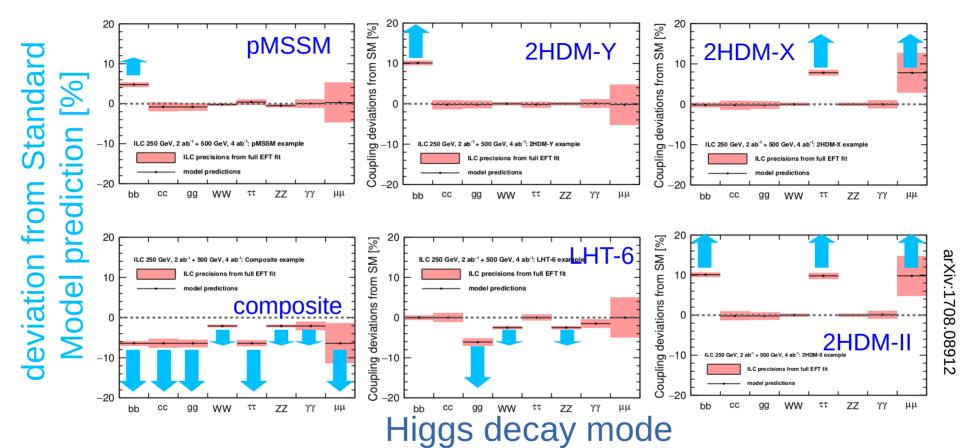
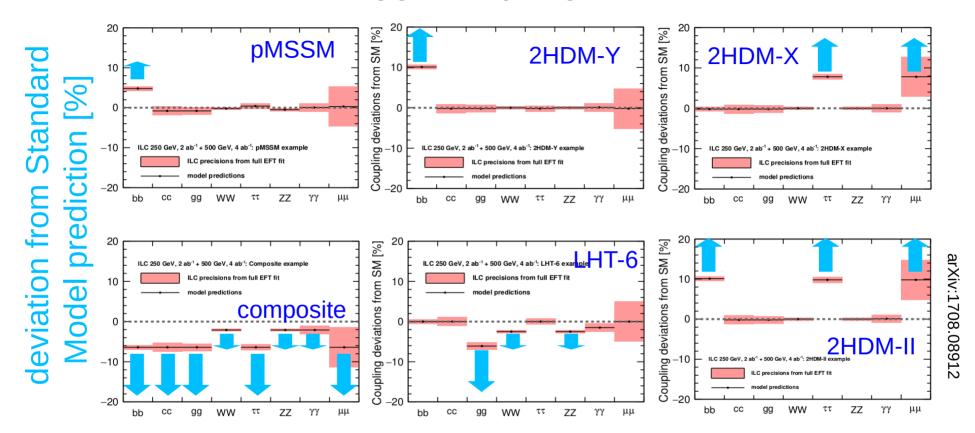

Future Colliders Physics Prospects - Part 1

Higgs factories and high energy lepton colliders

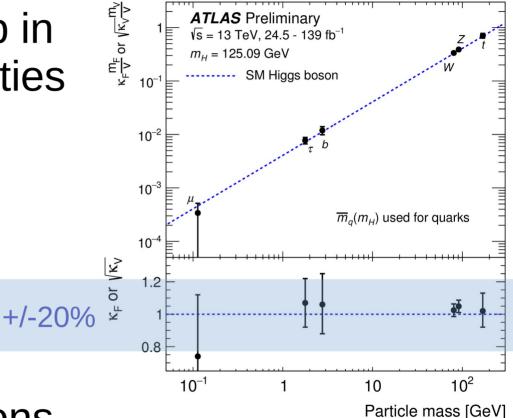
Daniel Jeans, KEK/IPNS


Physics in LHC and Beyond, Matsue 2022 / 5 / 12-15

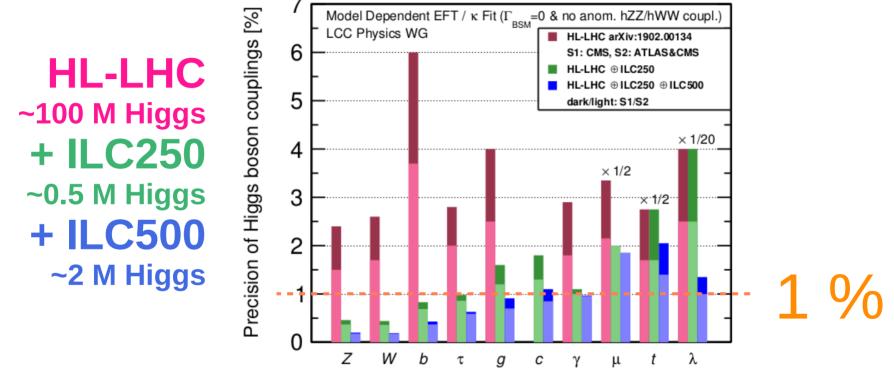

a unique window

Deviations in Higgs couplings in BSM models

different BSM models induce different deviations measured deviations \rightarrow distinguish BSM models

