New Horizon of Particle Physics Explored by Higgs Physics

Kei Yagyu (Osaka U.)

2021, 14th Dec., U. of Toyama

Toyama Station: Before → After

Particle Physics: Before → After

It was a hypothetical particle.

It was discovered, measured precisely.

KY, PhD thesis (2012)

2012, July

Particle Physics: Before → After

There was a no-loose theorem.

Previous concepts are broken, and now is a kind of Sengoku-era.

Contents

I. What is the Higgs boson?

II. Why is Higgs Physics important?

III. How can we determine the Higgs sector?

- Bottom-up approach
- Top-down approach

IV. Summary

The Higgs boson

"Higgs-Tan"

"Higgs-Kun"

"Higgs-Doll"

Weak force

1933: Fermi's theory for beta decays

 G_F : Fermi const. $\sim 10^{-5} \text{ GeV}^{-2}$

E. Fermi

Gauge boson masses are forbidden by the gauge principle.

Spontaneous symmetry breaking

Y. Nambu

Unstable, but symmetric under rotation

Stable, but not symmetric under rotation

Gauge boson masses are generated by spontaneous symmetry breaking.

Particles : Comp. scalar $\Phi(x)$, gauge field $A_{\mu}(x)$

Symmetry: Local U(1)

$$\left\{egin{array}{l} \phi
ightarrow e^{m{i}lpha(x)}\phi \ & \ A_{\mu}
ightarrow A_{\mu}+rac{1}{e}\partial_{\mu}lpha(x) \end{array}
ight.$$

P. Higgs R. Brout F. Englert

Lagrangian :
$$\mathcal{L}=(D^\mu\phi)^*(D_\mu\phi)-V(|\phi|^2)-rac{1}{4}F^{\mu
u}F_{\mu
u}$$

$$D_{\mu}\phi = (\partial_{\mu} - ieA_{\mu})\phi$$
 $F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$

$$m_A^2 A_\mu A^\mu o m_A^2 (A_\mu + \partial_\mu lpha/e) (A^\mu + \partial^\mu lpha/e)$$

 $V = \mu^2 |\phi|^2 + \lambda |\phi|^4$ Potential:

$$V = \mu^2 |\phi|^2 + \lambda |\phi|^4$$

☐ Field expansion at around the minimum:

$$\phi(x) = [h(x) + v]e^{\xi(x)/v}$$

Nambu-Goldstone boson (NGB)

$$\phi
ightarrow e^{ilpha(x)} \phi \ A_{\mu}
ightarrow A_{\mu} + rac{1}{e} \partial_{\mu} lpha(x)$$

$$egin{pmatrix} \phi
ightarrow e^{m{i}lpha(x)}\phi \ A_{\mu}
ightarrow A_{\mu} + rac{1}{e}\partial_{\mu}lpha(x) \end{pmatrix} egin{pmatrix} \phi
ightarrow e^{-rac{i\xi(x)}{v}}\phi \ A^{\mu}
ightarrow A^{\mu} - rac{1}{ev}\partial^{\mu}\xi(x) \end{pmatrix}$$

$$D_{\mu}\phi=(\partial_{\mu}-ieA_{\mu})\phi$$
 Gauge boson mass $(D_{\mu}\phi)^*(D^{\mu}\phi) o$ $(ev)^2A_{\mu}A^{\mu}+\cdots$

NGB is "eaten" by the longitudinal comp. of the gauge boson, and h (= Higgs particle) remains as a physical d.o.f.

☐ Field expansion at around the minimum:

$$\phi(x) = [h(x) + v]e^{\xi(x)/v}$$

Nambu-Goldstone boson (NGB)

$$\phi
ightarrow e^{ilpha(x)} \phi \ A_{\mu}
ightarrow A_{\mu} + rac{1}{e} \partial_{\mu} lpha(x)$$

$$egin{pmatrix} \phi
ightarrow e^{m{i}lpha(m{x})}\phi \ A_{\mu}
ightarrow A_{\mu} + rac{1}{e}\partial_{\mu}lpha(m{x}) \end{pmatrix} egin{pmatrix} \phi
ightarrow e^{-rac{im{\xi}(m{x})}{v}}\phi \ A^{\mu}
ightarrow A^{\mu} - rac{1}{ev}\partial^{\mu}m{\xi}(m{x}) \end{pmatrix}$$

$$D_{\mu}\phi = (\partial_{\mu} - ieA_{\mu})\phi$$

$$(D_{\mu}\phi)^{*}(D^{\mu}\phi)
ightarrow (ev)^{2}A_{\mu}A^{\mu} + \cdots$$

NGB is "eaten" by the longitudinal comp. and h (= Higgs particle) remains as a ph

