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*Pictures from Wikipedia

Sir Isaac Newton (1643-1727) Sir William Rowan Hamilton (1805-1865)

ሶ𝒑 = −
𝜕𝐻

𝜕𝒒
, ሶ𝒒 =

𝜕𝐻

𝜕𝒑
.𝑭 = 𝑚𝒂.

• The correspondence between the two formulations can be made explicit: for 𝐻 =
𝒑2

2𝑚
+ 𝑉 both give  ሶ𝒑 = −∇𝑉.
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In an ideal mechanical system, there is no entropy growth mechanism (dissipation).

➢ Ideal mechanical systems usually arise as Hamiltonian systems.

➢ In the ideal limit, Newtonian mechanics and related theories (fluid mechanics, plasma physics, etc.) can be 
written in Hamiltonian form.

Hamiltonian mechanics can account for non-Newtonian physics as well. For example,  

➢ Quantum mechanics (Schrödinger equation)

➢ General relativity (ADM formalism)

• Hamiltonian mechanics is a statement regarding the existence of phase space, while the properties of matter 
are encapsulated into the Hamiltonian function (energy) of the system.  
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The Schrödinger equation of quantum mechanics describes the deterministic evolution of the probability 
amplitude Ψ,

iℏ
𝜕Ψ

𝜕𝑡
= −

ℏ2

2𝑚
Δ + 𝑉 Ψ.

Via the Madelung representation Ψ = 𝜌 exp i 𝜃/ℏ ,

𝜕𝜌

𝜕𝑡
= −

1

𝑚
∇ ⋅ 𝜌∇𝜃 ,

𝜕𝜃

𝜕𝑡
=

ℏ2

2𝑚
−

∇𝜌 2

4𝜌2
−

∇𝜃 2

ℏ2
+
Δ𝜌

2𝜌
− V.

This system has the canonical Hamiltonian form

𝜕𝜌

𝜕𝑡
=
𝛿𝐻

𝛿𝜃
,

𝜕𝜃

𝜕𝑡
= −

𝛿𝐻

𝛿𝜌
, 𝐻 = න

ℝ3
𝜌

∇𝜃 2

2𝑚
+ 𝑉 +

ℏ2

8𝑚
∇ log 𝜌 2 dV .
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Magnetohydrodynamics is a fluid theory describing electrically conducting fluids:

𝜕𝜌

𝜕𝑡
= −∇ ⋅ 𝜌𝒗 ,

𝜕𝒗

𝜕𝑡
= 𝒗 × ∇ × 𝒗 − ∇ ℎ +

𝒗2

2
+
1

𝜌
∇ × 𝑩 × 𝑩,

𝜕𝑩

𝜕𝑡
= ∇ × 𝒗 × 𝑩 .

This system can be written in the noncanonical Hamiltonian form

𝜕𝑢

𝜕𝑡
= ℐ

𝛿𝐻

𝛿𝑢
, 𝑢 = 𝜌, 𝒗, 𝑩 𝑇 ,

where the Hamiltonian 𝐻 and the Poisson operator ℐ are given by:

𝐻 = න
Ω

𝜌
𝒗2

2
+ 𝑈 𝜌 +

𝑩2

2
dV , ℐ =

0 −∇ ⋅ 0
−∇ −𝜌−1 ∇ × 𝒗 × −𝜌−1𝑩 × ∇ ×

0 −∇ × 𝜌−1𝑩× 0
.
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There are mechanical systems that cannot be written in Hamiltonian form:

➢ Dissipative systems: entropy grows. An example is the diffusion equation with Neumann boundary conditions,

𝜕𝑓

𝜕𝑡
= 𝐷Δ𝑓,

𝑑𝑆

𝑑𝑡
= 𝐷න

Ω

𝑓 ∇ log 𝑓 2dV ≥ 0, 𝑆 = −න
Ω

𝑓 log 𝑓 dV .

➢ Nonholonomic systems: systems with non-integrable constraints that do not foliate the phase space into 
symplectic submanifolds. An example is 𝑬 × 𝑩 dynamics in a non-integrable magnetic field 𝑩 ⋅ ∇ × 𝑩 ≠ 0,

𝑚 ሷ𝒙 = 𝑞 ሶ𝒙 × 𝑩 − ∇𝜙 , 𝑚 = 0 →

ሶ𝒙 =
𝑩 × ∇𝜙

𝐵2
.

Note that the energy 𝜙 is constant, ሶ𝒙 ⋅ ∇𝜙 = 0, while the non-integrable constraint is given by

ሶ𝒙 ⋅ 𝑩 = 0.
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• 𝐻 represents the energy of the system. From (1), one sees that ሶ𝐻 = 0.

• The coordinate pairs 𝑝𝑖 , 𝑞𝑖 , 𝑖 = 1,… ,𝑚, are called canonical pairs, with 𝑛 = 2𝑚 the dimension of the 

system.

Ideal mechanical systems usually arise as Hamiltonian systems.

When all degrees of freedom are considered, the equations of motion take a canonical Hamiltonian form.

Hamilton’s canonical equations for a Hamiltonian 𝐻 𝑝1, … , 𝑝𝑚, 𝑞1, … , 𝑞𝑚 are 

ሶ𝑝𝑖 = −
𝜕𝐻

𝜕𝑞𝑖
, ሶ𝑞𝑖 =

𝜕𝐻

𝜕𝑝𝑖
, 𝑖 = 1, … ,𝑚. 1

𝑭 = −∇𝑉 𝐾 =
𝒑2

2𝑚
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• Conservation of energy 𝐻.

• Conservation of phase space volume (Liouville theorem) 𝑑Π = 𝑑𝑝1 ∧ ⋯∧ 𝑑𝑝𝑚 ∧ 𝑑𝑞1 ∧ ⋯∧ 𝑑𝑞𝑚.

𝐻 𝒑, 𝒒 = constant

Π
(phase space)
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• In the noncanonical setting, canonical variables 𝑝𝑖 , 𝑞𝑖 , 𝑖 = 1,… ,𝑚, are ‘hidden’, and new conservation laws 

independent of 𝐻 appear.

