\sqrt{2 s-\widetilde{c}_{\ell}^{\dagger} \widetilde{c}_{\ell}} \widetilde{c}_{\ell} \quad S_{\ell}^{-}=\widetilde{c}_{\ell}^{\dagger} \sqrt{2 s-\widetilde{c}_{\ell}^{\dagger} \widetilde{c}_{\ell}} \quad S_{\ell}^{z}=s-\widetilde{c}_{\ell}^{\dagger} \widetilde{c}_{\ell} \quad\left(S_{\ell}^{ \pm} \equiv S_{\ell}^{x} \pm i S_{\ell}^{y}\right)
$$

$$
H=\sum_{k}\left[\omega_{L}+J s \sum_{\vec{a}}\left(1-\gamma_{\vec{k}}\right)\right] c_{\vec{k}}^{\dagger} c_{\vec{k}}=\sum_{k} \omega_{k} c_{\vec{k}}^{\dagger} c_{\vec{k}}
$$

- Magnon dispersion relation:

$$
\begin{aligned}
& \omega_{\vec{k}} \simeq \omega_{L}+J s L^{2} k^{2} \equiv \omega_{L}+\frac{k^{2}}{2 M} \\
& \omega_{L} \equiv g \mu_{B} B_{z}^{0} \simeq 1.2 \times 10^{-4} \mathrm{eV}\left(\frac{B_{z}^{0}}{1 \mathrm{~T}}\right): \text { Larmor frequency }
\end{aligned}
$$

$$
\gamma_{\vec{k}}=\frac{1}{z} \sum_{\vec{\delta}} e^{i \vec{k} \cdot \vec{\delta}}
$$

Magnon dispersion (YIG)

- $20 \mathrm{Fe}^{\wedge} 3+$ ions in magnetic unit cell
- "Ferri-magnet"

$$
\begin{aligned}
12 \mathrm{Fe}: & \frac{5}{2} \mu_{B} \times 12
\end{aligned} \mathbf{4} 8 \mathrm{Fe}:-\frac{5}{2} \mu_{B} \times 8 \quad \downarrow \mathbf{\downarrow}
$$

dispersion relation (20 magnon branches)

Cherepanov, Kolokolov, L’vov (I993)

Axion-magnon conversion

[Barbieri et al (1989,20I6), Chigusa, Moroi, KN (2020)]

- Axion-electron interaction

$$
\mathcal{L}=\frac{\partial_{\mu} a}{2 f} \bar{\psi} \gamma^{\mu} \gamma_{5} \psi \longrightarrow H_{\text {int }}=\frac{1}{f} \sum_{\ell} \vec{\nabla} a\left(\vec{x}_{\ell}\right) \cdot \vec{S}_{\ell}
$$

- Axion-magnon interaction Hamiltonian

$$
H_{\mathrm{int}}=\frac{m_{a} a_{0} \sin \left(m_{a} t+\delta\right)}{f} \sqrt{\frac{s}{2}} \sum_{\ell}\left(v_{a}^{-} \widetilde{c}_{\ell}+v_{a}^{+} \widetilde{c}_{\ell}^{\dagger}\right)
$$

Axion DM: $a(\vec{x}, t)=a_{0} \cos \left(m_{a} t-m_{a} \vec{v}_{a} \cdot \vec{x}+\delta\right)$

Resonant conversion

- 2-level system
$|0\rangle$: 0-magnon state
$|1\rangle$: I-magnon state ($\mathrm{k}=0$ mode)

- Signal power at resonance: $m_{a}=\omega_{L}$

$$
\frac{d E_{\text {signal }}}{d t}=\frac{\omega_{L} P(t)}{2 t}=\frac{\omega_{L}|V|^{2} t}{8} . \quad V \equiv \sqrt{\frac{s N}{2}} \frac{m_{a} a_{0} v_{a}^{+}}{f}
$$

- Limitation:
- Axion coherence time $\tau_{a} \sim\left(m_{a} v_{a}^{2}\right)^{-1}$
- Magnon relaxation time $\tau_{\text {magnon }} \sim\left(1 / \tau_{\text {spin }- \text { spin }}+1 / \tau_{\text {spin-lattice }}\right)^{-1}$

QUAX experiment

[QUAX collaboration (2020)]

Ultimate sensitivity from DM-magnon conversion

[Chigusa, Moroi, KN (2020)]

2. DM detection with condensed-matter axion

Axion in condensed-matter

- Topological insulator [Kane, Mele (2005), Fu, Kane, Mele (2007)]

$$
\mathcal{L}=\theta \frac{\alpha_{e}}{4 \pi} F_{\mu \nu} \widetilde{F}^{\mu \nu}
$$

$$
\theta=0 \quad \text { :normal insulator }
$$

$$
\theta=\pi \quad \text { :topological insulator }
$$

- Can θ be dynamical? [Wilczek (1987)]
- Arbitrary value if there is no T, P invariance
- Magnetic ordering can violate T, P-invariance

Dynamical axion

(axion quasi-particle, condensed-matter axion,...)