Spontaneous EWSB

Higgs field $\Phi(x)$: SU(2) doublet $\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$, Gauge fields (W+,W⁰,W⁻), B⁰

Symmetry: Local $SU(2)_I \times U(1)_Y$

$$V(\Phi) = \mu^2 \Phi^\dagger \Phi + \lambda (\Phi^\dagger \Phi)^2$$

$$\langle \phi^0 \rangle = v$$

mixing

Origin of Mass

Yukawa $yar{\Psi}_L\,\Phi\,\Psi_R$ ψ_{R} ψ_{R}

$$\kappa_X \equiv \frac{g_{hXX}^{\text{exp}}}{g_{hXX}^{\text{SM}}}$$

ATLAS-CONF-2021-053

Parameter	(a) $B_{i.} = B_{u.} = 0$
κ_Z	0.99 ± 0.06
κ_W	1.06 ± 0.06
κ_b	0.87 ± 0.11
κ_t	0.92 ± 0.10
κ_{μ}	$1.07 {}^{+\ 0.25}_{-\ 0.30}$
$\kappa_{ au}$	0.92 ± 0.07
κ_{γ}	1.04 ± 0.06
$\kappa_{Z\gamma}$	$1.37 {}^{+\ 0.31}_{-\ 0.37}$
Kg	$0.92^{+0.07}_{-0.06}$
$B_{i.}$	-
$B_{\mathrm{u.}}$	-

Great success of the standard model.

Contents

I. What is the Higgs boson?

II. Why is Higgs Physics important?

III. How can we determine the Higgs sector?

- Bottom-up approach
- Top-down approach

IV. Summary

■ So far, the SM Higgs sector can successfully describe current experimental data.

$$V(\Phi) = -\mu^2 |\Phi|^2 + \lambda |\Phi|^4$$

■ So far, the SM Higgs sector can successfully describe current experimental data.

Origin of the negative mass term

$$V(\Phi) = -\mu^2 |\Phi|^2 + \lambda |\Phi|^4$$

■ So far, the SM Higgs sector can successfully describe current experimental data.

Origin of the negative mass term

$$V(\Phi) = -\mu^2 |\Phi|^2 + \lambda |\Phi|^4$$

Quadratic divergence

$$m_h^2 \sim {\Lambda^2 \over 16\pi^2} \gg (125~{
m GeV})^2$$

■ So far, the SM Higgs sector can successfully describe current experimental data.

Origin of the negative mass term

One doublet?

Any other representations?

Quadratic divergence

$$m_h^2 \sim {\Lambda^2 \over 16\pi^2} \gg (125~{
m GeV})^2$$

■ So far, the SM Higgs sector can successfully describe current experimental data.

Origin of the negative mass term

One doublet?

Any other representations?

Quadratic divergence

Yukawa coupling? $\frac{y_e}{y_t} \sim 10^{-5}$

$$m_h^2 \sim {\Lambda^2 \over 16\pi^2} \gg (125~{
m GeV})^2$$

So far, the SM Higgs sector can successfully describe current experimental data.

Origin of the negative mass term

Quadratic divergence

Yukawa coupling?
$$\frac{y_e}{y_t} \sim 10^{-5}$$

$$m_h^2 \sim {\Lambda^2 \over 16\pi^2} \gg (125~{
m GeV})^2$$

The Higgs sector is the center of the problem in the SM.

There should be new dynamics behind the Higgs sector.

Higgs sector and BSM phenomena

☐ Phenomena cannot be explained in the SM.

Neutrino mass

Dark matter

Baryon asymmetry of Universe

Flavor anomaly $(g-2)_{\mu}$

Higgs physics can strongly be related to BSMs.

Paradigm Shift in Early 20th Century

Classical Theory

-Newton Dynamics

-Maxwell Electromagnetism

Black-body Radiation

Planck's Low

FIGHTCK 5 LOW

- Nuclear Physics
- Particle Physics, ···

$$u(
u,T) = rac{8\pi
u^2}{c^3} rac{h
u}{\exp(h
u/k_BT)-1}$$

Paradigm Shift in Early 21st Century

Standard Model

- -Gauge Principle
- -Higgs Mechanism

New Physics

- New dynamics
- New symmetries
- Unifications, ...

$$V(\Phi) = -\mu^2 |\Phi|^2 + \lambda |\Phi|^4$$

Higgs Physics

Higgs as a Probe of New Physics!!