Hamilton’s canonical equations can be generalized to the so called noncanonical Hamiltonian form.

Noncanonical Hamiltonian systems arise when redundant degrees of freedom are discarded.

Example: Euler’s rotation equation for a rigid body.

𝒙 ∈ ℝ3 (angular momentum),

ሶ𝒙 = 𝒘 × ∇𝐻, 𝒘 = ∇
𝒙2

2
, 𝐻 =

1

2

𝑥2

𝐼𝑥
+
𝑦2

𝐼𝑦
+
𝑧2

𝐼𝑧

2

𝐶 𝒙 = constant

𝐻 𝒙 = constant

Poisson operator
ℐ = 𝒘 ×

Casimir invariant
𝐶 = 𝒙2/2
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In an 𝑛-dimensional noncanonical Hamiltonian system, the equations of motion are written as:

ሶ𝑥𝑖 = ℐ𝑖𝑗𝐻𝑗 , 𝑖 = 1, … , 𝑛. 3

Here, ℐ𝑖𝑗 is an 𝑛-dimensional second-order skew-symmetric contravariant tensor satisfying the Jacobi identity:

ℐ𝑖𝑗 = −ℐ𝑗𝑖 , ℐ𝑖𝑚ℐ𝑚
𝑗𝑘
+ ℐ𝑗𝑚ℐ𝑚

𝑘𝑖 + ℐ𝑘𝑚ℐ𝑚
𝑖𝑗
= 0, 𝑖, 𝑗, 𝑘 = 1,… , 𝑛. 4

𝐹, 𝐺 = 𝐹𝑖ℐ
𝑖𝑗𝐺𝑗 →

𝑑𝐹

𝑑𝑡
= 𝐹,𝐻 . 5

The tensor ℐ𝑖𝑗 is called Poisson operator. It can be used to define the Poisson bracket ⋅,⋅ :



Hamiltonian Mechanics – Algebraic Formulation

11/33

Let 𝒳 be a vector space over a field 𝐾. A Poisson bracket on 𝒳 is a binary operation

⋅,⋅ ∶ 𝒳 × 𝒳 → 𝒳, 6

that satisfies the following properties for all 𝐹, 𝐺, 𝐻 ∈ 𝒳 and 𝑎, 𝑏 ∈ 𝐾:

1) Bilinearity
𝑎𝐹 + 𝑏𝐺,𝐻 = 𝑎 𝐹,𝐻 + 𝑏 𝐺,𝐻 , 𝐻, 𝑎𝐹 + 𝑏𝐺 = 𝑎 𝐻, 𝐹 + 𝑏 𝐻, 𝐺 ,

2) Alternativity
𝐹, 𝐹 = 0,

3) Skew−symmetry
𝐹, 𝐺 = − 𝐺, 𝐹 ,

4) Leibniz rule
𝐹𝐺, 𝐻 = 𝐹 𝐺, 𝐻 + 𝐹, 𝐻 𝐺,

5) Jacobi identity

𝐹, 𝐺, 𝐻 + 𝐺, 𝐻, 𝐹 + 𝐻, 𝐹, 𝐺 = 0.

7

𝒳 = 𝐶∞ Ω , Ω ⊂ ℝ𝑛,
𝐾 = ℝ

ሶ𝐻 = 𝐻,𝐻 = 0

ሶ𝐹𝐺 = 𝐹𝐺,𝐻 = 𝐹 ሶ𝐺 + ሶ𝐹𝐺

Hamiltonian (phase 
space) structure
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[1] M. de Léon, Methods of Differential Geometry in Analytical Mechanics, Elsevier, New York, pp. 250–253 (1989). [2] V.I. Arnold, Mathematical Methods of Classical Mechanics, 
second ed., Springer, New York, pp. 230–232 (1989). [3] R. Littlejohn, Singular Poisson tensors, in: M. Tabor, Y. Treve (Eds.), Mathematical Methods in Hydrodynamics and 
Integrability in Dynamical Systems, in: American Institute of Physics Conference Proceedings, 88, American Institute of Physics, New York, pp. 47–66 (1982). 

Due to the Lie-Darboux theorem [1-3], the closure of the 2-form 𝜔 implies that the phase space is locally spanned 

by 2𝑚 = 𝑛 − 𝑠 canonically conjugated variables 𝑝𝑖 , 𝑞𝑖 , 𝑖 = 1, … ,𝑚, and 𝑠 = 𝑛 − 2𝑚 Casimir invariants 𝐶𝑖, 

𝑖 = 1,… , 𝑠, which fill the center (kernel) of the Poisson bracket:

𝑑𝐶𝑖

𝑑𝑡
= 𝐶𝑖 , 𝐻 = 0, ∀𝐻 ∈ 𝐶∞ Ω , 𝑖 = 1,… , 𝑠. 8

The noncanonical equations of motion therefore take the local canonical form

𝑑𝑝𝑖

𝑑𝑡
= −

𝜕𝐻

𝜕𝑞𝑖
,

𝑑𝑞𝑖

𝑑𝑡
=
𝜕𝐻

𝜕𝑝𝑖
,

𝑑𝐶𝑗

𝑑𝑡
= 0, 𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑠. 9

The Jacobi identity is equivalent to the existence of a closed 2-form of even rank 2𝑚 = 𝑛 − 𝑠, the symplectic
2-form 𝜔. Here, s is the dimension of the kernel of the Poisson bracket.



Nambu Mechanics – A Possible Generalization of Hamiltonian Mechanics

13/33 [4] Y. Nambu, Generalized Hamiltonian Dynamics, Phys. Rev. D 7, 8 (1973). 

In 1973, Y. Nambu proposed a ‘possible generalization of classical Hamiltonian dynamics to a 3-dimensional phase 
space’: the classical canonical pair (𝑝, 𝑞) is replaced by a canonical triplet (𝑝, 𝑞, 𝑟), while the number of 
generating functions is increased to two Hamiltonians, 𝐺, 𝐻 [4].