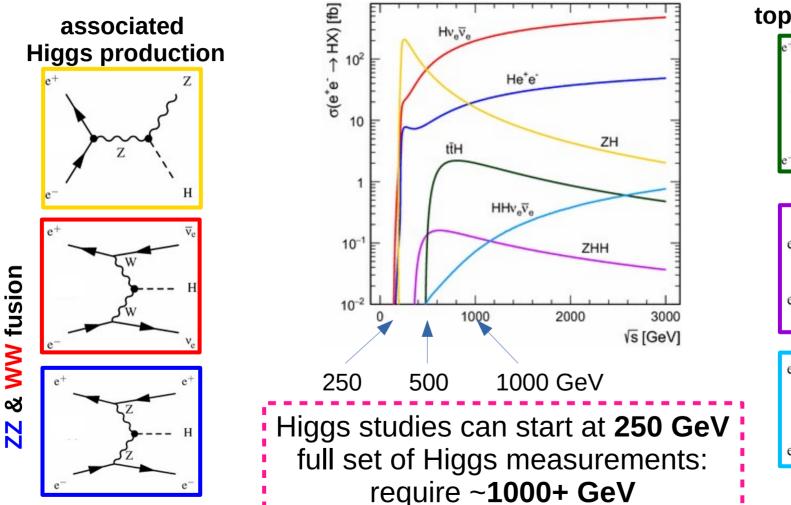

Deviations in Higgs couplings in BSM models

For new physics around TeV-scale, typically few-% deviations in Higgs couplings⁴ LHC is doing fantastic job in in exploring Higgs properties

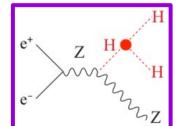

H(125) looks SM-like

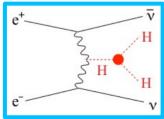
current coupling precision >> 1%

blind to few-% modifications

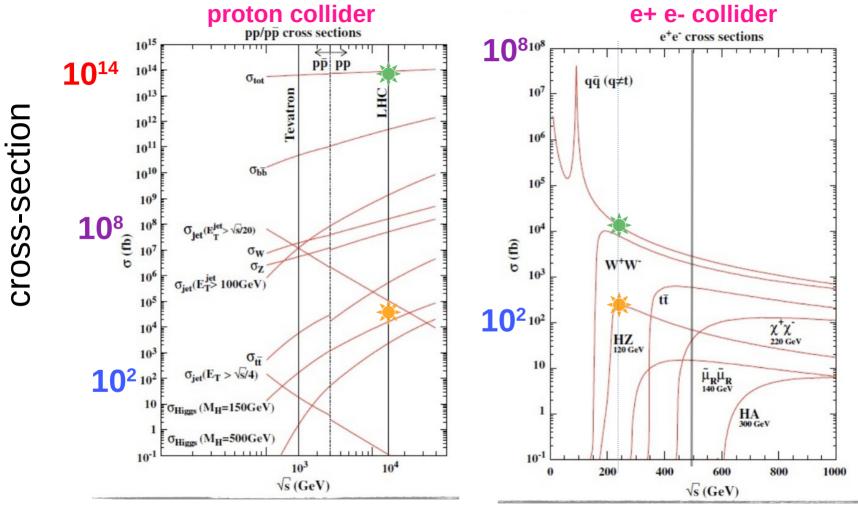

predicted Higgs coupling precisions: HL-LHC + e⁺e⁻ (ILC)

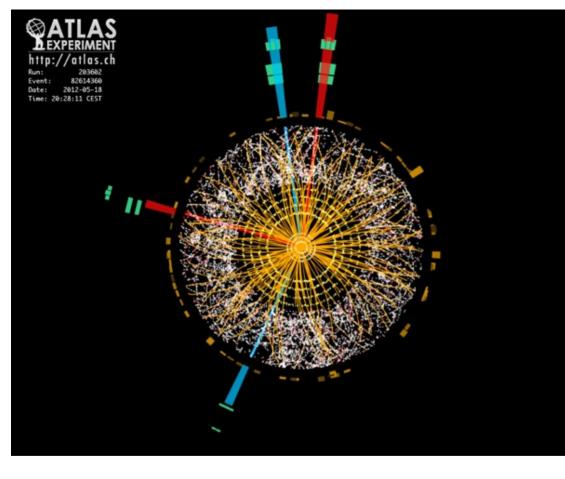

→ HL-LHC will struggle to reach 1% coupling precisions → HL-LHC + e^+e^- Higgs factory can achieve ~1% or better

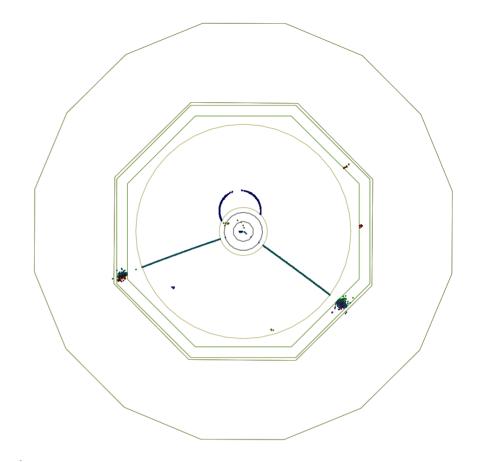

- \rightarrow nL-LnC + e'e niggs lactory can achieve ~1% or bette
- \rightarrow resolve signs of new physics


