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Newtonian Mechanics and Hamiltonian Mechanics

AN
P
&=

Sir Isaac Newton (1643-1727)

— . OH . _OH
= ma. p= o q—ap.
2
* The correspondence between the two formulations can be made explicit: for H = :—m + V both give p = —VV.

*Pictures from Wikipedia
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Hamiltonian Mechanics - Ideal Systems and Phase Space

In an ideal mechanical system, there is no entropy growth mechanism (dissipation).

» |deal mechanical systems usually arise as Hamiltonian systems.

> In the ideal limit, Newtonian mechanics and related theories (fluid mechanics, plasma physics, etc.) can be
written in Hamiltonian form.

Hamiltonian mechanics can account for non-Newtonian physics as well. For example,

» Quantum mechanics (Schrédinger equation)

» General relativity (ADM formalism)

* Hamiltonian mechanics is a statement regarding the existence of phase space, while the properties of matter
are encapsulated into the Hamiltonian function (energy) of the system.
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Hamiltonian Mechanics - The Schrodinger Equation

The Schrodinger equation of quantum mechanics describes the deterministic evolution of the probability

amplitude W,
oY h?
ih—=|—=—A .
in o5t < o i V)

Via the Madelung representation ¥ = /p exp(i 6/#h),

G 1 06 K2 [ |Vp2 |VO]2 A
p N (_Ipl_l I+p>_V

. _ " v. 0), - —
ot mv (V) ot 2m 4p? h? 2p

This system has the canonical Hamiltonian form

dp SH 80  6OH H‘J V6P L P2 ay
at 60’ ot op’ I gm' ' 08P '

4/33



Hamiltonian Mechanics - Magnetohydrodynamics

Magnetohydrodynamics is a fluid theory describing electrically conducting fluids:

dp
ov v?\ 1
—=vXx(Vxv)-V|[h+—|+—-(VXB)XB,
dt 2 P

c’)B_v (v % B)

5 = V*x WxB).

This system can be written in the noncanonical Hamiltonian form

ou OH
—_— = ) — — B T
ot su w=(ewB),

where the Hamiltonian H and the Poisson operator J are given by:
2 2 0 —V ° O
v B -1 -1
H=J 0 7+U(p) +—-|av, J=|-V —p7(VXv)X —p"BX(VX)|.
Y 0 -Vx(p'Bx) 0
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Hamiltonian Mechanics - Canonical Systems

There are mechanical systems that cannot be written in Hamiltonian form:

» Dissipative systems: entropy grows. An example is the diffusion equation with Neumann boundary conditions,

of dS 2
—~ = DAY, _=Df fIVlog f|=dV = 0, S=—j flogf dVv.
ot dt Q Q

» Nonholonomic systems: systems with non-integrable constraints that do not foliate the phase space into
symplectic submanifolds. An example is E X B dynamics in a non-integrable magnetic field B -V X B # 0,

mxX =q(x X B —V¢), m=0-

. BxVp
X = B2 .

Note that the energy ¢ is constant, x - V¢p = 0, while the non-integrable constraint is given by

x-B=0.
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Hamiltonian Mechanics - Canonical Systems

Ideal mechanical systems usually arise as Hamiltonian systems.

When all degrees of freedom are considered, the equations of motion take a canonical Hamiltonian form.

Hamilton’s canonical equations for a Hamiltonian H(p?, ...,p™, q1, ..., q™) are

. oH L H
p =—a—qi’ q =a—pi, l=1,...,m. (1)
2
F=-V/ k=2

* H represents the energy of the system. From (1), one sees that H = 0.

* The coordinate pairs (pi, qi), [ =1,...,m, are called canonical pairs, with n = 2m the dimension of the
system.
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Hamiltonian Mechanics - Canonical Conservation Laws

* Conservation of energy H.

« Conservation of phase space volume (Liouville theorem) dIl = dp® A ---Adp™ Adq* A --- Adq™.

Il
(phase space) e
qu ”,zf
dpo I . ”"’r" ) ’,¢/
gt el -7 dpodqo = dp.dq,

-
. -
-~ e
- >

H(p, q) = constant
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Hamiltonian Mechanics - Noncanonical Systems

Hamilton’s canonical equations can be generalized to the so called noncanonical Hamiltonian form.

Noncanonical Hamiltonian systems arise when redundant degrees of freedom are discarded.