𝑑𝑝

𝑑𝑡
=
𝜕𝐺

𝜕𝑞

𝜕𝐻

𝜕𝑟
−
𝜕𝐺

𝜕𝑟

𝜕𝐻

𝜕𝑞
,

𝑑𝑞

𝑑𝑡
=
𝜕𝐺

𝜕𝑟

𝜕𝐻

𝜕𝑝
−
𝜕𝐺

𝜕𝑝

𝜕𝐻

𝜕𝑟
,

𝑑𝑟

𝑑𝑡
=
𝜕𝐺

𝜕𝑝

𝜕𝐻

𝜕𝑞
−
𝜕𝐺

𝜕𝑞

𝜕𝐻

𝜕𝑝
. 10

For the 𝑛 = 3 case, Hamilton’s canonical equations are replaced by Nambu’s canonical equations:

Setting 𝑥1, 𝑥2, 𝑥3 = 𝑝, 𝑞, 𝑟 , system (10) can be written through a ternary operation (Nambu bracket) 
∘,∘,∘ : 𝐶∞ Ω × 𝐶∞ Ω × 𝐶∞ Ω → 𝐶∞ Ω as below:

𝑑𝑥𝑖

𝑑𝑡
= 𝑥𝑖 , 𝐺, 𝐻 = 𝜖𝑖𝑗𝑘𝐺𝑗𝐻𝑘 , 𝑖 = 1,2,3, →

𝑑𝐹

𝑑𝑡
= 𝐹, 𝐺, 𝐻 = 𝜖𝑖𝑗𝑘𝐹𝑖𝐺𝑗𝐻𝑘 . 11

Rigid body

𝑝, 𝑞, 𝑟 = 𝑥, 𝑦, 𝑧 , 𝐺 = 𝐶 =
𝒙2

2
, 𝐻 =

1

2

𝑥2

𝐼𝑥
+
𝑦2

𝐼𝑦
+
𝑧2

𝐼𝑧



Nambu Mechanics – Algebraic Formulation
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[5] P. M. Ho and Y. Matsuo, The Nambu bracket and M-theory, Prog. Theor. Exp. Phys. 2016, 06A104 (2016). 
[6] L. Takhtajan, On Foundation of the Generalized Nambu Mechanics, Commun. Math. Phys. 160, pp. 295-315 (1994).

The generalization of the Nambu bracket (11) to an algebraic framework analogous to the Poisson bracket of 
classical Hamiltonian mechanics has proven difficult because the generalization of the Poisson bracket axioms 
(7) to the Nambu bracket is nontrivial [5]. 

Several authors [5, 6] have proposed the following set of axioms for the Nambu bracket: trilinearity, skew-
symmetry, Leibniz rule, and fundamental identity:

1) Trilinearity
𝑎𝐹1 + 𝑏𝐹2, 𝐹3, 𝐹4 = 𝑎 𝐹1, 𝐹3, 𝐹4 + 𝑏 𝐹2, 𝐹3, 𝐹4 ,

2) Skew−symmetry

𝐹1, 𝐹2, 𝐹3 = 𝜖𝑖𝑗𝑘 𝐹𝑖 , 𝐹𝑗 , 𝐹𝑘 , not summed ,

3) Leibniz rule
𝐹1𝐹2, 𝐹3, 𝐹4 = 𝐹1 𝐹2, 𝐹3, 𝐹4 + 𝐹2 𝐹1, 𝐹3, 𝐹4 ,

4) Fundamental identity

𝐹1, 𝐹2, 𝐹3 , 𝐹4, 𝐹5 = 𝐹1, 𝐹4, 𝐹5 , 𝐹2, 𝐹3 + 𝐹1, 𝐹2, 𝐹4, 𝐹5 , 𝐹3 + 𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5 .

12

∀𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5 ∈ 𝐶∞ Ω and 𝑎, 𝑏 ∈ ℝ.

ሶ𝐺 = 𝐺, 𝐺, 𝐻 = 0,
ሶ𝐻 = 𝐻, 𝐺, 𝐻 = 0

ሶ𝐹1𝐹2 = 𝐹1 ሶ𝐹2 + ሶ𝐹1𝐹2



Nambu Mechanics – Fundamental Identity
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[6] L. Takhtajan, On Foundation of the Generalized Nambu Mechanics, Commun. Math. Phys. 160, pp. 295-315 (1994).
[7] R. Chatterjee and L. Takhtajan, Aspects of classical and quantum Nambu mechanics, Lett. Math. Phys. 37, pp. 475-482 (1996). 

• The fundamental identity leads to the property that the bracket ∘,∘ 𝐺 = ∘, 𝐺,∘ defined by fixing the second 
entry with a given generating function 𝐺 assigns a Poisson algebra. This can be verified by observing that the 
fundamental identity reduces to the Jacobi identity when 𝐹1 = 𝐹4 = 𝐺.

• However, the fundamental identity also implies that constant skew-symmetric 3-tensors ℐ𝑖𝑗𝑘 ∈ ℝ do not 

define a Nambu bracket in general, i.e. 𝐹, 𝐺, 𝐻 = ℐ𝑖𝑗𝑘𝐹𝑖𝐺𝑗𝐻𝑘 does not satisfy the axioms (12) even if ℐ𝑖𝑗𝑘 has 

constant entries.

• This situation points to the fact that the fundamental identity is more stringent than the Jacobi identity
required for a Poisson bracket (on this point, see [6-7]).

• The fundamental identity, which replaces the Jacobi identity for the Poisson bracket, implies distribution of 
derivatives (a property satisfied by Poisson brackets), that is, given two Hamiltonians 𝐹4 and 𝐹5, one has

𝑑

𝑑𝑡
𝐹1, 𝐹2, 𝐹3 =

𝑑𝐹1
𝑑𝑡

, 𝐹2, 𝐹3 + 𝐹1,
𝑑𝐹2
𝑑𝑡

, 𝐹3 + 𝐹1, 𝐹2,
𝑑𝐹3
𝑑𝑡

. 13
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[8] A. Horikoshi, Nambu dynamics and its noncanonical Hamiltonian representation in many degrees of freedom systems, Prog. Theor. Exp. Phys. 2021, ptab075 (2021).