Higgs production in electron-positron collisions

top quark Yukawa



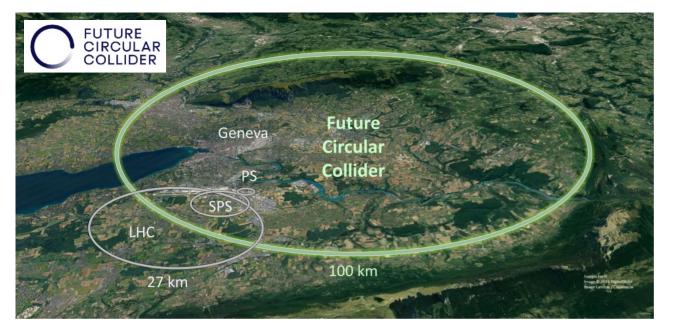

7


0

boson bupling

Higgs cross-section ~ 10^2 time smaller @ e+e-Higgs / total cross-sections: LHC~ 10^{10} , e+e- ~ 10^2

Higgs @ LHC

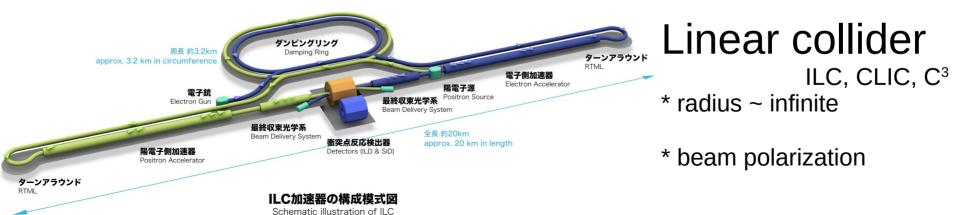

Higgs @ e+ e-

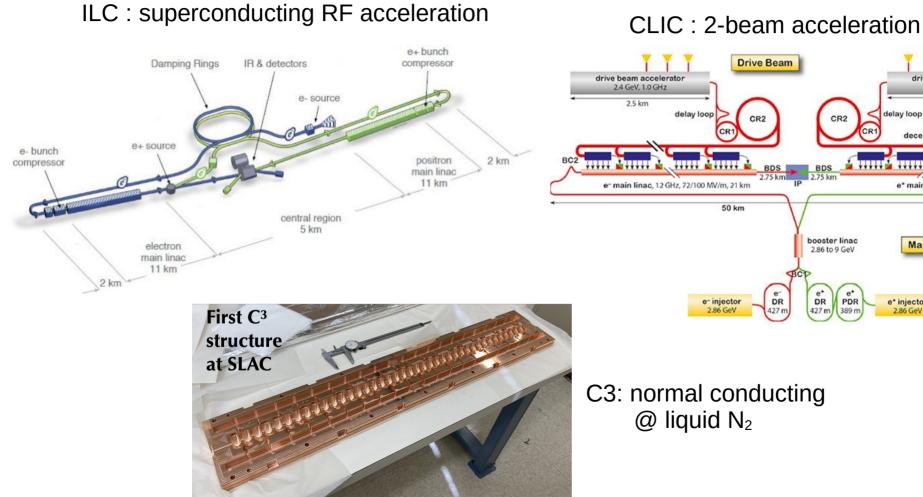
thanks to its simple & clean experimental environment an electron-positron collider can achieve significantly improved Higgs precision even with a rather small number of produced Higgs

How to build such a e+ e- Higgs factory ?

(beam energy)⁴ power loss ~ ------(particle mass)⁴ (ring radius)²

beam energy and particle mass* decided to control required power, need large radius ring




* multiple IPs / experiments

[see next talk P. Azzi]

or

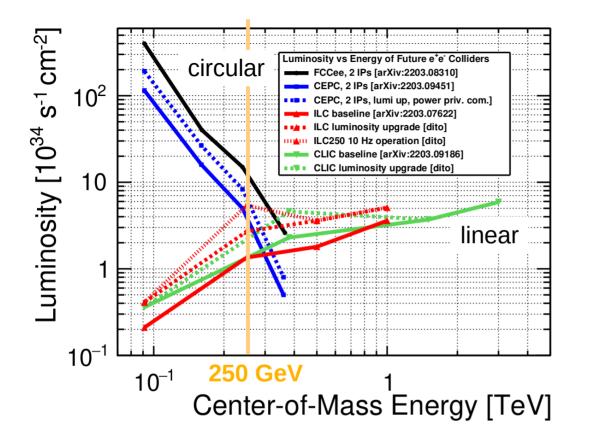
Linear collider : different accelerating technologies