Higgs as a window to New Physics

New Physics

Top-down

(Extended) Higgs sector

Bottom-up

Experimental data

High energy exp. (LHC, ···)

High intensity exp. (KEKB, Super K, ···)

Space based exp. (Planck, ···)

Theory requirements

Gauge principle

Unitarity, Vacuum stability

(Renormalizability)

Contents

I. What is the Higgs boson?

II. Why is Higgs Physics important?

III. How can we determine the Higgs sector?

- Bottom-up approach
- Top-down approach

Yuta Hamada (Harvard U.), Hikaru Kawai (National Taiwan U.),

IV. Summary

Kiyoharu Kawana (Seoul National U.), Kin-ya Oda (Tokyo Woman's Christian U.), KY

2008.08700 [hep-ph], 2102.04617 [hep-ph] + paper in progress,

Implication of the 125 GeV Higgs mass

Implication of the 125 GeV Higgs mass

Implication of the 125 GeV Higgs mass

$$V_{\rm eff} = \frac{\lambda_{\rm eff}(h)}{4} h^4 \\ \text{@ h » v, } \mu = h$$

$$\frac{d\lambda}{d\mu} = \frac{1}{16\pi^2} (24\lambda^2 - 6y_t^4 + \cdots)$$

$$1 \times 10^{68}$$

$$M_{i=171.39281 \, {\rm GeV}}$$

$$M_{i=171.39281 \, {\rm GeV}}$$

$$M_{i=171.39301 \, {\rm GeV}}$$

$$M_{i=171.39321 \, {\rm G$$

h [GeV]

Froggatt & Nielsen (1995)

Physics Letters B 368 (1996) 96-102

Standard model criticality prediction top mass 173 \pm 5 GeV and Higgs mass 135 \pm 9 GeV

C.D. Froggatt a, H.B. Nielsen b

^a Department of Physics and Astronomy, Glasgow University, Glasgow G12 8QQ, Scotland, UK
^b The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

Received 4 November 1995 Editor: P.V. Landshoff

They predicted the Higgs mass in 1995!!

The Higgs potential is realized at a critical point?

→ Multicritical point principle (MPP)

Our Scenario

We proposed a minimal model to realize the scenario based on the MPP framework.

Multicritical point principle (MPP)

Froggatt, Nielsen (1995)

MPP: More parameters in the effective potential are tuned to a set of critical values, which is more likely to be realized by nature.

Examples:
$$V = \mu^2 |H|^2 + \lambda |H|^4$$

 μ^2 < 0: SSB

 $\mu^2 = 0$: Critical point

Classical Scale Invariance (CSI)

CSI can be understood as a special realization of the MPP.

MPP: More parameters in the effective potential are tuned to a set of critical values, which is more likely to be realized by nature.

Examples:

Kawai, Kawana, 2107.10720 [hep-th]

Dimensional transmutation

Coleman, Weinberg (1972)

Massless (CSI)
$$\Phi^4$$
 theory: $V_{\rm tree} = \frac{\lambda}{4!} \phi^4$

Eff. potential at 1-loop:

Dimensional transmutation

$$\langle \phi
angle \propto M_{
m pl} \exp \left(- rac{16 \pi^2}{3 \lambda} + rac{1}{2}
ight) \hspace{0.5cm} (\mu = M_{
m pl})$$

However, it does not work….

 Φ and S with a Z_2 symmetry $S \rightarrow -S$ and $\langle S \rangle = 0$

$$V_{\text{tree}} = \frac{\lambda}{4!}\phi^4 + \frac{\lambda_S}{4!}S^4 + \frac{\lambda_{\phi S}}{4}\phi^2S^2$$

$$m_{\phi}^2 = \frac{\lambda}{2}\phi_c^2$$

Negligible if $\lambda \ll \lambda_{\Phi S}$

$$m_S^2 = \frac{\lambda_{\phi S}}{2} \phi_c^2$$

$$V_{\text{eff}} = \frac{\lambda}{4!} \phi_c^4 + \frac{m_\phi^4}{64\pi^2} \left[\ln \frac{m_\phi^2}{\mu^2} - \frac{3}{2} \right] + \left[\frac{m_S^4}{64\pi^2} \left[\ln \frac{m_S^2}{\mu^2} - \frac{3}{2} \right] \right]$$

Dimensional transmutation: $\langle \phi \rangle \propto M_{\rm pl} \exp \left(-\frac{16\pi^2}{3} \frac{\lambda}{\lambda_{\phi S}^2} + \frac{1}{2} \right)$

Taking $\lambda/\lambda_{\Phi S}^2 = O(0.1)$, the EW scale is generated from the Planck scale! In addition, S can be identified as a dark matter candidate!