Example: Euler’s rotation equation for a rigid body.

x € R® (angular momentum),

x2 1 <x2 yZ ZZ) (2)

I
<
|
=
|
|

x=wXVH, w

* In the noncanonical setting, canonical variables (pi, qi), i =1,..,m, are ‘hidden’, and new conservation laws
independent of H appear.
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Hamiltonian Mechanics - Noncanonical Formulation

In an n-dimensional noncanonical Hamiltonian system, the equations of motion are written as:

x'=7JYH;, i=1,..,n (3)

Here, 7Y is an n-dimensional second-order skew-symmetric contravariant tensor satisfying the Jacobi identity:

gi = —git, gimglk 4 gimgki  gkmgll — o ik =1, .. n (4)

The tensor 7Y is called Poisson operator. It can be used to define the Poisson bracket {-,}:

» dF
{F,G} = F376; - —-={FH)}. (5)




Hamiltonian Mechanics - Algebraic Formulation

Let X be a vector space over a field K. A Poisson bracket on X is a binary operation

{.,.} S X X X - X, x — COO(.Q.), Q C Rn, (6)
K=R

that satisfies the following properties forall F,G,H € X and a,b € K:

1) Bilinearity
{aF + bG,H} = a{F,H} + b{G, H}, {H,aF + bG} = a{H,F} + b{H, G},
2) Alternativity
{F,F} =0, H={H,H}=0
3) Skew-symmetry
{F,G} = —{G,F}, (7)
4) Leibniz rule (FG) — {FG,H} — FG + FG

{FG,H} = F{G,H} + {F,H}G,
5) Jacobi identity

{F.{G,H}} +{G,{H,F}} + {H,{F,G}} = 0. Hamiltonian (phase

space) structure
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Hamiltonian Mechanics - Lie-Darboux Theorem

The Jacobi identity is equivalent to the existence of a closed 2-form of evenrank 2m = n — s, the symplectic
2-form w. Here, s is the dimension of the kernel of the Poisson bracket.

Due to the Lie-Darboux theorem [1-3], the closure of the 2-form w implies that the phase space is locally spanned
by 2Zm = n — s canonically conjugated variables (pi, qi), i=1,..,myands = n — 2m Casimir invariants C;,
i = 1,..,s, whichfill the center (kernel) of the Poisson bracket:

dC! .
o {cLH}=0, VHEeC®(Q), i=1,..,s €))

The noncanonical equations of motion therefore take the local canonical form

dp' OH  dq' O0H  dC)

dt ~ agi’  at _opi’  ar

i=1,..m, j=1,..,s. 9)

[1] M. de Léon, Methods of Differential Geometry in Analytical Mechanics, Elsevier, New York, pp. 250-253 (1989). [2] V.I. Arnold, Mathematical Methods of Classical Mechanics,
second ed., Springer, New York, pp. 230-232 (1989). [3] R. Littlejohn, Singular Poisson tensors, in: M. Tabor, Y. Treve (Eds.), Mathematical Methods in Hydrodynamics and
12/33  Integrability in Dynamical Systems, in: American Institute of Physics Conference Proceedings, 88, American Institute of Physics, New York, pp. 47-66 (1982).



Nambu Mechanics — A Possible Generalization of Hamiltonian Mechanics

In 1973, Y. Nambu proposed a ‘possible generalization of classical Hamiltonian dynamics to a 3-dimensional phase
space’: the classical canonical pair (p, q) is replaced by a canonical triplet (p, g, 7), while the number of

generating functions is increased to two Hamiltonians, (G, H) [4].

Rigid body
x? 1 (x? y2 72
(p:Q:T)—(x;J’;Z), G—C—T, H_E<E+E+E>

Forthen = 3 case, Hamilton’s canonical equations are replaced by Nambu’s canorical equations:

dp 9GoH 0GoH  dq 0GAH dGOH  dr 8GAH G oH -
dt dq dr Or dq’ dt ordp Opor’ dt dpdq 0dqop’

Setting (x!,x%,x3) = (p, q,1), system (10) can be written through a ternary operation (Nambu bracket)
{0,0,0}: C®(Q) X C*(Q) x C*(Q) » C*(Q) as below:
(11)

dx’ i - , dF -
E={X’G'H}=E] Gij, l:1,2,3, — E:{F,G,H}=E] FlG]Hk

[4] Y. Nambu, Generalized Hamiltonian Dynamics, Phys. Rev. D 7, 8 (1973).
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Nambu Mechanics - Algebraic Formulation

The generalization of the Nambu bracket (11) to an algebraic framework analogous to the Poisson bracket of

classical Hamiltonian mechanics has proven difficult because the generalization of the Poisson bracket axioms
(7) to the Nambu bracket is nontrivial [5].