drive beam accelerator

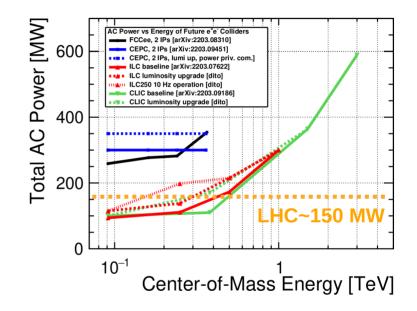
delay loop

e* main linac

e* injector

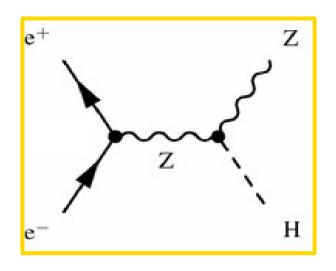

2.86 GeV

Main Beam


2.4 GeV, 1.0 GHz

2.5 km

decelerator, 25 sectors of 878 m


Luminosity limited by assumed available electrical power

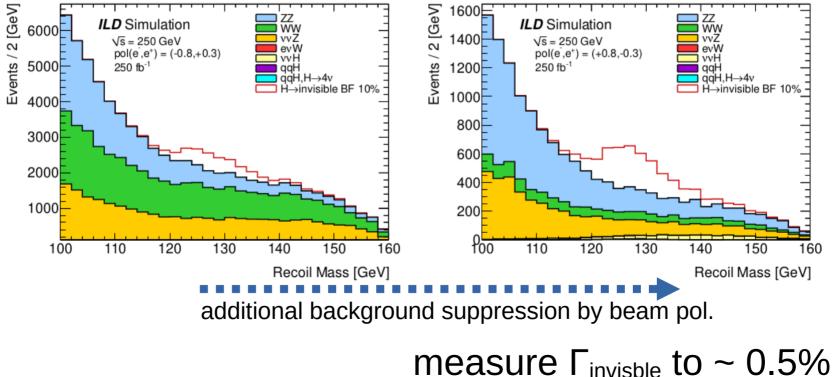
Low energies \rightarrow Circular collider High energies \rightarrow Linear collider Cross-over around Higgs threshold region

All projects propose to operate at several CM energies

Physics highlights

key to model-independent measurement of Higgs couplings

known initial 4-momentum – measured Z 4-mom \rightarrow recoil 4-mom \rightarrow "recoil mass" detect Higgs boson without reconstructing its decay

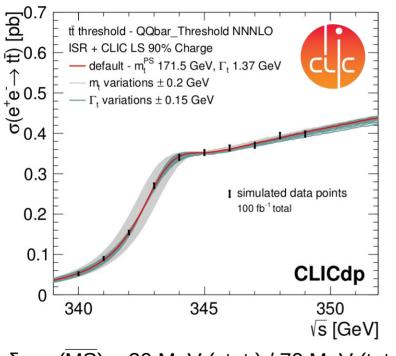

measure $\sigma(e^+ e^- \rightarrow Z H)$, independent of Higgs deca unbiased sample of Higgs bosons

Higgs-strahlung arxiv:2106.15438 FCC-ee Simulation (Delphes) 10000 $\sqrt{s} = 240 \text{ GeV}$ $L = 5 ab^{-1}$ $e^+e^- \rightarrow ZH \rightarrow u^+u^- + X$ Other Backgrounds 8000 6000 4000 2000 40 60 80 100 120 140 160 M_{recoil} [GeV] FUTURE 16

vents / 0.50 GeV

Higgs decay to invisible final states

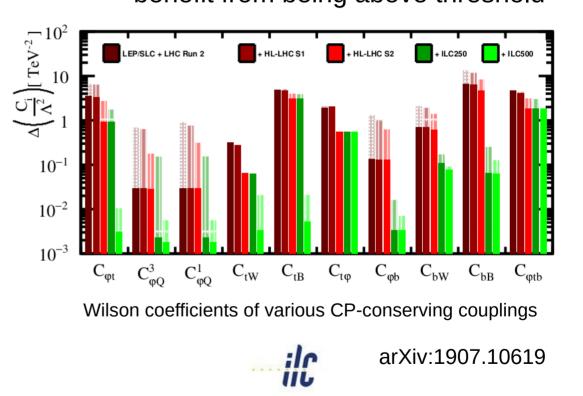
Higgs-strahlung sensitive to *any* Higgs decay: e.g. invisible final states ~ dark matter ?

