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Muon g-2

1 Introduction

The muon g � 2 measurements at the BNL and FermiLab experiments had a great impact
on the study of particle physics. The value of the muon anomalous magnetic moment for
these two combined is [1–4]

a(exp)
µ

= (11 659 206.1± 4.1)⇥ 10�10. (1.1)

On the contrary, the standard-model (SM) predicts [5]

a(SM)
µ

= (11 659 181.0± 4.3)⇥ 10�10. (1.2)

These values give

�aµ ⌘ a(exp)
µ

� a(SM)
µ

= (25.1± 5.9)⇥ 10�10, (1.3)

which shows 4.2� discrepancy between the experimentally measured value of aµ and the SM
prediction (the so-called muon g � 2 anomaly). The discrepancy seems to strongly indicate
the existence of a physics beyond the SM (BSM), which can be the origin of the muon g� 2
anomaly.

One of the attractive candidates of the BSM physics which can solve the muon g � 2
anomaly is the supersymmetry (SUSY). In particular, in the minimal SUSY SM (MSSM),
the smuon-neutralino and sneutrino-chargino diagrams may contribute significantly to the
muon anomalous magnetic moment [6–8]; the size of the SUSY contribution can be as large
as �aµ to solve the muon g�2 anomaly (for the recent studies about the MSSM contribution
to the muon g � 2, see, for example, [9–31]). Because the superparticles are in the loops,
the SUSY contribution to the muon g� 2 is suppressed as the superparticles become heavy.
Thus, in order to explain the muon g�2 anomaly, masses of (some of) the superparticles are
bounded from above. A detailed understanding of the upper bound is important in order to
verify the SUSY interpretation of the muon g � 2 anomaly with ongoing and future collider
experiments [?, 32, 33].

The muon g� 2 anomaly can be explained in various parameter regions of the MSSM. If
the masses of all the superparticles are comparable, the masses of superparticles are required
to be of O(100) GeV. Then, the muon g � 2 anomaly indicates that superparticles (in
particular, sleptons, charginos, and neutralinos) are important targets of ongoing and future
collider experiments. The SUSY contribution to the muon g�2 can be, however, sizable even
if superparticles are much heavier. It happens when the Higgsino mass parameter (i.e., the
so-called µ parameter) is significantly large and the enlarged smuon-smuon-Higgs trilinear
scalar coupling enhances the contribution to the muon g � 2. Such a trilinear coupling is,
however, dangerous because it may make the electroweak (EW) vacuum unstable [34–37].

In this letter, we study the stability of the EW vacuum, paying attention to the parame-
ter region of the MSSM where the muon g�2 anomaly is solved (or alleviated) by the SUSY
contribution. Requiring that the SUSY contribution to the muon anomalous magnetic mo-
ment, denoted as a(SUSY)

µ , be large enough to solve the muon g�2 anomaly, the smuon masses
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Muon g-2 in the MSSM
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Figure 1: One-loop Feynman diagrams, which are enhanced in large tan � limit, giving rise
to the SUSY contribution to the muon g � 2. Here, the mass insertion approximation is
adopted. The black and white blobs are two-point interactions induced by the VEVs of
Higgs bosons.

muon mass, and m2
SUSY is the mass scale of superparticles. (Here, the contributions of

the diagrams that contain the Bino are neglected because they are subdominant.) Taking
tan � ⇠ 50, which is the approximate maximum possible value of tan � for the perturbativity
up to the GUT scale, the superparticles should be lighter than ⇠ 700 GeV in order to make
the total muon anomalous magnetic moment consistent with the observed value at the 2�
level.

Such an upper bound is significantly altered by the Bino-smuon diagram (Fig. 1 (a)). The
other diagrams (i.e., Fig. 1 (b) � (e)) have slepton, gaugino, and Higgsino propagators in
the loop, and hence their contributions are suppressed when any of these particles is heavy.
On the contrary, the Bino-smuon diagram has only the smuon and Bino propagators in the
loop, and its contribution is approximately proportional to the Higgsino mass parameter
µ. Thus, with a very large µ parameter, the contribution of the Bino-smuon diagram can
be large enough to cure the muon g � 2 anomaly even if the smuon and/or Bino are much
heavier than the upper bound estimated above.

