

Magnet Protection Considerations

Spectrometer Solenoid Review

October 25, 2010

Soren Prestemon

Lawrence Berkeley National Lab

MICE Spectrometer Quench Protection Scheme

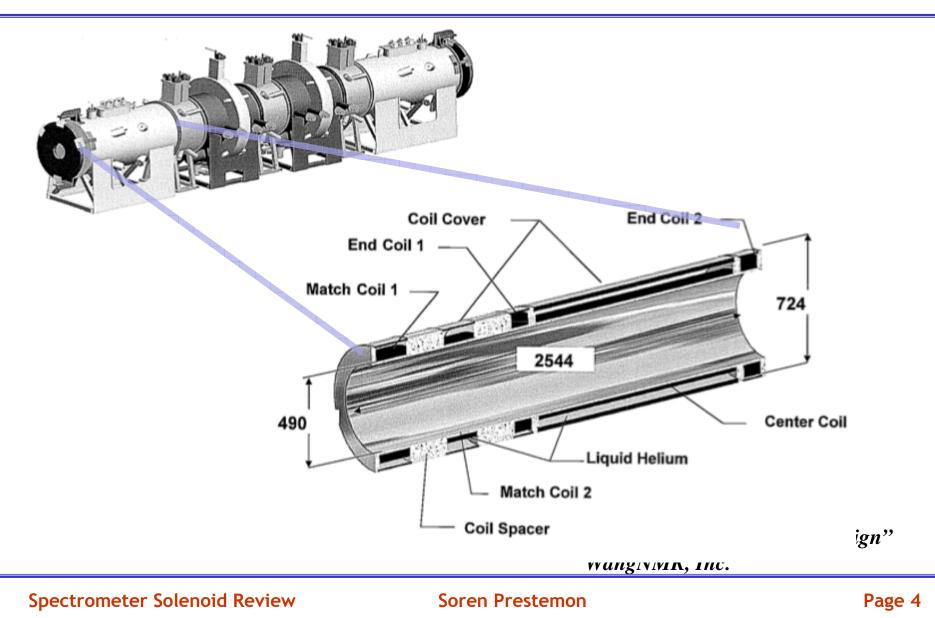
- Introductor comments
- Coil layout
- Protection system

Analysis Model

- Circuit model
- Design parameters
- Quench code overview

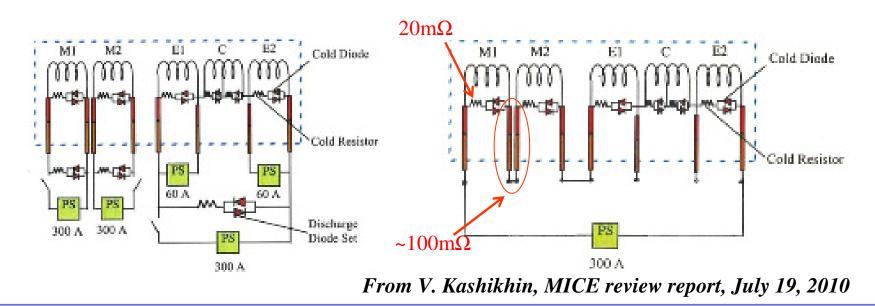
Analysis Results

- Case studies
- Summary


- Based on a simple, passive approach
 - Conductor designed to yield reasonable hotspot temperature
 - Fairly high internal voltage anticipated
 - Mitigated by robust insulation scheme
 - Hi-pot tested as part of specification

- Some design considerations:
 - Coils interact via mutual inductance
 - Can transfer energy
 - Some coils in series, some independent PS:
 - Depends on operating regime
 - Impacts voltage and hot-spot temperature analysis

MICE Coil layout

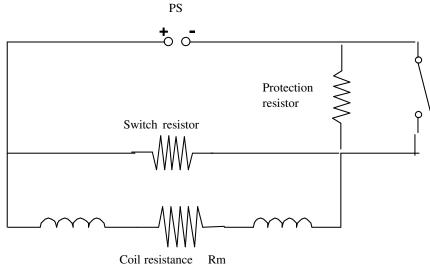


- Nominal operation has numerous individual power supplies
 - A quenched coil may or may not induce other coils to quench
 - Some energy transfer, but not all will be deposited in one coil