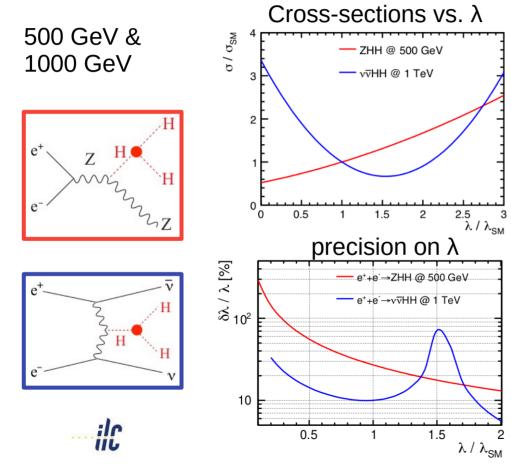


arXiv:1909.07537

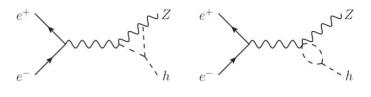
17

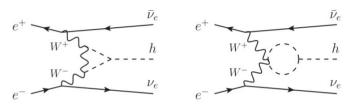
Top quark


mass & width from threshold scan

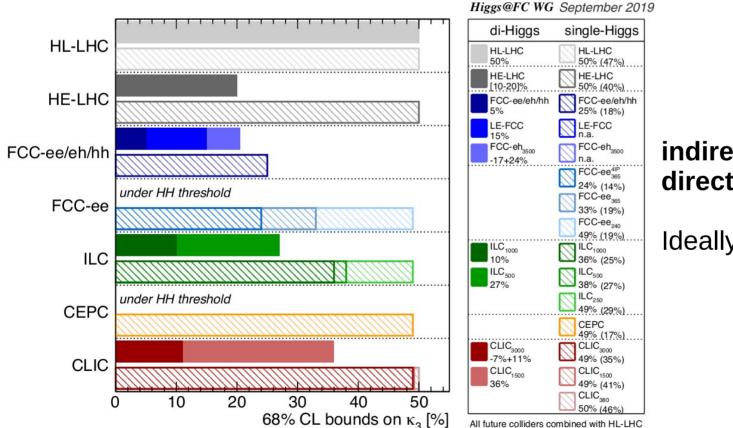

 δm_{top} (\overline{MS}) ~ 20 MeV (stat.) / 70 MeV (total)

Much closer to "pole mass" \rightarrow easier to interpret


top quark EW couplings benefit from being above threshold



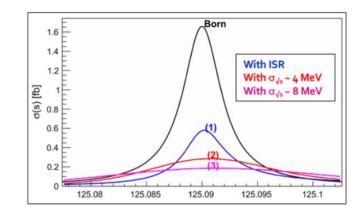
$\begin{array}{l} Higgs \ self\ coupling \ \lambda \\ \textit{direct sensitivity} \end{array}$


indirect sensitivity

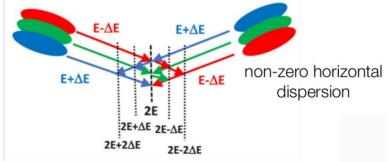
Higgs self-coupling λ

indirect (di-Higgs) ~20~50 % direct (single-Higgs) ~10~35 %

Ideally test consistency

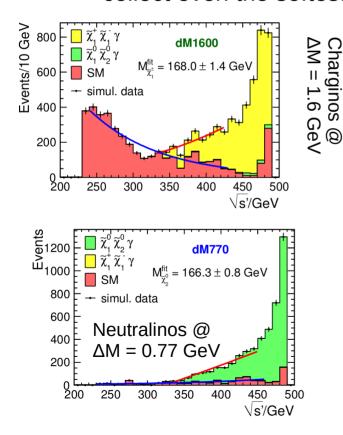

Higgs Physics

- Electron Yukawa coupling via s-channel $e^+e^- \rightarrow H$ under study [unique at FCC-ee]
- Exciting challenges/requirements:
 - ° Higgs mass $\delta m_{H} \simeq$ 3 MeV
 - Beam monochromatization to reduce $\delta_{\sqrt{s}}$
 - ° Continuous adjustment of \sqrt{s}
 - Huge integrated luminosity
 - Extremely sensitive event selection (e.g. $H \rightarrow gg$ and $H \rightarrow WW^* \rightarrow \ell \nu + 2$ jets)
- Expect $y_e \lesssim 1.6 y_e^{\text{SM}}$, 100 (30)x HL-LHC (FCC-hh)


• Assuming $\delta_{\sqrt{s}} = 7$ MeV and 16 ab⁻¹ (2 years w/ 4 IPs)

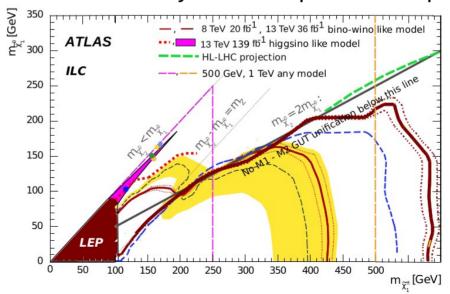
 $\circ~\Lambda_{\rm BSM}\gtrsim 110~{\rm TeV}$ in Higgs-electron coupling

monochromatization:


with separate e^+ and e^- rings, one can distribute low and high energies in opposite way (in x, z, time)

Stéphane Willocq @ Snowmass Agora

Searches for BSM particle production


Kinematic reach limited by collider energy, modest total event rates \rightarrow very loose triggers, or none \rightarrow collect even the softest or most unexpected signatures

