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Basis of evaluation

Static heat loads only are considered

• The magnets and cryostat are assumed to be in steady state

Dynamic heat loads are not included here; there is notably

• Relaxation of non-equilibrium heat

• Relaxation of the thermal distribution of the shield etc.

• Transient behaviour of the vacuum

• Magnetic field redistribution (flux jumps)

• Eddy current heating during and after current ramp up or down

Without ohmic heating of the wire joints, our evaluation falls short by 

0.9 W from the experimental result of Test 2B

The excess may be due to any one of the unevaluated sources
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Heat loads to 4.2 K
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Principles of evaluation

Radiation from the thermal shield ≈(Thot
4 – Tcold

4)

• Test 2B measurements indicate 98 K shield temperature close to the 

cryocoolers

• The outer shell of the shield was assumed to be 98 K 

• The end plates were assumed at 100 K 

• 110 K on the bore tube

• The MLI performance was taken from Ref. [4] (LHC studies)

• The packing density was estimated as 20 layers/cm for blankets on outer 

shell and on end plates 

• The packing was evaluated to be about 50 layers/cm on the shield bore 

tube

• The degradation of the MLI performance with the packing density was 

taken from Ref. [5] (LHC studies)
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Principles of evaluation (cont.)

Radiation from the thermal shield (cont.)

• The heat load on the 4.2 K vessel through the MLI then consists of 

• 367 mW on the outer shell

• 79 mW on the end plates

• 416 mW on the inner bore tube

• The imperfections of the MLI were evaluated to yield 

• 93 mW through cuts and joints

• 48 mW from the shield end plate through the gap between the shield 

and the helium vessel

• Principle: two cavities connected by orifice => black body radiation 

formula ≈ correct
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Principles of evaluation (cont.)

Radiation from OVC at 300 K to helium vessel at 4.2 K

• Principle: two cavities connected by orifice => black body radiation 

formula ≈ correct

• It was estimated that 20 cm2 total area of orifices connect the two 

cavities

• The main orifices are the gaps at the holes for the 8 large supports 

of the 4.2 K mass

• Thermal radiation also penetrates along the glass-epoxy composite 

of the support material

Support rods of the helium vessel

• Requirements: large forces, very small movement upon cooling!

• We assume the value evaluated in Ref. [2]. Takes into account shield 

temperature ≈ 100 K and ≈ weak thermal links to the anchor points
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Principles of evaluation (cont.)

Neck tubes and cooler sleeves

• Original design values were based on valid data and well-reported 

measurement

Instrument wires and magnet leads

• No heavy Cu instrumentation wires were found => return to the lower 

value of Ref. [1]. 

• Electrically insulated low-conductivity wires can be heat sunk by 

thermal radiation => OK for sensors, but may influence radiation heat 

load (very) slightly

• Conduction through HTS magnet leads is probably based on the data of 

the supplier, who recommends much colder top end temperatures 

around 60 K

• Can be source of additional heat load

• HTS lead supplier should deliver information on the domain of 

intrinsic stability
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Principles of evaluation (cont.)

SC wire joints

• Original design value was very pessimistic, but we adopted it

Residual gases (based on MLI tests for LHC, Ref. (4)

• Assuming a residual gas pressure of 10–3 Pa (= 10–2 µbar), we get a heat 

load of roughly 110 mW on the helium vessel and its appendices 

• Elastomer o-rings do permeate He gas of the ambient atmosphere

• The rotary blade pump used in these tests can backstream helium to 

yield about 10–1 µbar He pressure in the inlet of the pump

• Linear pressure dependence => better pump will help immediately
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Principles of evaluation (cont.)

Radiation through pipes

• This was increased to take into account that wall conduction and guided 

thermal radiation work in parallel

Helium liquid level probes

• Based on 2 AMI level probes with 75 mA current, 11.6 Ω/inch resistance 

at 20 K, 10 inch length exposed to gas phase, and 20% duty cycle. Should 

enquire what is the effective duty cycle of the readout instrument used 

in Tests 2B, and how to reduce duty cycle for normal operation.

Cold shorts

• No evidence exists

Cryocooler underperformance

• No evidence exists
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Principles of evaluation (cont.)

Thermo-Acoustic Oscillations and 2-phase instabilities

• No evidence was found for such heat loads => was assumed zero

• TAO or other non-linear transient instabilities could occur notably in the 

LHe fill line that is fairly long and is filled with 2-phase He during normal 

operation

• The heat leak through and into this line, not evaluated yet, should 

be added as direct load to the 4.2 K vessel

• One of the improvements suggested for the future tests consists of 

making a good thermal anchor from the present fill line tube to the 

main 4.2 K vessel at the level of the top of the vessel.
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Heat load to the shield

Experimental results for Solenoid 2, Test 2B (with LN2 vessel)

• From the the cooling power of the first stages of the 3 2-stage 

cryocoolers and one single-stage cryocooler, we get the experimental 

load of 277 W with no current in the magnet [3]

• This is in an excess of 100 W to 105 W over the load estimated for the 

magnet 1 with no LN2 reservoir connected to the shield

• 100 W corresponds to a thermal radiation heat load to about 1 m2

oxidized aluminium surface.

• With 250 A current in all coils, the estimated heat load on the shield 

absorbed by the cryocoolers was 308 W; at full design current of 275 A 

the load would have been 322 W [3].
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Heat load to the shield

Evaluation of the sources of heat load to the shield

• Thermal radiation through MLI blankets = 12 W on the outer shell and 

end plates of the shield

• About 10 W on the central bore, with a packing density of about 

50 layers/cm basing on Ref. [5]

• Direct radiation from the end plates of the vacuum vessel through the 

gap between the RT bore tube MLI wrap and the inner surface of the 

shield bore = 4 W, if the gap area is about 150 cm2

• Radiation leakage through cuts and joints that are poorly covered, 

corresponding to orifices of about 500 cm2 total area, would contribute 

about 13 W

• The above loads total 39 W
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Heat load to the shield

Evaluation of the sources of heat load to the shield (cont.)

• Basing on photographs taken before Test 2B, there are no bare or poorly 

covered surfaces that could explain the large heat loss to the shield.

• Additional sources: can these contribute much more than expected?

• 8 supports of the shield (Prepreg laminates)

• The heat sinks of the 8 supports of the helium vessel (Prepreg 

laminates)

• The conduction through pipe connections and wires (small)

• LN2 reservoir on the heat load of the shield of the magnet: Latent heat 

of freezing the LN2?

• The power of the cryocoolers is clearly sufficient to to absorb 322 W 

from the shield at 50 K, but Ref. [3] identified a problem of heat 

transport to the cold heads. 
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Heat load to the shield

Evaluation of the sources of heat load to the shield (cont.)

• This heat transport problem cannot be solved by additional cryocoolers, 

• Requires the improvement in the transfer of the heat from the various 

sources on one hand, and in the MLI blankets and its joints 

• Moreover, the heat sinking of the supports should be improved 

substantially

• These measures will at the same time reduce the heat load to the 4.2 K 

system 

• They are now underway at Wang NMR.
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