- Powering during training:
 - All coils in series
 - A quenched coil may or may not induce other coils to quench
 - Worst case all of the stored energy can be deposited in one coil

Spectrometer Solenoid Review

Soren Prestemon



Analysis model

• Circuit model

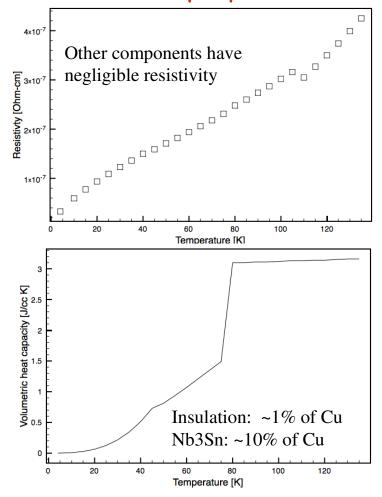
$$IR_m(I, \theta, t) + I rac{R_{switch}R_{prot}}{(R_{switch} + R_{prot})} + L rac{dI}{dt} = 0$$

 Inductance matrix and conductor/coilpack characteristics

	M1	M2	E1	С	E2
M1	15.68	1.14	0.31	0.28	0.02
M2	1.14	6.84	0.28	0.57	0.02
E1	0.31	1.01	10.48	3.50	0.05
С	0.28	0.57	3.50	43.77	3.79
E2	0.02	0.02	0.05	3.79	12.01

Cu:SC	3.9
A _{cu} / _{Atot}	0.69
A_{sc}/A_{tot}	.177
A_{ins}/A_{tot}	.133

Spectrometer Solenoid Review


Soren Prestemon

Quench code input

• Material properties: Cu

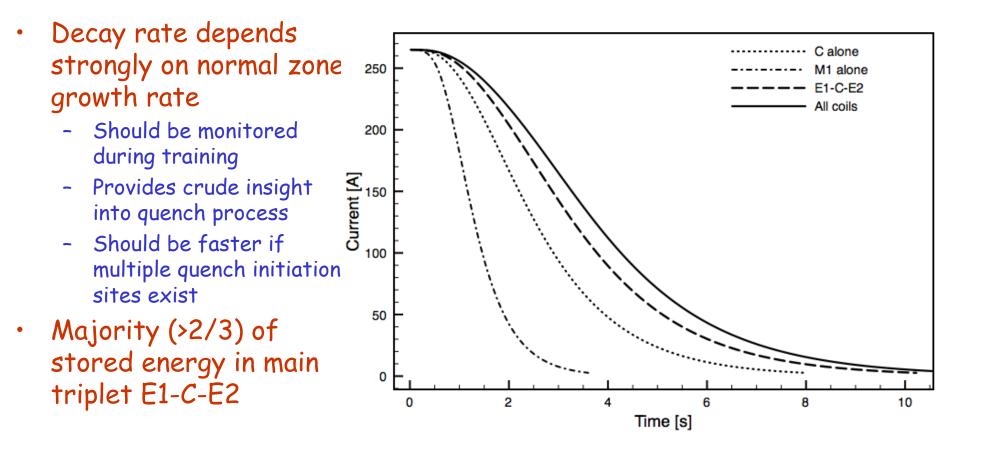
• Coil parameters

Coil	Z1 (m)	Z2-Z1 (m)	R1 (m)	R2-R1 (m)
M1	3.510	0.201	0.258	0.045
M2	3.951	0.200	0.258	0.030
E1	4.396	0.111	0.258	0.060
С	4.544	1.314	0.258	0.021
E2	5.896	0.111	0.258	0.066