e.g. small mass-splitting SUSY: cover all kinetically-available parameter space

SR

 $\chi_1^{\pm,0}$

Xο

soft SM

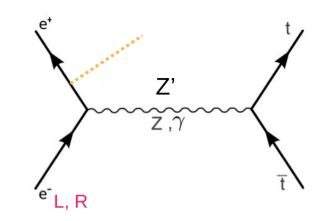
Xο

Electro-weak physics

precision EW measurements

orders of magnitude more data than LEP(2) / SLC

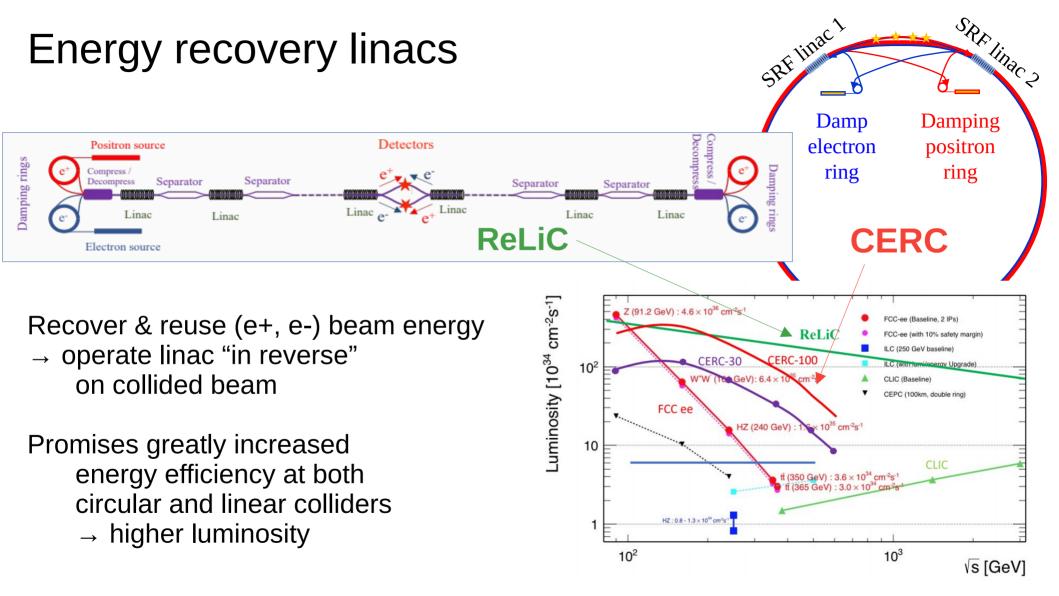
in some cases with beam polarisation left- and right- are very different in E-W


better detectors

QCD

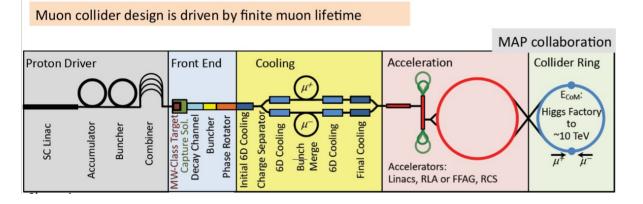
Clean samples of QCD systems of varying mass:

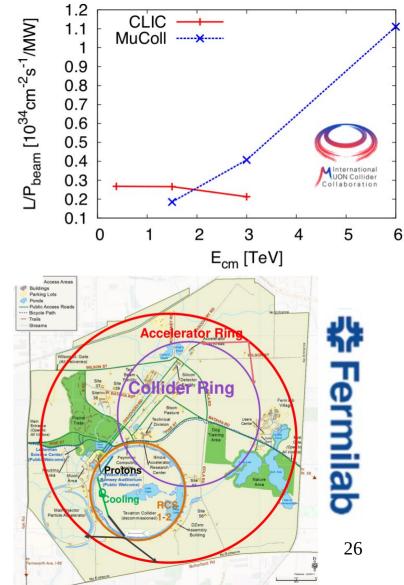
Quark jets of all flavours


** Gluon jets from Higgs

high energy 250 ~ 1000 GeV radiative returns to Z Z pole

More futuristic possibilities


many open conceptual and/or engineering issues



Muon colliders

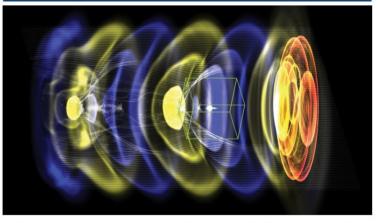
power loss ~ $\frac{(\text{beam energy})^4}{(\text{particle mass})^4 (\text{ring radius})^2}$

High energy lepton collisions, in a modest footprint

Plasma wakefield accelerators

Overcome current limits on accelerating gradient 30~100 MV/m

laser or particle beam induces wakefield in plasma


wakefield accelerates particle bunch: 1~10 GV/m >> 30-100 MV/m

Compact, high energy linac

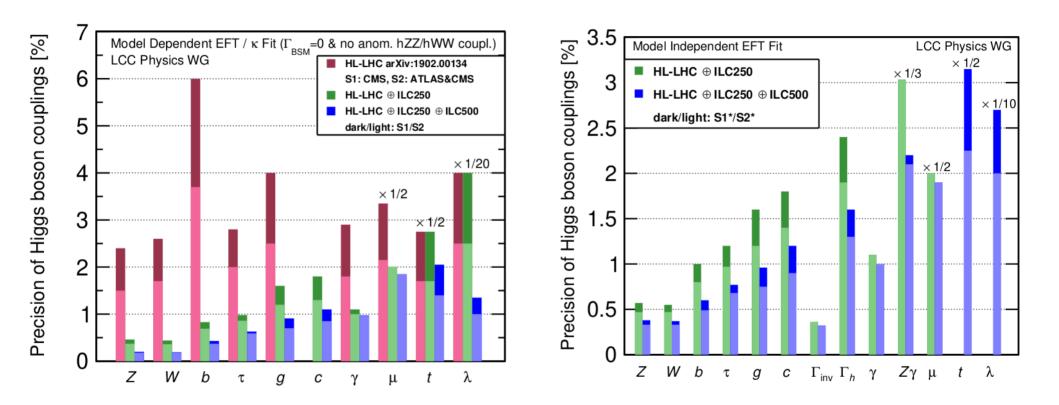
Structure-based wakefield accelerator (SWFA)