Maximal Criticality

Generally, the effective potential for Φ is written as

$$V_{\text{eff}} = \mu_1^3 \phi_c + \frac{\mu_2^2}{2} \phi_c^2 + \frac{\mu_3}{3!} \phi_c^3 + \frac{\lambda_\phi}{4!} \phi_c^4 + \frac{m_S^4}{64\pi^2} \left[\ln \frac{m_S^2}{\mu^2} - \frac{3}{2} \right]$$

We can take $\mu = M$ at which λ_{Φ} term vanishes.

$$V_{\text{eff}} = \mu_1^3 \phi_c + \frac{\mu_2^2}{2} \phi_c^2 + \frac{\mu_3}{3!} \phi_c^3 + \frac{\lambda_{\phi S}^2}{64\pi^2} \ln \frac{\phi_c^2}{M^2}$$

- The shape of the potential is determined by 3 parameters e.g., μ_1 , μ_2 and μ_3 .
- This potential generally has 5 extrema.

We can take triple criticality as the maximal critical point.

Maximal Criticality

There are 7 independent triply critical points.

We focus on CP 1234, which may realize the strongly 1st order PT \rightarrow Gravitational wave?

CP 1234

CP 1234:
$$\frac{dV_{\text{eff}}}{d\phi}\Big|_{\phi \to \phi_S} = \frac{d^2V_{\text{eff}}}{d\phi^2}\Big|_{\phi \to \phi_S} = \frac{d^3V_{\text{eff}}}{d\phi^3}\Big|_{\phi \to \phi_S} = \frac{d^4V_{\text{eff}}}{d\phi^4}\Big|_{\phi \to \phi_S} = 0.$$

$$\mu_1^3 = -\frac{\kappa M^3}{18e^{25/4}}, \quad \mu_2^2 = -\frac{\kappa M^2}{4e^{25/6}}, \quad \mu_3 = -\frac{\kappa M}{e^{25/12}}, \quad \phi_S = -\frac{M}{e^{25/12}}$$

$$\bar{\phi} = \frac{\phi}{M}$$

$$\kappa = \frac{3}{16\pi^2} \lambda_{\phi S}^2$$

$$\bar{\phi} = \frac{\phi}{M}$$

$$V_{\text{eff}} = \kappa M^4 \left[-\frac{\bar{\phi}_c}{18e^{25/4}} - \frac{\bar{\phi}_c^2}{8e^{25/6}} - \frac{\bar{\phi}_c^3}{6e^{25/12}} + \frac{\bar{\phi}_c^4}{48} \ln \bar{\phi}_c^2 \right]$$

True vacuum

$$v_{\phi} \simeq 1.1M$$

Potential at finite temperature

$$V_{\text{eff}}(\bar{\phi}, T) = V_{\text{eff}}(\bar{\phi}, T = 0) + \Delta V_{\text{eff}}(\bar{\phi}, T)$$

$$= \kappa M^4 \left[-\frac{\bar{\phi}}{18e^{25/4}} - \frac{\bar{\phi}^2}{8e^{25/6}} - \frac{\bar{\phi}^3}{6e^{25/12}} + \frac{\bar{\phi}^4}{48} \ln \bar{\phi}^2 + \frac{2\bar{T}^4}{3} \int_0^\infty dx \, x^2 \ln \left(1 - e^{-\sqrt{x^2 + \bar{\phi}/\bar{T}^2}} \right) \right]$$

The shape of the potential is determined only by the $\underline{\mathsf{T}}$ parameter!

1st order phase transition can be realized!