Consider a 1-dimensional system of 2 quantum oscillators [8] with Hamiltonian

𝐻 =
1

2
𝑝1
2 + 𝑝2

2 + 𝜉1 + 𝜉2 + 𝜆𝑞1𝜉2. 14

The phase space variables 𝒙 = 𝑝1, 𝑞1, 𝜉1, 𝑝2, 𝑞2, 𝜉2 correspond to the expectation values

𝑝𝑖 = Ƹ𝑝𝑖 , 𝑞𝑖 = ො𝑞𝑖 , 𝜉i = ො𝑞𝑖
2 , 𝑖 = 1,2. 15

The system is Hamiltonian with Poisson operator ℐ given by

ℐ =

0 −1 −2𝑞1 0 0 0
1 0 0 0 0 0
2𝑞1 0 0 0 0 0
0 0 0 0 −1 −2𝑞2
0 0 0 1 0 0
0 0 0 2𝑞2 0 0

, ሶ𝒙 = ℐ 𝑑𝐻 =

−𝑞1 − 𝜆𝜉2
𝑝1

2𝑞1𝑝1
−𝑞2 − 2𝜆𝑞1𝑞2

𝑝2
2𝑞2𝑝2

. 16



Hamiltonian Mechanics vs Nambu Mechanics – Example
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The system is endowed with 2 additional constants of motion:

𝐺1 = 𝜉1 − 𝑞1
2, 𝐺2 = 𝜉2 − 𝑞2

2, 𝐺 = 𝐺1 + 𝐺2. 17

The equations of motion can be expressed through a Nambu bracket 

• The Nambu bracket (18) does not satisfy the fundamental identity despite having constant entries and the 
system being Hamiltonian.

ሶ𝑝1
ሶ𝑞1
ሶ𝜉1
ሶ𝑝2
ሶ𝑞2
ሶ𝜉2

=

𝑝1, 𝐺, 𝐻

𝑞1, 𝐺, 𝐻

𝜉1, 𝐺, 𝐻

𝑝2, 𝐺, 𝐻

𝑞2, 𝐺, 𝐻

𝜉2, 𝐺, 𝐻

=

𝐻𝜉1𝐺𝑞1 − 𝐻𝑞2𝐺𝜉1
𝐻𝑝1𝐺𝜉1 − 𝐻𝜉1𝐺𝑝1
𝐻𝑞1𝐺𝑝1 − 𝐻𝑝1𝐺𝑞1
𝐻𝜉2𝐺𝑞2 − 𝐻𝑞2𝐺𝜉2
𝐻𝑝2𝐺𝜉2 − 𝐻𝜉2𝐺𝑝2
𝐻𝑞2𝐺𝑝2 − 𝐻𝑝2𝐺𝑞2

↔ ሶ𝑥𝑚
𝑖 = 𝜖𝑚

𝑖𝑗𝑘
𝐺𝑗𝐻𝑘 , 𝑚 = 1,2. 19

𝐹, 𝐺, 𝐻 = 𝜖1
𝑖𝑗𝑘
𝐹𝑖𝐺𝑗𝐻𝑘 + 𝜖2

𝑖𝑗𝑘
𝐹𝑖𝐺𝑗𝐻𝑘 , 18

as below



Jacobi Identity – Geometrical Meaning

18/33

The Jacobi identity of classical Hamiltonian mechanics has a simple geometrical interpretation: if ℐ𝑖𝑗 is invertible 
with inverse 𝜔𝑖𝑗, the noncanonical equations of motion can be written as

ሶ𝑥𝑖 = ℐ𝑖𝑗𝐻𝑗 → 𝜔𝑖𝑗 ሶ𝑥𝑗 = 𝐻𝑖 . 20

Defining the symplectic 2-form 𝜔 = σ𝑖<𝑗𝜔𝑖𝑗𝑑𝑥
𝑖 ∧ 𝑑𝑥𝑗, one can show that

ℐ𝑖𝑚ℐ𝑚
𝑗𝑘
+ ℐ𝑗𝑚ℐ𝑚

𝑘𝑖 + ℐ𝑘𝑚ℐ𝑚
𝑖𝑗
= 0,

𝑖, 𝑗, 𝑘 = 1,… , 𝑛.
↔

𝜕𝜔𝑘𝑗

𝜕𝑥𝑖
+
𝜕𝜔𝑖𝑘

𝜕𝑥𝑗
+
𝜕𝜔𝑗𝑖

𝜕𝑥𝑘
= 0

𝑖, 𝑗, 𝑘 = 1, … , 𝑛.
↔ 𝑑𝜔 = 0.

21

𝑑𝜔 = 0 ⇒ 𝑑𝑤 = 0, 𝑤 =෍
𝑖<𝑗<𝑘

𝑤𝑖𝑗𝑘𝑑𝑥
𝑖 ∧ 𝑑𝑥𝑗 ∧ 𝑑𝑥𝑘 . 22

The Jacobi identity of generalized Hamiltonian mechanics should express the closure of a symplectic 3-form 𝑤:

Jacobi identity Closure



Remark 1: Let 𝜔 ∈ 2𝑇∗Ωٿ denote a closed 2-form. Suppose that the vector field 𝑋 ∈ 𝑇𝛺 satisfies

𝑖𝑋𝜔 = −𝑑𝐻, 𝑖𝑋𝑑𝐺 = 0,

where 𝑑𝐺 and 𝑑𝐻 are linearly independent exact 1-forms. Then, the (Nambu or symplectic) 3-form

𝑤 = 𝜔 ∧ 𝑑𝐺,
has the following properties

𝑖𝑋𝑤 = −𝑑𝐻 ∧ 𝑑𝐺, 𝑑𝑤 = 0.