Several authors [5, 6] have proposed the following set of axioms for the Nambu bracket: trilinearity, skew-
symmetry, Leibniz rule, and fundamental identity:

1) Trilinearity
{aF, + bF,, F3,F,} = a{Fy, F5,F,} + b{F,,F3,F,}, G ={G,G,H}=0,
2) Skew-symmetry H={H,GH}=0
{Fy, Fy, F3} = €V8{F,, F;, Fi}, (not summed), 5
3) Leibniz rule : : : (12)
(F\Fy, F3, By} = Fy{Fy, Fy, B} + Fo(Fy, By F), - Faf2) = Fafa £ 51
4) Fundamental identity

{{Fy, Fa, F33, Fy, Fs} = {{Fy, Fy, F5}, Fy, Fs} + {Fy, {Fp, Fy, Fs}, F3} + {Fy, Fa, {F3, Fy, Fs} )

VE,,F, F5,Fy,Fc € C*(Q) anda,b € R.

[5] P. M. Ho and Y. Matsuo, The Nambu bracket and M-theory, Prog. Theor. Exp. Phys. 2016, 06A104 (2016).
14/33  [6] L. Takhtajan, On Foundation of the Generalized Nambu Mechanics, Commun. Math. Phys. 160, pp. 295-315 (1994).



Nambu Mechanics - Fundamental Identity

® The fundamental identity, which replaces the Jacobi identity for the Poisson bracket, implies distribution of
derivatives (a property satisfied by Poisson brackets), that is, given two Hamiltonians F, and Fs, one has

d dF; dF, dF;
E{F11F2;F3}= EtFZIFS + FlrE)FB + Fl)FZIE . (13)
# The fundamental identity leads to the property that the bracket {o,0}; = {°, G,o} defined by fixing the second
entry with a given generating function G assigns a Poisson algebra. This can be verified by observing that the
fundamental identity reduces to the Jacobiidentity when F;, = F, = G.

® However, the fundamental identity also implies that constant skew-symmetric 3-tensors 7% € R do not
define a Nambu bracket in general, i.e. {F, G, H} = 7Y¥F;G;H,, does not satisfy the axioms (12) even if 7Y% has
constant entries.

® This situation points to the fact that the fundamental identity is more stringent than the Jacobi identity
required for a Poisson bracket (on this point, see [6-7]).

[6] L. Takhtajan, On Foundation of the Generalized Nambu Mechanics, Commun. Math. Phys. 160, pp. 295-315 (1994).
15/33  [7] R. Chatterjee and L. Takhtajan, Aspects of classical and quantum Nambu mechanics, Lett. Math. Phys. 37, pp. 475-482 (1996).



Hamiltonian Mechanics vs Nambu Mechanics - Example

Consider a 1-dimensional system of 2 quantum oscillators [ 8] with Hamiltonian
1 2
H =§(p1 +p7 +&1+ &) + 116 (14)
The phase space variables x = (p4, g1, &1, P2, 92, &,) correspond to the expectation values

pi = (ﬁi)r q; = (6[\1'); fi — (6[\12>; i =12 (15)

The system is Hamiltonian with Poisson operator J given by

0 -1 —-2¢q; O 0 0 —qq, — A&,
1 0 0 0 0 0 D1
9 = , x=IJ(dH) = : 16
0 0 0 0 -1 -2q (@) = g, —22q:q, (16)
0 0 0 1 0 0 D>
| 0 0 0 ZQZ 0 0 Zqsz

[8] A. Horikoshi, Nambu dynamics and its noncanonical Hamiltonian representation in many degrees of freedom systems, Prog. Theor. Exp. Phys. 2021, ptabo75 (2021).
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Hamiltonian Mechanics vs Nambu Mechanics - Example

The system is endowed with 2 additional constants of motion:

Gy = &1 — qi, G, =&, —q3, G =Gy + Gs. (17)
The equations of motion can be expressed through a Nambu bracket
{F,G,H} = €/“F,G;H, + €/*F,G;H,, (18)
as below

(D1 {p1, G, H} _H€1 GQ1 — HCIz 651_
C?l {CIL G, H} leGfl _ HflGlh
61 — {flr G, H} — HCI1 Gp1 — HP1 GCI1 N )°Ci

f’z {erGr H} HEZGqZ - HCIszz &

q2 {42, G, H} Hp,Ge, — He, Gp,

_éz- _{52» G, H}- _qu sz - sz GCIz-

= e GiH, m=12 (19)