- "Axion" in topological (anti-)ferromagnet

First proposal: Fe-doped Bi2Se3 [Li,Wang, Qi, Zhang (2009)]

Example: Fu-Kane-Mele-Hubbard model

$$
\begin{aligned}
& H_{0}= \sum_{\substack{\langle i, j\rangle \sigma \\
\text { nearest neighbor } \\
\text { tight-binding term }}} t_{i j} c_{i \sigma}^{\dagger} c_{j \sigma}+i \frac{4 \lambda}{a^{2}} \sum_{\langle\langle i, j\rangle\rangle} c_{i}^{\dagger} \vec{\sigma} \cdot\left(\vec{d}_{i j}^{1} \times \vec{d}_{i j}^{2}\right) c_{j} \\
& H_{U}=U \sum_{i} n_{i \uparrow} n_{i \downarrow} \quad \text { next nearest neighbs } \\
& \text { spin-orbit interaction t }
\end{aligned}
$$

3 Dirac points in Brillouin zone

- Dirac-like electron interacts with spin through

$$
\begin{aligned}
& S=\int d^{4} x \sum_{r=1,2,3} \bar{\psi}_{r}\left[i \gamma^{\mu}\left(\partial_{\mu}-i e A_{\mu}\right)-\delta t-i \gamma_{5} U m_{r}\right] \psi_{r} \\
& \left\langle\vec{S}_{i, A}\right\rangle=-\left\langle\vec{S}_{i, B}\right\rangle \equiv \vec{m} \quad \text { :anti-ferromagnetic order for } \mathrm{U} / \mathrm{t} \gg 1
\end{aligned}
$$

- Chiral rotation of Dirac fermion gives axion-photon interaction:

$$
\begin{aligned}
& S=\int d^{4} x \theta \frac{\alpha_{e}}{4 \pi} F_{\mu \nu} \widetilde{F}^{\mu \nu} \\
& \theta \equiv \theta_{0}+\sum_{r} \theta_{r}=\theta_{0}+\sum_{r} \tan ^{-1}\left(\frac{U m_{r}}{\delta t}\right)
\end{aligned}
$$

Axion ~ magnon in FKMH anti-ferromagnet model.

- Dirac-like electron interacts with spin through

$$
\begin{aligned}
& S=\int d^{4} x \sum_{r=1,2,3} \bar{\psi}_{r}\left[i \gamma^{\mu}\left(\partial_{\mu}-i e A_{\mu}\right)-\delta t-i \gamma_{5} U m_{r}\right] \psi_{r} \\
& \left\langle\vec{S}_{i, A}\right\rangle=-\left\langle\vec{S}_{i, B}\right\rangle \equiv \vec{m}: \text { anti-ferromagnetic order for } \mathrm{U} / \mathrm{t} \gg 1
\end{aligned}
$$

- Chiral rotation of Dirac fermion gives axion-photon interaction:

$$
\begin{aligned}
& S=\int d^{4} x \theta \frac{\alpha_{e}}{4 \pi} F_{\mu \nu} \widetilde{F}^{\mu \nu} \\
& \theta \equiv \theta_{0}+\sum_{r} \theta_{r}=\theta_{0}+\sum_{r} \tan ^{-1}\left(\frac{U m_{r}}{\delta t}\right)
\end{aligned}
$$

Fluctuation of magnetic order parameter
$=$ dynamical axion
Axion ~ magnon in FKMH anti-ferromagnet model.

DM-axion to CM-axion

[Marsh et al (2018), Schutte-Engel et al. (202I), Chigusa, Moroi, KN (202I)]

- DM axion to CM axion conversion under magnetic field

- DM hidden photon to CM axion

[Schutte-Engel et al. (202I)]

Axion DM

Hidden photon DM

Scan of magnetic field: $1 \mathrm{~T}<B_{0}<10 \mathrm{~T}$
Each time step:

$$
\Delta t=10^{2} \mathrm{~s}
$$

Total observation time: 1 yr
Target volume:
$V=(10 \mathrm{~cm})^{3}$
Noise rate:

$$
d N_{\text {noise }} / d t \sim 10^{-3} \mathrm{~s}^{-1}
$$

[Chigusa, Moroi, KN (202I)]

Summary

- Quantum fields in condensed-matter : useful for DM detection!

- New particle search frontier in particle and condensed-matter interdisciplinary field ?

Appendix

Development of sensors

Additional sensors of interest besides TES APDs

Golden reference TES athermal phonon detector

we're close to achieving 1 eV energy threshold in a large area ($3^{\prime \prime}$ dia.) This is the current world's best microcalorimeter
 keeping threshold low. Want to

MKIDs

Limited by readout-dominated noise. Need to reduce and apply squeezing

1sq.mm. SNSPD with GaAs crystal on top

Development of sensors

Additional quantum sensors under investigation

film-stopping setup to suspend dry sensor above LHe bath is up and running.

He surface