Generalized Hamiltonian Mechanics – A Possible Approach

19/33

Classical Hamiltonian mechanics can be regarded as a special case (𝑛 = 2) of dynamical theories written as 

ℒ𝑋𝜔
𝑛 = 0, 𝑑𝜔𝑛 = 0, 23

where 𝜔𝑛 is an 𝑛-form. We suggest that Nambu mechanics corresponds to 𝑛 = 3. On a contractible domain, 

𝑖𝑋𝜔
𝑛 = −𝑑𝜆𝑛−2. 24

Converse question:  given 𝑤 and 𝑋 such that 𝑖𝑋𝑤 = −𝑑𝐻 ∧ 𝑑𝐺 and 𝑖𝑋𝑑𝐺 = 0, can one find 𝜔 with 𝑑𝜔 = 0?
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1. Given 2 Hamiltonians 𝐺, 𝐻 ∈ 𝐶∞ Ω and a skew-symmetric third order contravariant tensor ℐ𝑖𝑗𝑘 ∈ 𝐶∞ Ω , the 
equations of motion are given by

2. The tensor ℐ𝑖𝑗𝑘 (generalized Poisson operator) satisfies a generalized Jacobi identity expressing the closure 
of a smooth 3-form 𝑤 (symplectic 3-form), 𝑑𝑤 = 0. 

3. The symplectic 3-form 𝑤 is Lie-invariant, ℒ ሶ𝒙𝑤 = 0.

4. When 𝑤 has rank 𝑛, there exists local coordinates 𝑦1, … , 𝑦𝑛 and a constant skew-symmetric tensor 𝐵𝑖𝑗𝑘

such that (17) takes the generalized canonical form

5. The local coordinates 𝑦1, … , 𝑦𝑛 define an invariant (Liouville) measure 𝑑Ξ = 𝑑𝑦1 ∧ ⋯∧ 𝑑𝑦𝑛 such that 
ℒ ሶ𝒙𝑑Ξ = 0.

ሶ𝑥𝑖 = ℐ𝑖𝑗𝑘𝐺𝑗𝐻𝑘 =෍
𝑗<𝑘

ℐ𝑖𝑗𝑘 𝐺𝑗𝐻𝑘 − 𝐺𝑘𝐻𝑗 , 𝑖 = 1, … , 𝑛. 25

ሶ𝑦𝑖 =෍
𝑗<𝑘

𝐵𝑖𝑗𝑘
𝜕𝐺

𝜕𝑦𝑗
𝜕𝐻

𝜕𝑦𝑘
−

𝜕𝐺

𝜕𝑦𝑘
𝜕𝐻

𝜕𝑦𝑗
, 𝑖 = 1, … , 𝑛. 26

Nambu’s canonical 
equation when 𝑛 = 3
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Generating functions 𝐻 𝐺,𝐻

Operator ℐ𝑖𝑗 ℐ𝑖𝑗𝑘

Bracket 𝐹, 𝐺 = 𝐹𝑖ℐ
𝑖𝑗𝐺𝑗 𝐹, 𝐺, 𝐻 = ℐ𝑖𝑗𝑘𝐹𝑖𝐺𝑗𝐻𝑘

Symplectic form 𝜔 =෍
𝑖<𝑗

𝜔𝑖𝑗𝑑𝑥
𝑖 ∧ 𝑑𝑥𝑗 𝑤 =෍

𝑖<𝑗<𝑘
𝑤𝑖𝑗𝑘𝑑𝑥

𝑖 ∧ 𝑑𝑥𝑗 ∧ 𝑑𝑥𝑘

Jacobi identity 𝑑𝜔 = 0 𝑑𝑤 = 0

Lie-Darboux theorem 𝜔 =෍
𝑖=1

𝑚

𝑑𝑝𝑖 ∧ 𝑑𝑞𝑖 𝑤 = 𝐴𝑖𝑗𝑘𝑑𝑦
𝑖 ∧ 𝑑𝑦𝑗 ∧ 𝑑𝑦𝑘 , 𝐴𝑖𝑗𝑘 ∈ ℝ

Canonical equations
𝑑𝑝𝑖

𝑑𝑡
= −

𝜕𝐻

𝜕𝑞𝑖
,

𝑑𝑞𝑖

𝑑𝑡
=
𝜕𝐻

𝜕𝑝𝑖

𝑑𝑦𝑖

𝑑𝑡
=෍

𝑗<𝑘
𝐵𝑖𝑗𝑘

𝜕𝐺

𝜕𝑦𝑗
𝜕𝐻

𝜕𝑦𝑘
−

𝜕𝐺

𝜕𝑦𝑘
𝜕𝐻

𝜕𝑦𝑗
,

𝐵𝑖𝑗𝑘 ∈ ℝ

Liouville measure 𝑑Π = 𝑑𝑝1 ∧⋯∧ 𝑑𝑝𝑚 ∧ 𝑑𝑞1 ∧ ⋯∧ 𝑑𝑞𝑚 𝑑Ξ = 𝑑𝑦1 ∧ ⋯∧ 𝑑𝑦𝑛

Special functions
(Casimir invariants)

ℐ𝑖𝑗𝐶𝑗 = 0 ℐ𝑖𝑗𝑘𝐶𝑘 = 0, ℐ𝑖𝑗𝑘𝐶𝑗𝐷𝑘 = 0
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The core of the theory lies in the assumption that ሶ𝒙 defines a generalized Hamiltonian system if there exist a 
smooth 3-form 𝑤 and generating functions 𝐺,𝐻 with the following properties