* The Nambu bracket (18) does not satisfy the fundamental identity despite having constant entries and the
system being Hamiltonian.
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Jacobi Identity - Geometrical Meaning

The Jacobi identity of classical Hamiltonian mechanics has a simple geometrical interpretation: if 7V is invertible
with inverse w; j, the noncanonical equations of motion can be written as

x'=7JYH, - w;x! =H,. (20)

Defining the symplectic 2-form w = %,;; a)l-jdxi A dx’, one can show that

aanq- 6ank aayi

imqJjk jmaqki kmqt] _
P F 8 Im T I =0 o i T TaE T o de=o. 8
iofip b8 = s ceep I L, k=1,..n.
Jacobi identity Closure

The Jacobi identity of generalized Hamiltonian mechanics should express the closure of a symplectic 3-form w:

i<j<k




Generalized Hamiltonian Mechanics - A Possible Approach

Classical Hamiltonian mechanics can be regarded as a special case (n = 2) of dynamical theories written as

Lyw™ =0, do™ = 0, (23)
where w™ is an n-form. We suggest that Nambu mechanics corresponds to n = 3. On a contractible domain,

iXa)n = —d;{n_z. (24)

Remark 1: Let w € A2 T*Q denote a closed 2-form. Suppose that the vector field X € T2 satisfies
iXa) = _dH, lxdG = 0,
where dG and dH are linearly independent exact 1-forms. Then, the (Nambu or symplectic) 3-form

w=wAdaG,
has the following properties

iyw = —dH A dG, dw = 0.

Converse question: given w and X such thatiyw = —dH A dG and ixdG = 0, can one find w with dw = 07?
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Generalized Hamiltonian Mechanics - Properties

o

Given 2 Hamiltonians G, H € C*(Q) and a skew-symmetric third order contravariant tensor 79% € C*(Q), the
equations of motion are given by

xt = JURGH,, = zj<k7ifk(Gij —GH;), i=1,..,n (25)

The tensor 7Y% (generalized Poisson operator) satisfies a generalized Jacobi identity expressing the closure
of a smooth 3-form w (symplectic 3-form), dw = 0.

The symplectic 3-form w is Lie-invariant, L,w = 0.

When w has rank n, there exists local coordinates (y?, ..., y™) and a constant skew-symmetric tensor B

such that (17) takes the generalized canonical form NErAbUS caeriea

06 d0H 9G OoH equation whenn = 3

The local coordinates (y?, ..., y™) define an invariant (Liouville) measure dZ = dy! A -+ A dy™ such that
[‘xd: =
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Theory Comparison- A Schematic View

Generating functions
Operator

Bracket
Symplectic form

Jacobi identity

Lie-Darboux theorem

Canonical equations

Liouville measure

Special functions
(Casimir invariants)

H
gy
{F,G} = F;,3YG;

w = Z a)l-jdxi Adx’
i<j

dll = dp* A--Adp™ Adgt A--Adg™

JuC; =0

G,H
jijk
{F,G,H} = JY*F,G;H,
w = z Wl-jkdxi Adx’ A dx®
i<j<k
dw =0
W = Aijkdyi N dy] N dyk, Aijk eER
dy' _ Z pijk BG' 0H B G aH.
dt i<k oyl ayk adykoyl)’
BYk e R
dZ = dyt A Ady™

gukC, =0,  JUCD, =0




Symplectic 3-Form - Inverse of a 3-Tensor

The core of the theory lies in the assumption that x defines a generalized Hamiltonian system if there exist a
smooth 3-form w and generating functions G, H with the following properties

—>LxW=O

i;w = —dH A dG, dw = 0. (27)
Explicitly, (27) can be written as
y OWijk  OWip;  OWyp  OWjgy -
X'wij, = HpG; — HGy, f T ok Yoy T = 0 i,j,k,=1,..,n (28)
We say that a skew-symmetric third order contravariant tensor /%% is the inverse of Wiy if
Z _ eijkejk’? = Sf . :
- z kWijkW” =6, iLt=1.,n - f=79GH, t=1.,n (29)
j<

The notion of invertibility (29) for w;, is equivalent to the existence of a right-inverse for then X n? matrix
Wi(jky- The right-inverse 7U* exists when wyjxy has rank n. In such case wy(jy, is the left-inverse of JU0?,
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Inverse of a 3-Tensor — Examples