In the following, we study the upper bound on the masses of superparticles in the light
of the muon g � 2 anomaly, paying particular attention to the contribution of the Bino-
smuon diagram. In the parameter region where the Bino-smuon diagram has a dominant
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where yt is the top-quark Yukawa coupling constant while mQ3, mU3, and mD3 are the
mass parameters of the third generation left-handed squark, right-handed up-type squark,
and right-handed down-type squark, respectively. For simplicity, we neglect the threshold
correction to the parameters of the superpotential, i.e., the top Yukawa coupling and the
gauge couplings, and use their values in the EFT at Q = MS to evaluate the size of ��H .
Once the value of �H at the matching scale MS is obtained, we can solve (3.23) against the
stop mass mt̃ assuming the universality mt̃ ⌘ mQ3 = mU3 = mD3. Requiring the observed
Higgs mass to be realized, we have checked that di↵erence between |µ| and mt̃ is within one
or two orders of magnitude in the region with small enough decay rate of the EW vacuum.#1

For Mt < Q < MS, we solve the RG equations of the EFT. We use the two-loop RG
equations [53] augmented by some important three-loop contributions calculated in [47]
for the SM-like couplings. On the other hand, Bino and smuon contributions to the beta
functions of the SM-like couplings and the beta functions of the couplings specific to the
EFT are calculated at the one-loop level. Since all the SM parameters are fixed at Q = Mt

and below, while the other couplings are determined at Q = MS, we iteratively solve the
RG evolution in Mt < Q < MS to obtain consistent solutions.

Next, we explain how we calculate the SUSY contribution to the muon g � 2. Because
we are interested in the case where the masses of Bino and smuons are much lighter than
Higgsino (and other superparticles), the EFT parameters introduced above are used.

The mass matrix of the smuons is given by

M2
µ̃
=

✓
m2

L
+ (�HL + )v2 �Tv

�Tv m2
R
+ �HRv2

◆
, (3.25)

where v ' 174 GeV is the vacuum expectation value of the SM-like Higgs. The mass matrix
can be diagonalized by a 2⇥ 2 unitary matrix U as

diag(m2
µ̃1
,m2

µ̃2
) = U †M2

µ̃
U, (3.26)

and the gauge eigenstates are related to the mass eigenstates, denoted as µ̃A (A = 1, 2), as

✓
µ̃L

µ̃R

◆
= U

✓
µ̃1

µ̃2

◆
⌘

✓
UL,1 UL,2

UR,1 UR,2

◆✓
µ̃1

µ̃2

◆
. (3.27)

At the one-loop level, the Bino-smuon loop contributions to the muon anomalous mag-
netic moment is given by [8]

a(SUSY, 1-loop)
µ

=
m2

µ

16⇡2

2X

A=1

1

m2
µ̃A


� 1

12
AAf1(xA)�

1

3
BAf2(xA)

�
, (3.28)

#1
In some case, mt̃ becomes one or two orders of magnitude smaller than |µ| and it may induce a color

breaking minimum where stops acquire VEVs. We do not discuss the instability due to such a color breaking

minimum because it depends on various fields and parameters that are not included in our EFT.
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Minimal Supersymmetric Standard Model

We consider the case where 
only the smuons and the bino are light  

[J. L. Lopes, D. V. Nanopoulos, X. Wang, ’93; U. Chattopadhyay, P. Nath, ’96; T. Moroi, 96,…]



Vacuum instability

3 E↵ective field theory analysis

We are interested in the case where there exists a hierarchy in the mass spectrum of the
MSSM particles. To deal with the hierarchy, we resort to the EFT approach and solve the
renormalization group (RG) equations with proper boundary conditions to evaluate the EFT
coupling constants. Hereafter, we assume that the e↵ects of possible CP-violating phases
are negligible.

We adopt Mt and MS as matching scales. For the renormalization scale Q < Mt (with Q
being the renormalization scale), we consider the QCD+QED that contains the SM gauge
couplings and fermion masses as parameters. For Mt < Q < MS, we consider an EFT with
Bino and smuons as described below. At Q = MS, the EFT is matched to the full MSSM,
which imposes relations among EFT couplings. We choose MS to be close to the Higgsino
mass.