𝑖 ሶ𝒙𝑤 = −𝑑𝐻 ∧ 𝑑𝐺, 𝑑𝑤 = 0. 27

Explicitly, (27) can be written as

ሶ𝑥𝑖𝑤𝑖𝑗𝑘 = 𝐻𝑘𝐺𝑗 − 𝐻𝑗𝐺𝑘 ,
𝜕𝑤𝑖𝑗𝑘

𝜕𝑥ℓ
+
𝜕𝑤𝑖ℓ𝑗

𝜕𝑥𝑘
+
𝜕𝑤𝑖𝑘ℓ

𝜕𝑥𝑗
+
𝜕𝑤𝑗ℓ𝑘

𝜕𝑥𝑖
= 0, 𝑖, 𝑗, 𝑘, ℓ = 1, … , 𝑛. 28

→ ℒ ሶ𝒙𝑤 = 0

We say that a skew-symmetric third order contravariant tensor ℐ𝑗𝑘ℓ is the inverse of 𝑤𝑖𝑗𝑘 if

The notion of invertibility (29) for 𝑤𝑖𝑗𝑘 is equivalent to the existence of a right-inverse for the 𝑛 × 𝑛2 matrix

𝑤𝑖(𝑗𝑘). The right-inverse ℐ(𝑗𝑘)ℓ exists when 𝑤𝑖(𝑗𝑘) has rank 𝑛. In such case 𝑤𝑖(𝑗𝑘) is the left-inverse of ℐ(𝑗𝑘)ℓ.

෍
𝑗<𝑘

𝑤𝑖𝑗𝑘ℐ
𝑗𝑘ℓ = 𝛿𝑖

ℓ, 𝑖, ℓ = 1,… , 𝑛 → ሶ𝑥ℓ = ℐℓ𝑗𝑘𝐺𝑗𝐻𝑘 , ℓ = 1, … , 𝑛. 29
෍

𝑗<𝑘
𝜖𝑖𝑗𝑘𝜖

𝑗𝑘ℓ = 𝛿𝑖
ℓ
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3-tensors as 𝑤𝑖𝑗𝑘 can be thought of as matrices having rows, columns, and ‘depth’. To a tensor 𝑤𝑖𝑗𝑘 we can 

assign a unique conventional matrix 𝑤𝑖 𝑗𝑘 having 𝑛 rows and 𝑛2 columns. For example, if 𝑤𝑖𝑗𝑘 = 𝜖𝑖𝑗𝑘,

0 0 0
0 0 1
0 −1 0 1

,
0 0 −1
0 0 0
1 0 0 2

,
0 1 0
−1 0 0
0 0 0 3

→
0 0 0 0 0 1 0 −1 0
0 0 −1 0 0 0 1 0 0
0 1 0 −1 0 0 0 0 0

. 30

An example in higher dimensions (𝑛 = 6) is the following. The 3-form 

𝑤 = 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3 + 𝑑𝑥4 ∧ 𝑑𝑥5 ∧ 𝑑𝑥6 + 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥4, 31

rank = 3
→ ℐ𝑗𝑘ℓ = 𝜖𝑗𝑘ℓ

has rank 6, and therefore possesses an inverse ℐ. The inverse is

ℐ = −𝜕1 ∧ 𝜕2 ∧ 𝜕3 − 𝜕4 ∧ 𝜕5 ∧ 𝜕6 + 𝜕6 ∧ 𝜕3 ∧ 𝜕5. 32



Symplectic 3-Form – Closure as Generalized Jacobi Identity
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Using the inverse ℐ𝑗𝑘ℓ it is possible to derive a necessary condition for closure 𝑑𝑤 = 0 to hold:

0 =෍
𝑖<𝑗<𝑘

𝑤𝑖𝑗𝑘 ℐ𝛽𝑘ℓℐℓ
𝛼𝑖𝑗

+ ℐ𝛼𝑖ℓℐℓ
𝛽𝑗𝑘

+ ℐ𝛼𝑗ℓℐℓ
𝛽𝑘𝑖

+ ℐ𝛽𝑗ℓℐℓ
𝛼𝑘𝑖 + ℐ𝛼𝑘ℓℐℓ

𝛽𝑖𝑗
+ ℐ𝛽𝑖ℓℐℓ

𝛼𝑗𝑘
. 33

• Any invertible skew-symmetric third order tensor with constant entries, ℐ𝑗𝑘ℓ ∈ ℝ, automatically satisfies (33), 
and 𝑑𝑤 = 0 as well. 

• The generalization of Hamiltonian mechanics following from the present construction is weaker than that 
resulting from enforcing the fundamental identity.

This expression is analogous to the Jacobi identity ℐ𝑖𝑚ℐ𝑚
𝑗𝑘
+ ℐ𝑗𝑚ℐ𝑚

𝑘𝑖 + ℐ𝑘𝑚ℐ𝑚
𝑖𝑗
= 0 for the Poisson operator in 

classical Hamiltonian mechanics. 
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Consider again the previous system of quantum oscillators. Perform the change of variables 
𝑝1, 𝑞1, 𝜉1, 𝑝2, 𝑞2, 𝜉2 → 𝑝1, 𝑞1, 𝐺1, 𝑝2, 𝑞2, 𝐺2 . The Hamiltonian can be written as

෩𝐻 =
1

2
𝑝1
2 + 𝑝2

2 + 𝑞1
2 + 𝑞2

2 + 𝜆𝑞1 𝐺2 + 𝑞2
2 . 34

The equations of motion become

ሶ𝑝1
ሶ𝑞1
ሶ𝐺1
ሶ𝑝2
ሶ𝑞2
ሶ𝐺2

=

−𝑞1 − 𝜆 𝐺2 + 𝑞2
2

𝑝1
0

−𝑞2 − 2𝜆𝑞1𝑞2
𝑝2
0

=

−෩𝐻𝑞1
෩𝐻𝑝1
0

−෩𝐻𝑞2
෩𝐻𝑝2
0

. 35

𝑤 = 𝜔 ∧ 𝑑𝐺2 = 𝑑𝑝1 ∧ 𝑑𝑞1 + 𝑑𝑝2 ∧ 𝑑𝑞1 ∧ 𝑑𝐺2. 36

This system, which fails the fundamental identity, is a generalized Hamiltonian system with symplectic 3-form
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It remains to prove the Lie-Darboux and Liouville theorems for the generalized theory. 

