

New results from fluctuation analysis in NA49 at the CERN SPS

Maja Maćkowiak-Pawłowska for the NA49 Collaboration

Frankfurt University, IKF, Frankfurt WUT, Faculty of Physics, Warsaw

November 7, 2011

CPOD2011, Wuhan, China

Motivation

2 NA49 experiment

Motivation

2 NA49 experiment

1 Motivation

2 NA49 experiment

Measures of fluctuations
 Chemical fluctuations

Motivation

2 NA49 experiment

- Chemical fluctuations
- N and average p_T fluctuations

Motivation

2 NA49 experiment

- Chemical fluctuations
- N and average p_T fluctuations
- Azimuthal angle fluctuations

Motivation

2 NA49 experiment

- Chemical fluctuations
- N and average p_T fluctuations
- Azimuthal angle fluctuations
- Intermittency analysis will be presented by F. Diakonos

Motivation

2 NA49 experiment

3 Measures of fluctuations

- Chemical fluctuations
- N and average p_T fluctuations
- Azimuthal angle fluctuations
- Intermittency analysis will be presented by F. Diakonos

Summary

Motivation

Fluctuations study for OD and CP

NA49 experiment

NA49 (fixed target) experiment at CERN SPS

● p+p, C+C, Si+Si, Pb+Pb interactions at √s_{NN} ∈ (6.3 - 17.3)GeV

• Hadron spectrometer

Four TPCs; two VTPCs (1/2) in the B field and two others MTPCs (R/L) outside; for a precise measurement of p and dE/dx

- $\bullet\,$ Large acceptance $\sim 50\%$
- High momentum resolution

 $rac{\sigma(p)}{p^2} \sim 10^{-4} (rac{GeV}{c})^{-1}$

• PID by dE/dx, TOF, decay topology, invariant mass

 $\sigma(dE/dx)/ < dE/dx > \sim 5\%$

 σ (TOF) \sim 60ps

 $\sigma(m_{inv}) \sim 5 MeV$

• Good centrality determination Forward Calorimeter (energy of projectile spectators)

E-by-e identified hadron multiplicities in NA49

Fluctuation measures studied in NA49

$\overline{\sigma_{dyn}}$ - measure of dynamical particle ratio fluctuations $(K/p, K/\pi, p/\pi)$

- E-by-e fit of particle multiplicities required in NA49
- Mixed events used as reference

•
$$\sigma_{dyn}^2 \sim \frac{1}{N_W}$$
, $\sigma_{dyn}^2 \approx \nu_{dyn}$

$$\sigma_{\textit{dyn}} = \textit{sign}(\sigma_{\textit{data}}^2 - \sigma_{\textit{mix}}^2) \sqrt{|\sigma_{\textit{data}}^2 - \sigma_{\textit{mix}}^2|}$$

$$\omega$$
 - scaled variance of multiplicity distribution

- Intensive measure
- For Poissonian multiplicity distribution $\omega = 1$

In wounded nucleon model: $\omega(AA) = \omega(NN) + \frac{1}{2} < n > \omega_W$ where w(NN) and < n > are scaled variance and mean multiplicity in NN interactions; respectively ω_W - scaled variance of the number of wounded nucleons, N_W ω depends on N_W fluctuations

Φ_x - strongly intensive fluctuation measure (x= p_T , ϕ ,Q)

- In superposition model $\Phi_x(AA) = \Phi_x(NN)$
- For independent particle emission $\Phi_{\chi} = 0$

$$\Phi_{\chi} = \sqrt{\frac{\langle Z_{\chi}^2 \rangle}{\langle N \rangle}} - \sqrt{\overline{z}^2},$$

 $\sigma = \frac{\sqrt{Var(A/B)}}{\sqrt{A/B}} \cdot 100[\%]$

$$Z_x = x - \overline{x}, \, \overline{x} - \text{incl. av}$$
 $Z_x = \sum_{i=1}^N (x - \overline{x})$

 Φ_x is independent of volume and volume fluctuations (strongly intensive)

Intermittency analysis will be presented by F. Diakonos

Chemical fluctuations

E-b-e hadron ratios

Fitted event-by-event hadron ratios (e.g., K/p) from

data events
mixed events:

event mixing + maximum likelihood PID

Calculate from data and mixed events:

$$\sigma = rac{\sqrt{ extsf{Var}(A/B)}}{} \cdot 100\[\%\]$$

$$\sigma_{dyn} = \textit{sign}(\sigma_{data}^2 - \sigma_{mix}^2) \sqrt{|\sigma_{data}^2 - \sigma_{mix}^2|}$$

Energy dependence for central Pb+Pb

 σ_{dyn} rises towards low SPS energies which is not reproduced by UrQMD. HSD catches the trend but over-predicts points at high SPS energies. Data are reproduced by multiplicity scaling.