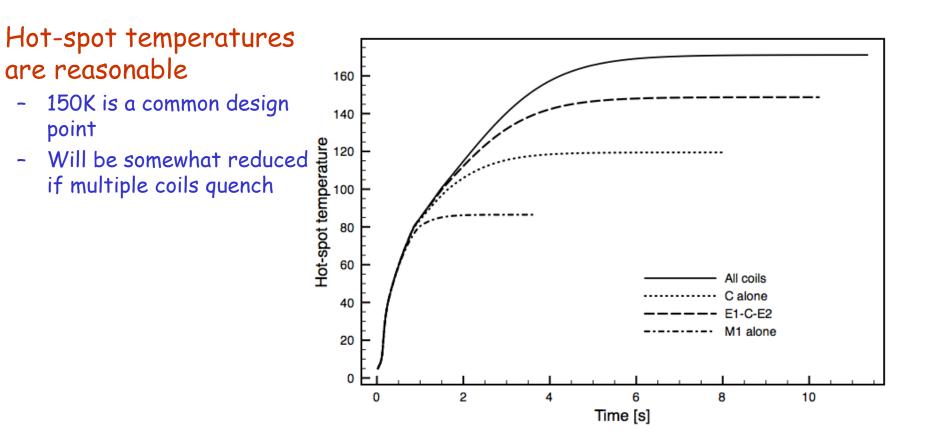
- Other input parameters:
 - Transverse propagation velocities:
 - Decay rate of current highly sensitive to transverse propagation
 - Use measured ~5s decay seen during training to determine V_{trans}/V_{long}~0.01
 - Protection resistance does not play critical role

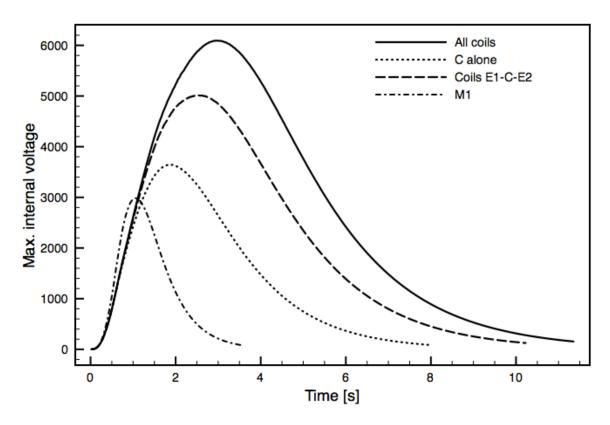
Spectrometer Solenoid Review

- Four cases:
 - 1. All coils in series
 - 2. Coils E1-C-E2 in series
 - 3. Coil C alone
 - 4. Coil M1 alone


- Powering during training:
 - All coils in series
 - A quenched coil may or may not induce other coils to quench
 - Worst case: only one coil quenches

Assumptions:


- No mutual inductance coupling with other coils
- Quench starts somewhere inside a coil, but does not propagate to other coils in the series
 - In coil C for cases 1-3
- Other coils in series do not quench
- No quench-back taken into account


٠

Soren Prestemon

- High internal voltages may occur
 - Coilpack design tries to accommodate
 - Good insulation scheme
 - Hi-pot to <mark>5kV</mark>
 - Depends on 3D propagation velocity
 - Faster propagation results in higher peak voltage
 - Impact of quenchback remains to be studied
 - Quenches in multiple coils would reduce peak voltage

- Analysis considered major cases
 - Provide insight into coil protection issues
 - Numerous simplifying assumptions:
 - No quenchback
 - Simple mutual coupling
 - Crude empirical determination of V_{trans}
 - "Full system" case corresponds to training run scenario
 - E1-C-E2 is most relevant for normal operation

- Summary of main results:
 - Hot-spot temperature appears acceptable in all cases
 - Decay rates are "reasonable", but need to be checked against experimental data
 - Peak voltages are high
 - Single coil cases are well within specification
 - E1-C-E2 case is at limit of design
 - "Full system" case exceeds design voltage by ~20%
- Conclusions:
 - Limit current to 240A during "full-system" training runs
 - Then restrict to E1-C-E2 set