Gravitational Waves from 1st OPT

Bubble collision

Energy density of fluid

Hindmarsh, Huber, Rummukainen, Weir (2013)

Grojean, Servant (2007) Leitao, Megevand, Sanchez (2012)

Jinno, Nakayama, Takimoto (2016)

Hashino, Kakizaki, Kanemura, Matsui (2016),

Sound waves (Compressed waves)

Turbulence of plasma

Implementation to the SM

$$\mathcal{L} = \mathcal{L}_{SM}^{\text{w/o pot.}} - V_{MPP}(H, \phi, S)$$
 $V_{MPP} = V_{CSI} + V_{\phi}^{CP-1234}$

Trigger the EWSB after Φ gets the VEV.

$$V_{\text{CSI}} = \frac{\lambda_H}{2} (H^{\dagger} H)^2 + \frac{\lambda_S}{4!} S^4 \left(-\frac{\lambda_{\phi H}}{2} \phi^2 (H^{\dagger} H) \right) + \frac{\lambda_{\phi S}}{4} \phi^2 S^2 + \frac{\lambda_{SH}}{2} S^2 (H^{\dagger} H)$$

$$v_H = v_\phi \sqrt{\frac{\lambda_{\phi H}}{\lambda_H}} \sim 246 \text{ GeV}$$

$$m_h^2 \simeq v_H^2 \lambda_H \sim (125 \text{ GeV})^2$$

$$m_H^2 \simeq 0.23 \,\kappa \, v_\phi^2 \simeq \left(130 \, {\rm GeV} \times \frac{\lambda_{\phi S}}{1} \times \frac{v_\phi}{2 \, {\rm TeV}}\right)^2$$

Only 3 free parameters! $(m_S, \lambda_{HS}, v_{\phi})$

DM mass

DM-Higgs coupling

*This result is based on the other CP, but the result is almost the same.

*This result is based on the other CP, but the result is almost the same.

Additional Higgs boson mass is predicted to be at around 150-200 GeV.

Contents

I. What is the Higgs boson?

II. Why is Higgs Physics important?

III. How can we determine the Higgs sector?

- Bottom-up approach
- Top-down approach

IV. Summary

Exploring the Higgs sector

Gravitational waves

Constraints from EWPO

Constraints from Flavor Experiments

Multi-doublet structures introduces FCNCs

$$\mathcal{L}_Y = \bar{Q}_L(Y_1\Phi_1 + Y_2\Phi_2)d_R + \text{h.c.}$$

$$M = v_1 Y_1 + v_2 Y_2$$

 $Y = \langle h_1 | h \rangle Y_1 + \langle h_2 | h \rangle Y_2$

 $M \gtrsim \mathcal{O}(100) \text{ TeV}$ for $\mathcal{O}(0.1)$ coupling

Interaction matrix

Mass matrix

Barger, Hewett, Phillips (1990), Grossman (1994) Aoki, Kanemura, Tsumura, KY (2009), Cite 300+

Type-X Type-II

KY (2016)

Type-Y

Classification of Multi-Doublet Models

SM-likeness of h(125)

SM-likeness of h(125)

SM-likeness of h(125)

SM-likeness of h(125)

"New No Loose Theorem"

Fingerprinting

Kanemura, Kikuchi, Sakurai, Mawatari, KY, PLB783, 140 (2018)

v1: Kanemura, Kikuchi, Sakurai, KY (2017)

v2: Kanemura, Kikuchi, Sakurai, Mawatari, KY (2019)

Higgs to Higgs decays @ near alignment

Type-I 2HDM with mH = mA = mH⁺ = M = 400 GeV, $tan\beta$ = 10

Alignment limit

Current LHC

HL-LHC

Alignment limit

CP-violation in the alignment scenario

Contribution to EDMs

- Typically, new source of CPV is excluded by EDM experiments.
- We need a mechanism to get O(1) without confliction to EDMs.
- Destructive interference in EDMs can happen between Yukawa & potential CPV.

Destructive interference in EDM

Kanemura, Kubota, KY (2020)

This opens a new possibility of the successful EW baryogenesis scenario.

Collider phenomenology

$$m_{H2} = 230 \text{ GeV}, m_{H3} = 280 \text{ GeV}, m_{H}^{+} = 280 \text{ GeV}, \zeta_u = 0.1$$

Summary

- Higgs physics is a key to probe new physics BSM.
- The Higgs mass and top mass may indicate criticality.
- EW scale and dark matter can naturally be explained in the MPP framework.
 - This can be probed by **GW observations** at DECIGO and/or BBO, and a light Higgs boson search at the **ILC**.
- Now, "alignment" is the important keyword.
- Near alignment : Higgs to Higgs decay & Higgs precision are important.
- Double alignment: **EW baryogenesis** is possible via the O(1) CPV phase.