The Lagrangian of the EFT, which is relevant for the calculation of the decay rate of the
EW vacuum and the muon g � 2, is given by

L = LSM +�Lkin +�Lmass +�LYukawa � V, (3.1)

where LSM is the SM Lagrangian without the Higgs potential, and the additional kinetic
terms, mass terms, and Yukawa couplings are described by

�Lkin = |Dµ
˜̀
L|2 + |Dµµ̃R|2 � iB̃�µ@µB̃

†, (3.2)

�Lmass = � 1

2
M1B̃B̃ + h.c., (3.3)

�LYukawa =YL
˜̀†
L
`LB̃ + YRµ̃

†
R
µRB̃

† + h.c., (3.4)

where `L and µR are the second generation left-handed lepton doublet and right-handed
lepton, respectively. We use the two-component Weyl notation for fermions. The scalar
potential V is given by

V =V2 + V3 + V4, (3.5)

with

V2 =m2
H
|H|2 +m2

L
|˜̀L|2 +m2

R
|µ̃R|2, (3.6)

V3 = � TH† ˜̀
Lµ̃

†
R
+ h.c., (3.7)

V4 =�H |H|4 + �HL|H|2|˜̀L|2 + �HR|H|2|µ̃R|2 + (H† ˜̀
L)(˜̀

†
L
H)

+ �L|˜̀L|4 + �R|µ̃R|4 + �LR|˜̀L|2|µ̃R|2, (3.8)

where T is the trilinear scalar coupling constant.
Next, we describe the matching conditions of coupling constants at the threshold scales.

All the SM parameters including the Higgs quartic coupling �(SM)
H

and the mass squared

parameter m2(SM)
H

are determined at Q = Mt. Importantly, the top Yukawa coupling, the
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coupling constants. Hereafter, we assume that the e↵ects of possible CP-violating phases
are negligible.

We adopt Mt and MS as matching scales. For the renormalization scale Q < Mt (with Q
being the renormalization scale), we consider the QCD+QED that contains the SM gauge
couplings and fermion masses as parameters. For Mt < Q < MS, we consider an EFT with
Bino and smuons as described below. At Q = MS, the EFT is matched to the full MSSM,
which imposes relations among EFT couplings. We choose MS to be close to the Higgsino
mass.

The Lagrangian of the EFT, which is relevant for the calculation of the decay rate of the
EW vacuum and the muon g � 2, is given by

L = LSM +�Lkin +�Lmass +�LYukawa � V, (3.1)

where LSM is the SM Lagrangian without the Higgs potential, and the additional kinetic
terms, mass terms, and Yukawa couplings are described by

�Lkin = |Dµ
˜̀
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�Lmass = � 1

2
M1B̃B̃ + h.c., (3.3)

�LYukawa =YL
˜̀†
L
`LB̃ + YRµ̃

†
R
µRB̃

† + h.c., (3.4)

where `L and µR are the second generation left-handed lepton doublet and right-handed
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L
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R
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†
R
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4 Decay rate of electroweak vacuum

Using the method proposed by Callan and Coleman [58, 59], the vacuum decay rate can be
written in the following form:

� = Ae�B, (4.1)

where B is the so-called bounce action and A is a prefactor with mass-dimension four.
Previous tree-level analyses naively estimated the prefactor A based on a typical energy
scale of the bounce. It has been pointed out that A may deviate significantly from the
naive estimation in particular when there are many particles that couple to the bounce [60]
and hence the precise calculation of A is important for the accurate determination of the
allowed parameter space. The prefactor has been first evaluated for the SM in [61] and
it has been reevaluated recently with the correct treatment of zero modes in [62–64] using
the prescription proposed in [38, 39]. The prescription has been generalized to a multi-field
bounce in [40], which enabled the calculation of precise decay rates in a more complex setup
like the one in this letter. All the coupling constants used below should be understood as
those in the EFT at the renormalization scale of Q = Mt.