NA49: PR**C79**, 044910 (2009) HSD: PR**C79**, 024907 (2009)

 σ_{dyn} decreases towards low SPS energies which is reproduced by hadronic models and multiplicity scaling. The trend is understood in terms of correlations due to nucleon resonance decays.

NA49: PRC79, 044910 (2009) HSD: J.Phys.G36, 125106 (2009)

Multiplicity scaling is expected in thermodynamic models for μ_B , $T_{chem} = const$ [Koch, Schuster PRC81,034910(2010)]

Energy dependence for central Pb+Pb

K/p: σ_{dyn} changes sign

The sign change is not reproduced by hadronic models (UrQMD and HSD) and by the multiplicity scaling.

NA49: PRC83, 061902 (2011) [arXiv:1101.3250]; HSD: J.Phys.G36, 125106 (2009)

Centrality dependence of Pb+Pb at 17.3 GeV

 σ_{dyn} does not change sign for K/p, K/π , p/π

Direct multiplicity scaling

Comparison between NA49 and STAR

Energy dependence for central Pb+Pb (Au+Au) collisions.

figures from T. Tarnowsky (STAR, SQM2011) conversion via: $\nu_{dyn} = sign(\sigma_{dyn}) \cdot \sigma_{dyn}^2$

STAR results do not show increase towards low SPS energies for K/π and K/p

Possible sources of the difference

Analysis procedures were carefully checked, no problems found

NA49 and STAR acceptance and centrality selection differ significantly

Centrality selection:

- NA49: energy of projectile spectators
- STAR: *N*_{ch} multiplicity

Further steps

- further checks of the used analysis methods
- a new analysis method (identity PRC83,054907(2011),PRC84,024902(2011)) and strongly intensive fluctuation measures will be used by NA49

N and average p_T fluctuations

Multiplicity and mean transverse momentum fluctuations

Large fluctuations of multiplicity and mean transverse momentum

 ω for C+C and Si+Si

CPOD2011, Wuhan, China

N\$5 🕅

Maja Maćkowiak-Pawłowska for the NA49 Collaboration

20

For the search of CP it is more convenient to use (T_{chem}, μ_B) instead of $(N_w, \sqrt{s_{NN}})$

N20 🗭

Comparing with critical point predictions¹

All charged:

 1 Stephanov et al., PR**D60** 114028 (1999), Hatta, lkeda et al., PR**D67** 014028 (2003) for details see Grebieszkow et al., NP**A830**, 547C-550C (2009)

CPOD2011, Wuhan, China

Results for same charged particles

Increase about two times larger for all charged than for same charged particles (as predicted for CP)

CPOD2011, Wuhan, China

Maja Maćkowiak-Pawłowska for the NA49 Collaboration

3^{rd} moment of average p_T fluctuations

Higher moments are expected to be more sensitive to the CP fluctuations.

Azimuthal angle fluctuations

Energy dependence of azimuthal angle fluctuations

Azimuthal angle fluctuations may be sensitive to:

- plasma instabilities PLB314, 118 (1993)
- flow fluctuations APPB34, 4241 (2003); arXiv:nucl-ex/0312008

Background effects: resonance decays, momentum conservation, flow, (di-)jets, quantum statistics

System size dependence at 17.3 GeV of azimuthal angle fluctuations

NA49 preliminary:

- $\Phi_{\phi} > 0$ for peripheral Pb+Pb
- UrQMD(3.3) does not reproduce the data
- the magnitude of Φ_{ϕ} reproduced by the effect of v_1 and v_2