3-tensors as w; j, can be thought of as matrices having rows, columns, and ‘depth’. To a tensor w; j; we can
assign a unique conventional matrix w; k) having n rows and n? columns. For example, if Wik = €ijk,

O 0 O |0 0 -1 0O 1 O o 0o 0 0 010 -1 0
o o 1,0 0 Of,[-1 0 Of »(0 O -1 0 O O 1 0 Of. (30)

0O —1 0l;11 0 OlI, 0 0 Ol o1 0 -1 0 0 0 0 O

rank = 3
An example in higher dimensions (n = 6) is the following. The 3-form - I = eIk
w=dx ' Adx? Adx3 + dx* Adx® Adx® + dxt Adx? Adx?, (31)
has rank 6, and therefore possesses an inverse J. The inverse is

7=—01/\62/\03—64/\65/\56+a6/\03/\05. (32)
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Symplectic 3-Form - Closure as Generalized Jacobi Identity

Using the inverse 7/%¢ it is possible to derive a necessary condition for closure dw = 0 to hold:

_ z Wik (ﬁk@;ﬁj + 7ai{’jffk 4 7ajejfki + gBItgakl 4 7akfgfif 4 73%’:;56]7\7) _ €E)
i<j<k

This expression is analogous to the Jacobi identity 7m7/% 4 gimgki | gkmglJ — o for the Poisson operator in
classical Hamiltonian mechanics.

Any invertible skew-symmetric third order tensor with constant entries, 77%¢ € R, automatically satisfies (33),
and dw = 0 as well.

The generalization of Hamiltonian mechanics following from the present construction is weaker than that
resulting from enforcing the fundamental identity.
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Hamiltonian Mechanics vs Nambu Mechanics - Example

Consider again the previous system of quantum oscillators. Perform the change of variables
(1,91, €1, 92,92, &) = (1,91, G1, P2, 92, G,). The Hamiltonian can be written as

~ 1
H=2(pi +p;+ai +a2) +2a:(G2 + q2). (34)
The equations of motion become
P1 (—q1 — (G, + q3)) _~Hq1
ql P1 le
Gy _ 0 [ 0 (35)
1?2 —q — 21919, —Hg,
q> %) H
G,] L 0 I

This system, which fails the fundamental identity, is a generalized Hamiltonian system with symplectic 3-form
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Generalized Hamiltonian Mechanics - Lie-Darboux Theorem

It remains to prove the Lie-Darboux and Liouville theorems for the generalized theory.

Theorem. Let w € A3 TQ be a smooth closed 3-form on a smooth manifold  of dimension n. Let Wik, L, J, k =
1, ...,n denote the components of w with respect to a coordinate system (x1,...,x™) onQ,

= Z wijrdxt Adxt Adx®.
i<j<k

Suppose that the n X n? matrix W;(jk) has rank n. Then, for every point x, € () there exist a neighborhood U c ()
of xo and a local smooth coordinate system (y?, ..., y™) such that

w = Z Aijdyt Ady) Ady* in U,
i<j<k

where A;ji, = wijk(xo), 1, j, k = 1, ...,n, is a skew-symmetric third order covariant tensor with constant entries.
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Generalized Hamiltonian Mechanics - Lie-Darboux Theorem

Proof. We follow the steps of the classical proof of the Lie-Darboux theorem based on Moser’s method [1,9]. Let
wy, denote the constant form on R",

Wqo = 2 Aijkdyi AN dy] AN dyk ,
i<j<k
with A; i, i,j, k = 1, ..., n, real constants. Consider a family of vector fields X; € TQ, 0 <t < 1, definedin a
neighborhood U of a point xy € () that generates a one-parameter group of diffeomorphisms g; as follows,

d
Egt(xo) = Xt(gt(xo))r 9o (xp) = xo.
Next, define the family of 3-forms
wy = wy + t(w — wy).

Closure dw; = 0

d dw, 4

Jiwg =wy - ngwt = g¢ (W + dix,w; + ixtth) = g <—t + ditht) = 0.

We wish to obtain X;, and thus g;, so that (g} is the pullback of w; by g;)

dt

By the Poincaré lemma, in a sufficiently small neighborhood W of x, the closed differential form dw, /dt is
exact.