The bounce is a spherical object in four-dimensional Euclidean space. We parameterize
the bounce as

H =
1p
2

✓
0

⇢h(r)

◆
, ˜̀

L =
1p
2

✓
0

⇢L(r)

◆
, µ̃R =

1p
2
⇢R(r), (4.2)

where r is the radius in the four-dimensional Euclidean space. Notice that the upper com-
ponent of H can be taken to be 0 without loss of generality due to the SU(2)L ⇥ U(1)Y
symmetry. The directions of the other fields are chosen such that the trilinear interaction,
µ̃†
R
H† ˜̀

L, becomes non-vanishing. Then, the bounce configuration is a solution of the Eu-
clidean equations of motion:

@2
r
⇢I +

3

r
@r⇢I =

@V

@⇢I
, (4.3)

satisfying the following boundary conditions:

⇢h(1) =
p
2vEFT, ⇢L(1) = ⇢R(1) = 0, @r⇢I(0) = 0, (4.4)

where I = h, L,R and vEFT is the Higgs VEV at the false vacuum in the EFT. We obtain
the bounce solution by numerically solving Eq. (4.3) using a modified version of the gradient
flow method [65–67].

Next, we explain how we can obtain the prefactor, A, which takes care of the one-
loop e↵ect on the decay rate. The prefactor is obtained by the functional determinant of the
fluctuation matrix which is given by the second-order functional derivative of the total action
(containing the total scalar potential given in Eq. (3.5)). The prefactor can be expressed as

A = 2⇡JEM
B
4⇡2

A(A,',cc̄)A( ), (4.5)
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where A(A,',cc̄) (A( )) is the e↵ect of gauge bosons, scalar bosons and Faddev-Popov ghosts
(fermions), and JEM is the Jacobian in association with the zero-mode due to the electromag-
netic symmetry breaking. In calculating A, we take into account the e↵ects of the smuons
and the Bino as well as the SU(2)L and U(1)Y gauge bosons, the Higgs boson, the muons,
and the top quark. A(A,',cc̄) and A( ) are given by the ratios of functional determinants for
the partial waves:

A(A,',cc̄) =
detM(cc̄)

0

det cM(cc̄)
0

 
det0 M(S')

0

det cM(S')
0

!�1/2 
det0 M(SL')

1

det cM(SL')
1

!�2 1Y

`=2

 
detM(SL')

`

det cM(SL')
`

!� (`+1)2

2

, (4.6)

A( ) =
1Y

`=0

 
detM( )

`

det cM( )
`

! (`+1)(`+2)
2

, (4.7)

where the prime indicates the subtraction of zero modes, M`’s indicate fluctuation matrices
around the bounce, and cM`’s indicate those around the false vacuum.

A general procedure to calculate the decay rate of the false vacuum, including the pre-
scription for the zero-mode subtraction and the renormalization, is given in Refs. [38–40].
We follow the procedure given in these articles to calculate the decay rate of the EW vacuum
in the model of our interest. A more detailed explanation of the calculation of the decay
rate of the EW vacuum in the present model will be given elsewhere [67].

5 Numerical results

Now we are at the position to show the constraints from the stability of the EW vacuum.
In order to investigate how large the slepton mass can be, we do not take into account the
constraints from other considerations, like the collider and dark matter constraints. These
constraints depend on the detail of the model; for example, if the R-parity is violated, these
are relaxed considerably.

We first calculate the required value of T to realize a given value of a(SUSY)
µ for given

values mL, mR, and M1 (as well as other MSSM parameters).#2 In Fig. 2, we show the

contours of constant T parameter on the mµ̃1 vs. M1 plane, assuming a(SUSY)
µ = 25.1⇥10�10.

Here we take mR/mL = 1 and tan � = 10 and 50. We can see that the required value of

T to realize a(SUSY)
µ ⇠ �aµ is insensitive to the value of tan �. We can also see that the

T parameter is required to be significantly larger than the smuon masses for the case of
heavy sleptons. Such a choice of T , required to solve the muon g � 2 anomaly, gives rise
to a deeper minimum of the potential in addition to the EW vacuum. In such a minimum
of the potential, which we call a charge breaking minimum, the smuons acquire vacuum

#2
When the Bino mass is relatively large, |�yµ| may become larger than the SM muon Yukawa coupling

constant ỹµ. In such a case, the EFT muon Yukawa coupling constant yµ is negative. (Notice that �yµ < 0.)