Theorem. Let 𝑤 ∈ 3𝑇Ωٿ be a smooth closed 3-form on a smooth manifold Ω of dimension 𝑛. Let 𝑤𝑖𝑗𝑘, 𝑖, 𝑗, 𝑘 =

1, … , 𝑛 denote the components of 𝑤 with respect to a coordinate system 𝑥1, … , 𝑥𝑛 on Ω,

𝑤 =෍
𝑖<𝑗<𝑘

𝑤𝑖𝑗𝑘𝑑𝑥
𝑖 ∧ 𝑑𝑥𝑗 ∧ 𝑑𝑥𝑘 .

Suppose that the 𝑛 × 𝑛2 matrix 𝑤𝑖(𝑗𝑘) has rank 𝑛. Then, for every point 𝒙0 ∈ Ω there exist a neighborhood 𝑈 ⊂ Ω

of 𝒙0 and a local smooth coordinate system 𝑦1, … , 𝑦𝑛 such that

𝑤 =෍
𝑖<𝑗<𝑘

𝐴𝑖𝑗𝑘𝑑𝑦
𝑖 ∧ 𝑑𝑦𝑗 ∧ 𝑑𝑦𝑘 in 𝑈,

where 𝐴𝑖𝑗𝑘 = 𝑤𝑖𝑗𝑘 𝒙0 , 𝑖, 𝑗, 𝑘 = 1, … , 𝑛, is a skew-symmetric third order covariant tensor with constant entries.
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[1] M. de Léon, Methods of Differential Geometry in Analytical Mechanics, Elsevier, New York, pp. 250–253 (1989).
[9] J. Moser, On the volume elements on a manifold, Trans. Am. Mat. Soc. 120, pp. 286-294 (1965).

Proof. We follow the steps of the classical proof of the Lie-Darboux theorem based on Moser’s method [1,9]. Let 
𝑤0 denote the constant form on ℝ𝑛,

𝑤0 =෍
𝑖<𝑗<𝑘

𝐴𝑖𝑗𝑘𝑑𝑦
𝑖 ∧ 𝑑𝑦𝑗 ∧ 𝑑𝑦𝑘 ,

with 𝐴𝑖𝑗𝑘, 𝑖, 𝑗, 𝑘 = 1,… , 𝑛, real constants. Consider a family of vector fields 𝑋𝑡 ∈ 𝑇Ω, 0 ≤ 𝑡 ≤ 1, defined in a 

neighborhood 𝑈 of a point 𝒙0 ∈ Ω that generates a one-parameter group of diffeomorphisms 𝑔𝑡 as follows,

𝑑

𝑑𝑡
𝑔𝑡 𝒙0 = 𝑋𝑡 𝑔𝑡 𝒙0 , 𝑔0 𝒙0 = 𝒙0.

Next, define the family of 3-forms
𝑤𝑡 = 𝑤0 + 𝑡 𝑤 − 𝑤0 .

We wish to obtain 𝑋𝑡, and thus 𝑔𝑡, so that (𝑔𝑡
∗ is the pullback of 𝑤𝑡 by 𝑔𝑡)

𝑔𝑡
∗𝑤𝑡 = 𝑤0 →

𝑑

𝑑𝑡
𝑔𝑡
∗𝑤𝑡 = 𝑔𝑡

∗
𝑑𝑤𝑡

𝑑𝑡
+ 𝑑𝑖𝑋𝑡𝑤𝑡 + 𝑖𝑋𝑡𝑑𝑤𝑡 = 𝑔𝑡

∗
𝑑𝑤𝑡

𝑑𝑡
+ 𝑑𝑖𝑋𝑡𝑤𝑡 = 0.

By the Poincaré lemma, in a sufficiently small neighborhood 𝑊 of 𝒙0, the closed differential form 𝑑𝑤𝑡/𝑑𝑡 is 
exact.

Closure 𝑑𝑤𝑡 = 0
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Hence, there is a 2-form 𝜎𝑡 = σ𝑗<𝑘 𝜎𝑡𝑗𝑘𝑑𝑥
𝑗 ∧ 𝑑𝑥𝑘 such that

𝑑𝑤𝑡

𝑑𝑡
= 𝑑𝜎𝑡 in 𝑊.

Therefore, the equation 
𝑑

𝑑𝑡
𝑔𝑡
∗𝑤𝑡 = 𝑔𝑡

∗ 𝑑𝑤𝑡

𝑑𝑡
+ 𝑑𝑖𝑋𝑡𝑤𝑡 = 0 can be solved by finding a vector field 𝑋𝑡 satisfying

𝜎𝑡 = −𝑖𝑋𝑡𝑤𝑡 → 𝜎𝑡𝑗𝑘 = −𝑋𝑡
𝑖𝑤𝑡𝑖𝑗𝑘 , 𝑗, 𝑘 = 1, … , 𝑛.

By hypothesis, the 𝑛 × 𝑛2 matrix 𝑤𝑖(𝑗𝑘) has rank 𝑛. Similarly, setting 𝐴𝑖𝑗𝑘 = 𝑤𝑖𝑗𝑘 𝒙0 , the 𝑛 × 𝑛2 matrix 𝐴𝑖(𝑗𝑘)
has rank 𝑛. Furthermore, at 𝒙0 we may assume 𝑤 𝒙0 = 𝑤0 𝒙0 since the matrices 𝑤𝑖𝑗𝑘 and 𝐴𝑖𝑗𝑘 coincide there. 

Then, for 0 ≤ t ≤ 1,

𝑤𝑡 𝒙0 = 𝑤0 𝒙0 .