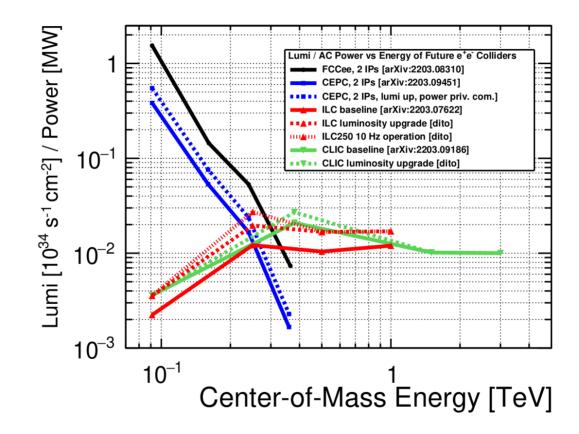
Plasma wakefield accelerator (PWFA)

Laser wakefield accelerator (LWFA)

Example: a laser or particle beam (red) drives a density wave (blue to yellow) in plasma, accelerating electrons (white) with fields of order 10 GeV/m

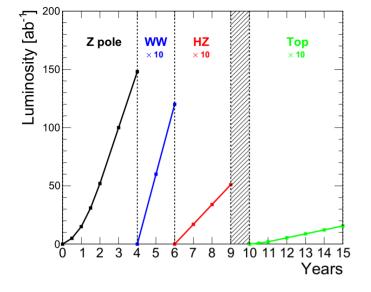
Summary

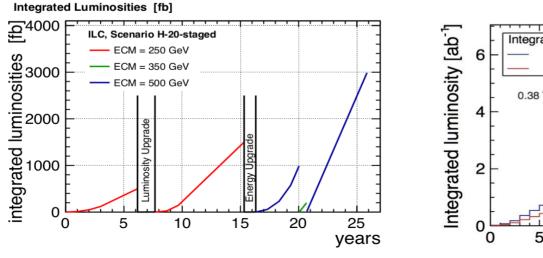

Higgs is a unique tool to probe BSM physics <1% precision to probe TeV-scale models

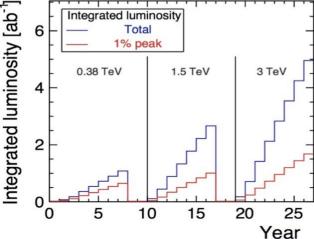

e+e- Higgs factory can achieve this precision many other opportunities in E-W, BSM, QCD physics

a few proposals for "short/mid"-term realisation of Higgs factory \rightarrow we should realise at least one!

several intriguing ideas for the far future


backup




arXiv:1905.03764

staged operation

Operation	\sqrt{s}	L per IP	Years	Total ∫ L	Event
mode	(GeV)	$(10^{34}\text{cm}^{-2}\text{s}^{-1})$		(ab ⁻¹ , 2 IPs)	yields
Н	240	3	7	5.6	1×10^{6}
Z	91.2	32 (*)	2	16	7×10^{11}
W^+W^-	158-172	10	1	2.6	2×10^7 (†)

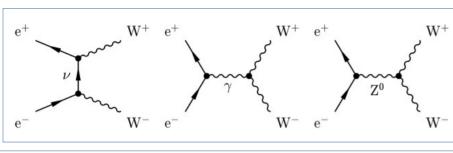
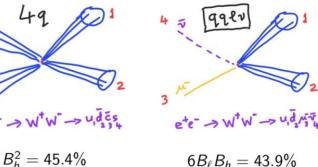
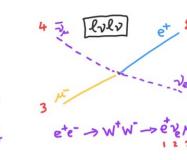

33

Table of parameters (Higgs Factory)

Parameter	ILC	CLIC	C ³	
COM energy (GeV)	250	380	250	
Peak luminosity (10 ³⁴ cm ⁻² s ⁻¹)	1.35	1.5	1.3	
Polarization e^{-}/e^{+} (%)	80 / 30	80 / 0	80 / 0	
Repetition rate (Hz)	5	50	120	
Bunch spacing (ns)	554	0.5	5.26	
Bunch train duration (μs)	727	0.176	0.7	
Particles per bunch (10 ¹⁰)	2	0.52	0.63	
IP beam size H / V, rms (μm)	0.52 / 0.0077	0.15 / 0.003	0.23 / 0.004	
Full crossing angle (mrad)	14	20	14	
Acceleration technology	SRF	Two-beam, NC RF	Cold NC RF	
RF frequency (GHz)	1.300	11.994	5.712	
Accelerating gradient (MV/m)	31.5	72	70	
Site power (MW)	111	168	~150	
Facility length (km)	20.5	11.4	8	


Working point	Z years 1-2	Z, later	WW	HZ	tī		(s-channel H)
$\sqrt{s}~({ m GeV})$	88, 91, 94		157,163	240	340-350 365		m_{H}
Lumi/IP $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	115	230	28	8.5	0.95	1.55	(30)
Lumi/year $(ab^{-1}, 2 \text{ IP})$	24	48	6	1.7	0.2	0.34	(7)
Physics goal (ab ⁻¹)	150		10	5	0.2	1.5	(20)
Run time (year)	2	2	2	3	1	4	(3)
				$10^{6} { m HZ} +$	$10^6 \ t\overline{t}$		
Number of events	$5\times 10^{12}~{\rm Z}$		10^8 WW	$25k WW \rightarrow H$ +200k HZ		\mathbf{Z}	(6000)
					$+50\mathrm{kWW} \rightarrow \mathrm{H}$		