We have checked that our main result, Fig. 8, is unchanged even if we consider only the parameter region

with yµ > 0.
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Figure 2: Contours of constant T for the case of a(SUSY)
µ = 25.1⇥ 10�10 and mR = mL. The

tan � parameter is taken to be 10 (solid) and 50 (dashed). The blue, green, orange, and
magenta lines are for T = 0.5, 1, 2, and 5 TeV, respectively.

expectation values. The longevity of the EW vacuum is not guaranteed for the case with
the charge breaking minimum.

We calculate the decay rate of the elecroweak vacuum with the procedure explained in
the previous Section. We parameterize the decay rare per unit volume as

Se↵ ⌘ � ln
⇣ �

1 GeV4

⌘
. (5.1)

Then, requiring that the bubble nucleation rate within the Hubble volume, 4
3⇡H

�3
0 , be

smaller than t�1
now, we obtain

Se↵ > 386. (5.2)

In Fig. 3, we show the contours of constant Se↵ on the lightest smuon mass vs. Bino
mass plane with fixing the T parameter by requiring a(SUSY)

µ = 25.1 ⇥ 10�10; here, we take
mR/mL = 1. As the lightest smuon becomes heavier, Se↵ becomes smaller and the constraint
given in (5.2) may not be satisfied. Thus, the stability of the EW vacuum gives an upper
bound on the smuon mass assuming that the SUSY contribution is responsible for the muon
g � 2 anomaly.

In order to see the impact of the one-loop calculation of the prefactor A, we compare our
result with a tree-level one. For this purpose, because the typical energy scale of the bounce
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(to explain the central value)

where yt is the top-quark Yukawa coupling constant while mQ3, mU3, and mD3 are the
mass parameters of the third generation left-handed squark, right-handed up-type squark,
and right-handed down-type squark, respectively. For simplicity, we neglect the threshold
correction to the parameters of the superpotential, i.e., the top Yukawa coupling and the
gauge couplings, and use their values in the EFT at Q = MS to evaluate the size of ��H .
Once the value of �H at the matching scale MS is obtained, we can solve (3.23) against the
stop mass mt̃ assuming the universality mt̃ ⌘ mQ3 = mU3 = mD3. Requiring the observed
Higgs mass to be realized, we have checked that di↵erence between |µ| and mt̃ is within one
or two orders of magnitude in the region with small enough decay rate of the EW vacuum.#1

For Mt < Q < MS, we solve the RG equations of the EFT. We use the two-loop RG
equations [53] augmented by some important three-loop contributions calculated in [47]
for the SM-like couplings. On the other hand, Bino and smuon contributions to the beta
functions of the SM-like couplings and the beta functions of the couplings specific to the
EFT are calculated at the one-loop level. Since all the SM parameters are fixed at Q = Mt

and below, while the other couplings are determined at Q = MS, we iteratively solve the
RG evolution in Mt < Q < MS to obtain consistent solutions.

Next, we explain how we calculate the SUSY contribution to the muon g � 2. Because
we are interested in the case where the masses of Bino and smuons are much lighter than
Higgsino (and other superparticles), the EFT parameters introduced above are used.

The mass matrix of the smuons is given by

M2
µ̃
=

✓
m2

L
+ (�HL + )v2 �Tv

�Tv m2
R
+ �HRv2

◆
, (3.25)

where v ' 174 GeV is the vacuum expectation value of the SM-like Higgs. The mass matrix
can be diagonalized by a 2⇥ 2 unitary matrix U as

diag(m2
µ̃1
,m2

µ̃2
) = U †M2

µ̃
U, (3.26)

and the gauge eigenstates are related to the mass eigenstates, denoted as µ̃A (A = 1, 2), as

✓
µ̃L

µ̃R

◆
= U

✓
µ̃1

µ̃2

◆
⌘

✓
UL,1 UL,2

UR,1 UR,2

◆✓
µ̃1

µ̃2

◆
. (3.27)