This implies that the 𝑛 × 𝑛2 matrix 𝑤𝑡𝑖(𝑗𝑘) 𝒙0 has rank 𝑛 at 𝒙0. By continuity of the tensor 𝑤𝑡𝑖𝑗𝑘 it follows that 

there exists a neighborhood 𝑉 of 𝒙0 where the rank of 𝑤𝑡𝑖(𝑗𝑘) is 𝑛. Define 𝑈 = 𝑊 ∩ 𝑉. Then, the matrix 𝑤𝑡𝑖(𝑗𝑘)

has an inverse ℐ𝑡
𝑗𝑘 ℓ

giving 𝑋𝑡 in 𝑈 as 

𝑋𝑡
ℓ = −ℐ𝑡

𝑗𝑘ℓ
𝜎𝑡𝑗𝑘, ℓ = 1,… , 𝑛.
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The previous theorem implies that a generalized Hamiltonian system has an invariant (Liouville) measure

𝑑Ξ = 𝑑𝑦1 ∧ ⋯∧ 𝑑𝑦𝑛 in 𝑈. 37

To see that 𝑑Ξ is invariant, notice that, setting 𝐵𝑗𝑘ℓ = ℐ𝑗𝑘ℓ 𝒙0 , one has

𝑖 ሶ𝒙𝑤 = −𝑑𝐻 ∧ 𝑑𝐺 → 𝐴𝑖𝑗𝑘
𝑑𝑦𝑖

𝑑𝑡
=

𝜕𝐺

𝜕𝑦𝑗
𝜕𝐻

𝜕𝑦𝑘
−

𝜕𝐺

𝜕𝑦𝑘
𝜕𝐻

𝜕𝑦𝑗
→

𝑑𝑦ℓ

𝑑𝑡
= 𝐵ℓ𝑗𝑘

𝜕𝐺

𝜕𝑦𝑗
𝜕𝐻

𝜕𝑦𝑘
, 𝑗, 𝑘, ℓ = 1,… , 𝑛. 38

ℒ ሶ𝒙𝑑Ξ =
𝜕

𝜕𝑦𝑖
𝑑𝑦𝑖

𝑑𝑡
𝑑Ξ = 𝐵𝑖𝑗𝑘

𝜕2𝐺

𝜕𝑦𝑖𝜕𝑦𝑗
𝜕𝐻

𝜕𝑦𝑘
+

𝜕𝐺

𝜕𝑦𝑘
𝜕2𝐻

𝜕𝑦𝑖𝜕𝑦𝑗
𝑑Ξ = 0. 39

It follows that
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෥𝑤0 =෍
𝑖=1

𝑚

𝑑𝑝𝑖 ∧ 𝑑𝑞𝑖 ∧ 𝑑𝑟𝑖 . 41

An analogous result is not available for third order tensors like 𝑤𝑖𝑗𝑘(𝒙0): one cannot guarantee the local 

invertibility of the tensor ෥𝑤𝑡𝑖𝑗𝑘 associated with the 3-form ෥𝑤𝑡 = ෥𝑤0 + 𝑡(𝑤 − ෥𝑤0), with

Both the symplectic form 𝑤 and the Liouville measure 𝑑Ξ are preserved as in the classical formulation. However, 
there is a difference with respect to the existence of canonical variables.

In the classical proof of the Lie-Darboux theorem the skew-symmetry of the tensor 𝜔𝑖𝑗 associated with the 

symplectic 2-form 𝜔 is sufficient to ensure that there exists a linear change of basis transforming the skew-
symmetric matrix 𝜔𝑖𝑗(𝒙0) into block diagonal form at any 𝒙0 ∈ Ω, 

𝑄𝑇𝜔 𝒙0 𝑄 =
0 1 ⋯
−1 0 0
⋮ 0 ⋱

, 𝑄𝑄𝑇 = 𝐼. 40



Generalized Hamiltonian Mechanics – Existence of Canonical Triplets
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Local canonical triplets 𝑝𝑖 , 𝑞𝑖 , 𝑟𝑖 , 𝑖 = 1,… ,𝑚, are not expected to be available in general. 

Nevertheless, whenever 𝑛 = 3𝑚 with 𝑚 an integer, canonical triplets locally exist in the neighborhood of all 
points 𝒙0 ∈ Ω such that 𝑤𝑖𝑗𝑘(𝒙0) can be transformed by a linear change of basis into the generalized Levi-Civita

symbol 𝐸𝑖𝑗𝑘,

𝐸𝑖𝑗𝑘 = ቊ𝜖
𝑖𝑗𝑘 if 𝜎 𝑖, 𝑗, 𝑘 = ℓ,𝑚 + ℓ, 2𝑚 + ℓ , ℓ = 1,… ,𝑚
0 otherwise

. 42



Concluding Remarks – Summary 
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• We have formulated a generalization of classical Hamiltonian mechanics to a 3-dimensional 
phase space.

• The theory relies on a symplectic 3-form 𝑤 and a pair of Hamiltonians 𝐺,𝐻.

• The Jacobi identity is identified with the closure condition 𝑑𝑤 = 0 written in terms of the 
inverse ℐ𝑖𝑗𝑘.

• The closure condition is weaker than the fundamental identity: constant 3-tensors define 
generalized Poisson operators.

• The closure of 𝑤 ensures that there exist local coordinates 𝑦1, … , 𝑦𝑛 such that the 
components of 𝑤 are constants, and the volume form 𝑑Ξ = 𝑑𝑦1 ∧ ⋯∧ 𝑑𝑦𝑛 is invariant.



Concluding Remarks – Open Questions
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• Identify sufficient condition for existence of canonical triplets (𝑝𝑖 , 𝑞𝑖 , 𝑟𝑖), 𝑖 = 1,… ,𝑚.

• Identify conditions under which a generalized Hamiltonian system has a classical Hamiltonian 
structure and vice versa.

• Identify systems that are Hamiltonian in the generalized sense, but that do not possess a 
classical Hamiltonian structure.

• Prove uniqueness and skew-symmetry of inverse matrix ℐ 𝑗𝑘 ℓ when 𝑤𝑖 𝑗𝑘 has rank 𝑛.  

• Does the theory perform better with respect to bracket quantization?



Thank you for your attention!