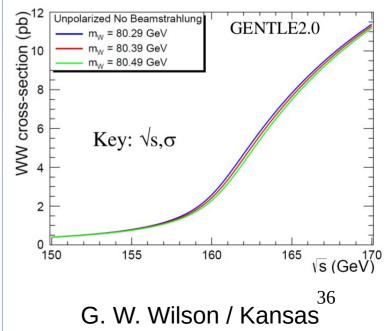
W mass in e⁺e⁻



fully hadronic qqqq

semi-leptonic $q\bar{q}\ell\nu_{\ell}$

 $6B_{\ell}B_{h} = 43.9\%$



 $9B_{\ell}^2 = 10.6\%$

fully leptonic $\ell \nu_{\ell} \ell' \bar{\nu}_{\ell'}$

There are several promising approaches to measuring $m_{\rm W}$ at an e⁺e⁻ collider:

- Polarized Threshold Scan Measurement of the W⁺W⁻ cross-section near threshold with longitudinally polarized beams. Requires dedicated luminosity well below Higgs threshold; can it not be done well enough in other ways?
- Constrained Reconstruction Kinematically-constrained reconstruction of 2 W^+W^- using constraints from **four-momentum conservation** and optionally mass-equality: the LEP2 work-horse. Primarily using semileptonic events. Color reconnection assumed to dog fully hadronic - really?
- **1** Hadronic Mass Direct measurement of the hadronic mass. This can be applied particularly to single-W events decaying hadronically or to the hadronic system in semi-leptonic W⁺W⁻ events (especially for $q\bar{q}\tau\nu_{\tau}$).
- Lepton Endpoints The 2-body decay of each W leads to endpoints in the lepton (or jet) energy at $E_{\ell} = E_{\rm b}(1\pm\beta)/2$ where β is the W velocity. These can be used to infer $m_{\rm W}$. Can use for WW events with ≥ 1 prompt lepton.
- Section Fully Leptonic Reconstruction Pseudomass method (Apply 5C).

Updated Prospects Tables

1: Polarized threshold scan

ΔM_W [MeV]	LEP2	ILC	ILC	ILC
\sqrt{s} [GeV]	161	161	161	161
\mathcal{L} [fb ⁻¹]	0.040	100	480	500
$P(e^{-})$ [%]	0	90	90	80
$P(e^{+})$ [%]	0	60	60	30
statistics	200	2.4	1.1	
background		2.0	0.9	-
efficiency		1.2	0.9	
luminosity		1.8	1.2	
polarization		0.9	0.4	
systematics	70	3.0	1.6	
experimental total	210	3.9	1.9	3.0
beam energy	13	0.4	0.4	0.4
theory	-	1.0	1.0	1.0
total	210	4.0	2.2	3.2

Table 10: Current and preliminary anticipated uncertainties in the measurement of M_W at e^+e^- colliders close to WW threshold.

2: $q\bar{q}\ell\nu_{\ell}$

ΔM_W [MeV]	LEP2	ILC	ILC	ILC
\sqrt{s} [GeV]	172-209	250	350	500
\mathcal{L} [fb ⁻¹]	3.0	2000	200	4000
$P(e^{-})$ [%]	0	80	80	80
$P(e^+)$ [%]	0	30	30	30
beam energy	9	0.4	0.55	0.8
luminosity spectrum	N/A	1.0	1.4	2.0
hadronization	13	1.3	1.3	1.3
radiative corrections	8	1.2	1.5	1.8
detector effects	10	1.0	1.0	1.0
other systematics	3	0.3	0.3	0.3
total systematics	21	2.3	2.7	3.3
statistical	30	0.75	2.8	0.9
total	36	2.4	3.9	3.4

Table 6: Current and preliminary estimated experimental uncertainties in the measurement of M_W at e^+e^- colliders from kinematic reconstruction in the $q\bar{q}\ell\nu_\ell$ channel with $\ell = e, \mu$.

- Update with current ILC run plan integrated luminosities
- Halve beam energy uncertainty (10 ppm \rightarrow 5 ppm)

3: Hadronic mass

ΔM_W [MeV]	ILC	ILC	ILC	ILC
\sqrt{s} [GeV]	250	350	500	1000
$\mathcal{L} [\text{fb}^{-1}]$	2000	200	4000	2000
$P(e^{-})$ [%]	80	80	80	80
$P(e^+)$ [%]	30	30	30	30
jet energy scale	3.0	3.0	3.0	3.0
hadronization	1.5	1.5	1.5	1.5
pileup	0.5	0.7	1.0	2.0
total systematics	3.4	3.4	3.5	3.9
statistical	0.75	2.0	0.5	0.5
total	3.5	4.0	3.5	3.9

Table 8: Preliminary estimated experimental uncertainties in the measurement of M_W at e^+e^- colliders from direct reconstruction of the hadronic mass in single-W and WW events where one W decays hadronically. Does not include WW with $q\bar{q}\ell\nu_\ell$ where $\ell = e, \mu$.