Summary

- Energy and system size dependence of K/π and p/π fluctuations can be described in a simple multiplicity scaling model
- *K*/*p* **fluctuations** show a deviation from this scaling; is the underlying correlation physics changing with energy?
- The energy dependence of event-by-event K/p and K/π fluctuations measured by NA49 and STAR in central Pb+Pb/Au+Au is different. Both collaborations work on clarification of the observed differences
- Fluctuations of average p_T and multiplicity are maximal in Si+Si collisions at 17.3 GeV. This might be connected with the critical point at SPS energies → strong motivation for future experiments

Back-up slides

Details of acceptance in NA49 and STAR

artificial correlations introduced by the fit procedure are quantified by applying the same analysis procedure to mixed events and subtracted

$$\sigma_{dyn} = \operatorname{sign}(\sigma_{data}^2 - \sigma_{mix}^2) \sqrt{\left|\sigma_{data}^2 - \sigma_{mix}^2\right|} , \quad \sigma = \frac{\sqrt{\operatorname{Var}(A/B)}}{\langle A/B \rangle}$$

UrQMD simulation demonstrates validity of the method:

differences mostly insignificant, taken into systematic errors

equivalence of σ_{dyn} and ν_{dyn}

and
$$v_{dyn} = \sigma_{dyn}^2 \approx ($$

generic multiplicity dependence Koch,Schuster PRC81,034910(2010)

$$= \left(\frac{\langle A(A-1)\rangle}{\langle A^2 \rangle} + \frac{\langle B(B-1)\rangle}{\langle B^2 \rangle} - 2\frac{\langle AB \rangle}{\langle A \rangle \langle B \rangle}\right) = v_{dyn}$$
$$= \left(\frac{1}{\langle A \rangle}C_{AA} + \frac{1}{\langle B \rangle}C_{BB} - \frac{2}{\sqrt{\langle A \rangle \langle B \rangle}}C_{AB}\right)$$

CPOD2011, Wuhan, China

Maja Maćkowiak-Pawłowska for the NA49 Collaboration

Calculate ν_{dyn} in NA49

$$\nu = \frac{<\!\!A^2\!\!>}{<\!\!A\!\!>^2} + \frac{<\!\!B^2\!\!>}{<\!\!B\!\!>^2} - 2\frac{<\!\!A\!\!B\!\!>}{<\!\!A\!\!><\!\!B\!\!>}$$

 $\begin{array}{l} \text{The definition of } \nu_{dyn} \text{ assumes uncorrelated background} \\ \nu_{stat} = \frac{1}{<\!A\!>} + \frac{1}{<\!B\!>} \qquad \nu_{dyn} = \nu - \nu_{stat} \end{array}$

To subtract correlation present in mixed events, we instead define

$$\Delta \nu = \nu_{data} - \nu_{mix}$$

Results for v_{Δ}

σ_{dyn} (K/π) (%)

8

CPOD2011, Wuhan, China

Maja Maćkowiak-Pawłowska for the NA49 Collaboration

Strategy to look for critical point in NA49:

- Energy scan (beams 20A-158A GeV) with central Pb+Pb collisions μ_B extracted from the fits to particles multiplicities
- System size dependence (different ions) at 158A GeV (top SPS energy) T_{chem} depends on system size

Estimates of effects due to the critical point

Correlation length ξ at the critical point not divergent but limited by finite size and lifetime of the fireball.

parameterization: $\xi = min(c_1A^{1/3}, c_2A^{1/9})$ size lifetime

(M. Stephanov, priv. comm.)

Suggesting:

$$egin{aligned} &\xi(\textit{Pb}+\textit{Pb})=3
ightarrow 6\textit{fm}\ &\xi(\textit{p}+\textit{p})=1
ightarrow 2\textit{fm} \end{aligned}$$

Range of correlation effect estimated from QCD calculations (Hatta,Ikeda,PRD67,014028(2003): $\sigma(\mu_B) = 30 \text{ MeV}, \sigma(T) = 10 \text{ MeV}$

considered examples:

• CP1 -
$$\mu_B$$
 = 360 MeV (lattice QCD,Fodor-Katz)
T = 147 MeV (chem. freeze-out line)

 CP2 - µ_B= 250 MeV (data 158A GeV) T = 178 MeV (fit of p+p data)