[1] M. de Léon, Methods of Differential Geometry in Analytical Mechanics, Elsevier, New York, pp. 250-253 (1989).
27/33  [9]J. Moser, On the volume elements on a manifold, Trans. Am. Mat. Soc. 120, pp. 286-294 (1965).



Generalized Hamiltonian Mechanics - Lie-Darboux Theorem

Hence, there is a 2-form o, = 2 atjkdxj A dx® such that
dw; g o
—— =do; in W.
dt ‘
daw

Therefore, the equation %gfwt = g; ( dtt + ditht) = 0 can be solved by finding a vector field X; satisfying

— _ i 1 —
Oy = —lx W =  Opjx = —XiWeijk jk=1,..,n

By hypothesis, the n X n* matrix w;jx has rank n. Similarly, setting A4;j, = w;j(x¢), the n X n® matrix 4;¢jx
has rank n. Furthermore, at x, we may assume w(x,) = wy(x) since the matrices w;j, and A4, j coincide there.
Then,for0 <t <1,

we(x0) = wo(xp).

This implies that the n x n* matrix we;(jx)(xo) has rank n at x,. By continuity of the tensor wy;jy, it follows that
there exists a neighborhood V of x, where the rank of wy; iy is n. Define U = W N V. Then, the matrix wy; i)

has an inverse jt(jk){) giving X, in U as
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Generalized Hamiltonian Mechanics - Liouville Theorem

The previous theorem implies that a generalized Hamiltonian system has an invariant (Liouville) measure

dZ = dy* A---Ady™ in U. (37)

To see that dZ is invariant, notice that, setting B/*¢ = 7/%¢(x,), one has

; ¢
L _0G OH OGO dy _ pep 96 OH 1, .n (38)
Y dt oyl ayk  aykoyJ dt dyJ oyk’ N S

iw=—dHAdG - A

It follows that

= 0. (39)

(1]

s d (dy J— 0%G aH+aG 0%H ;
T oy - dyldyJ dyk = ay*ayioy
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Generalized Hamiltonian Mechanics - Existence of Canonical Triplets

Both the symplectic form w and the Liouville measure dZ are preserved as in the classical formulation. However,
there is a difference with respect to the existence of canonical variables.

In the classical proof of the Lie-Darboux theorem the skew-symmetry of the tensor w;; associated with the
symplectic 2-form w is sufficient to ensure that there exists a linear change of basis transforming the skew-
symmetric matrix w;;(x) into block diagonal form at any x, € Q,

o 1 --
QTa)(xO)Q=[—1 0 0], QQ" =1 (40)
0 -

An analogous result is not available for third order tensors like w;j (x(): one cannot guarantee the local
invertibility of the tensor wy; j; associated with the 3-form w; = W, + t(w — W), with

m . . .
Wy = Z dp' Adqg' Adrt. (41)
i=1




Generalized Hamiltonian Mechanics - Existence of Canonical Triplets

Local canonical triplets (»!, g%, 1t), i = 1, ..., m, are not expected to be available in general.
p p,q p g

Nevertheless, whenevern = 3m with m an integer, canonical triplets locally exist in the neighborhood of all
points x € () such that w;;;(x,) can be transformed by a linear change of basis into the generalized Levi-Civita

symbol Ej g,

ik - . . _ _
Eij = eVt if o(ijl) =(Em+e2m+e),  L=1,..,m (42)
0 otherwise
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Concluding Remarks — Summary

*  We have formulated a generalization of classical Hamiltonian mechanics to a 3-dimensional
phase space.

e The theory relies on a symplectic 3-form w and a pair of Hamiltonians G, H.

* The Jacobiidentity is identified with the closure condition dw = 0 written in terms of the
inverse 7YX,

* The closure condition is weaker than the fundamental identity: constant 3-tensors define
generalized Poisson operators.

* The closure of w ensures that there exist local coordinates (yl, ..., ¥™) such that the
components of w are constants, and the volume form dZ = dy! A --- A dy™ is invariant.
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Concluding Remarks — Open Questions

« Identify sufficient condition for existence of canonical triplets (pt, ¢*,7%),i =1, ..., m.

* Identify conditions under which a generalized Hamiltonian system has a classical Hamiltonian
structure and vice versa.

* ldentify systems that are Hamiltonian in the generalized sense, but that do not possess a
classical Hamiltonian structure.

* Prove uniqueness and skew-symmetry of inverse matrix 79%¢ when Wi(jk) has rank n.

* Does the theory perform better with respect to bracket quantization?
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Thank you for your attention!