At the one-loop level, the Bino-smuon loop contributions to the muon anomalous mag-
netic moment is given by [8]

a(SUSY, 1-loop)
µ

=
m2

µ

16⇡2

2X

A=1

1

m2
µ̃A


� 1

12
AAf1(xA)�

1

3
BAf2(xA)

�
, (3.28)

#1
In some case, mt̃ becomes one or two orders of magnitude smaller than |µ| and it may induce a color

breaking minimum where stops acquire VEVs. We do not discuss the instability due to such a color breaking

minimum because it depends on various fields and parameters that are not included in our EFT.
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where xA ⌘ M2

1/m
2
µ̃A
,

AA ⌘ Y 2
L
U2
L,A

+ Y 2
R
U2
R,A

, BA ⌘ M1YLYRUL,AUR,A

mµ

, (3.29)

and the loop functions are given by

f1(x) ⌘
2

(1� x)4
(1� 6x+ 3x2 + 2x3 � 6x2 ln x), (3.30)

f2(x) ⌘
3

(1� x)3
(1� x2 + 2x ln x). (3.31)

In the MSSM, some of the two-loop contributions to the muon anomalous magnetic
moment may become sizable. One important contribution is the non-holomorphic correction
to the muon Yukawa coupling constant [54,55]. In the limit of large tan � (or, large T ), such
an e↵ect can be significant. In the present setup, such a non-holomorphic correction to
the muon Yukawa coupling constant is taken into account when the EFT parameters (in
particular, yµ) are matched to the MSSM parameters at the SUSY scale. Another is the
photonic two-loop correction [56, 57]. Such a contribution includes large QED logarithms
and can a↵ect the SUSY contribution to the muon g � 2 by ⇠ 10 % or more. The full
photonic two-loop correction relevant for our analysis is given by [57]

a(SUSY, photonic)
µ

=
m2

µ

16⇡2

↵

4⇡

2X

A=1

1

m2
µ̃A

"
16

⇢
� 1

12
AAf1(xA)�

1

3
BAf2(xA)

�
ln

mµ

mµ̃A

�
⇢
�35

75
AAf3(xA)�

16

9
BAf4(xA)

�
+

1

4
AAf1(xA) ln

m2
µ̃A

Q2
DREG

#
, (3.32)

where ↵ is the fine structure constant, QDREG is the dimensional-regularization scale, and

f3(x) ⌘
4

105(1� x)4
[(1� x)(�97x2 � 529x+ 2) + 6x2(13x+ 81) ln x

+ 108x(7x+ 4)Li2(1� x)], (3.33)

f4(x) ⌘
�9

4(1� x)3
[(x+ 3)(x ln x+ x� 1) + (6x+ 2)Li2(1� x)]. (3.34)

In our analysis, the SUSY contribution to the muon anomalous magnetic moment is
evaluated as

a(SUSY)
µ

= a(SUSY, 1-loop)
µ

+ a(SUSY, photonic)
µ

, (3.35)

using the EFT parameters evaluated at the renormalization scale Q = Mt. We note that the
above prescription gives a good estimation of the SUSY contribution to the muon anomalous
magnetic moment in the parameter region we consider in the following discussion. In partic-
ular, for the case of our interest, the e↵ect of the Bino-Higgsino-smuon diagrams (i.e., Fig.

1 (b) and (c)) is estimated to be O(0.1) % or smaller relative to a(SUSY)
µ given above. The

Wino-Higgsino-slepton diagrams (i.e., Fig. 1 (d) and (e)) become irrelevant in the decoupling
limit of the Winos.
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µ

+ a(SUSY, photonic)
µ

, (3.35)

using the EFT parameters evaluated at the renormalization scale Q = Mt. We note that the
above prescription gives a good estimation of the SUSY contribution to the muon anomalous
magnetic moment in the parameter region we consider in the following discussion. In partic-
ular, for the case of our interest, the e↵ect of the Bino-Higgsino-smuon diagrams (i.e., Fig.

1 (b) and (c)) is estimated to be O(0.1) % or smaller relative to a(SUSY)
µ given above. The

Wino-Higgsino-slepton diagrams (i.e., Fig. 1 (d) and (e)) become irrelevant in the decoupling
limit of the Winos.
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(We also include the SUSY correction to the muon Yukawa coupling)



Bubble nucleation rate

Figure 3: Contours of constant Se↵ , taking a(SUSY)
µ = 25.1 ⇥ 10�10 and mR = mL. The

red, magenta, orange, green, and blue lines are for Se↵ = 200, 400, 600, 800, and 1000,
respectively. The solid and dashed lines are for tan � = 10 and 50, respectively.

Figure 4: Contours of constant Se↵ (solid) and S(tree)
e↵ (dashdotted), taking a(SUSY)

µ = 25.1⇥
10�10, mR = mL and tan � = 10. The red, magenta, orange, green, and blue lines are for
Se↵ = 300, 400, 500, 700, and 1000, respectively.
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Contours of the decay rate Tree vs one-loop

Solid: tanbeta=10
Dashed: tanbeta=50

Figure 2: Contours of constant T for the case of a(SUSY)
µ = 25.1⇥ 10�10 and mR = mL. The

tan � parameter is taken to be 10 (solid) and 50 (dashed). The blue, green, orange, and
magenta lines are for T = 0.5, 1, 2, and 5 TeV, respectively.

expectation values. The longevity of the EW vacuum is not guaranteed for the case with
the charge breaking minimum.

We calculate the decay rate of the elecroweak vacuum with the procedure explained in
the previous Section. We parameterize the decay rare per unit volume as

Se↵ ⌘ � ln
⇣ �

1 GeV4

⌘
. (5.1)

Then, requiring that the bubble nucleation rate within the Hubble volume, 4
3⇡H

�3
0 , be

smaller than t�1
now, we obtain

Se↵ > 386. (5.2)

In Fig. 3, we show the contours of constant Se↵ on the lightest smuon mass vs. Bino
mass plane with fixing the T parameter by requiring a(SUSY)

µ = 25.1 ⇥ 10�10; here, we take
mR/mL = 1. As the lightest smuon becomes heavier, Se↵ becomes smaller and the constraint
given in (5.2) may not be satisfied. Thus, the stability of the EW vacuum gives an upper
bound on the smuon mass assuming that the SUSY contribution is responsible for the muon
g � 2 anomaly.

In order to see the impact of the one-loop calculation of the prefactor A, we compare our
result with a tree-level one. For this purpose, because the typical energy scale of the bounce
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Vacuum stability

Figure 5: Contours of Se↵ = 387 for mR/mL = 0.5. The magenta, green, and blue lines are

for a(SUSY)
µ = 25.1⇥ 10�10 (0�), 19.2⇥ 10�10 (1�), and 13.3⇥ 10�10 (2�), respectively. The

solid (dashed) lines are for tan� = 10 (50).

Figure 6: Same as Fig. 5, except mR/mL = 1.
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Upper bound on the smuon massFigure 7: Same as Fig. 5, except mR/mL = 2.

Figure 8: Upper bound on the lightest smuon mass as a function of mR/mL. The magenta,

green, and blue lines are for a(SUSY)
µ = 25.1⇥ 10�10 (0�), 19.2⇥ 10�10 (1�), and 13.3⇥ 10�10

(2�), respectively. The solid (dashed) lines are for tan � = 10 (50).
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1.20(1.19)TeV

1.39(1.37)TeV

1.69(1.67)TeV



Summary

• We calculated the upper bound on the smuon mass assuming the Bino-smuon 
diagram explains the observed muon g-2 discrepancy


• To explain the anomaly with heavier smuons, we need a large tri-linear coupling, 
which make the electroweak vacuum unstable


• We used the state-of-the-art technique to calculate the decay rate at the one-loop 
level, which results in O(10GeV) difference from the tree level analysis


• We obtained a precise upper bound on the smuon mass; 1.20, 1.39, 1.69 TeV for 0, 
1, 2 sigma (tanbeta=10)


• When the staus are also light, they give a severer constraint, which will be discussed 
in our next paper


