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@ Many interesting physics processes result in colliding protons
not being destroyed.

@ In order to analyse their properties it is desirable to directly
measure scattered protons.

@ Due to properties of LHC magnetic field, scattered protons are
travelling almost with the main beam, diverged from its
trajectory only by few milimeters.

@ In order to measure them at IP1 (ATLAS) and IP5

(CMS/TOTEM) dedicated devices, so-called Roman pots are
installed.

@ Roman pots operate during special (low pile-up) and standard
(high pile-up) LHC fills.
@ They are moveable devices:
o in “garage” position (few cm from the beam) when beams are not stable,
@ 2-4 mm from the beam when taking data.
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@ Technology: Vortex Tube.

Compressed o Staged approach:
Al I . . S
rSowaiy e precooling of input air in AirCooler box,
e cooling with Vortex tube installed on RP.
o Efficient cooling: temp. down to -30 °C
-+ .
with detectors powered on.
Cold Ai Hot Ai . .
9T vortex Spin °tA" o Operational requirements: -10 °C.
Chamber
@ Online temperature regulation with PID
algorithm.
AirCooler Box \ y ‘
i regulation line } Emain line 3| mainlline
i “xpan i i vban §
Roman pot

heat exchanger

temp.
sensor,

M. Trzebinski

heat
exchanger

AFP — Pot Heating Studies 4/11



Temperature sensors (NTC):
@ each station:

o each SiT detector (on flex),

o ToF (on amplifiers),

o heat exchanger (NTC +
PT1000),

e pot wall (up + under second
thin window),

o flange (cold output of Vortex
tube + HV for ToF),

e LTB.

o VReg. crate.
@ AirCooler box:

e hot output of VT,
o cold output of VT,
e output of box.

Radiation sensors:

@ bottom of each pot,
o VReg. crate,

e far station LTB,

o RR17 alcove.
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@ In Run 3 LHC will operate at higher intensity than in Run 2.

@ This may increase temperature on SiT — hope to be solved by installing
new heat exchanger made from foam.

@ Another concern is heat induced on RP.
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@ Example — temperature on C FAR station during four LHC fills taken in
2018:

e at the beginning (highest luminosity) pot is pre-cooled to 15-20 oc,

e as time passes, beam heats the pot more than it can be cooled,

e at one point there is equilibrium state between dissipated power (coming
from the beam) and cooling system — an expected, linear dependence
between luminosity and temperature,

o this can be extrapolated to higher intensities,

o however, reality at Run 3 will be even more complicated due to
lumi-levelling.

o Extrapolations based on Run 2 data are not conclusive.
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tbed in B180

@ In August 2019 we've lunched a
mini-campaign in our lab with a goal
to simulate the heating-up of pot and
to test few solutions to dissipate
induced heat.

@ Setup, based on spares mimicked the
real configuration in the tunnel
(station, vacuum, cooling unit).

@ A number of heaters (individual
regulation) and temperature sensors
were installed.

@ With such setup various heating
scenarios were tested.
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@ Several heat-sink solutions were tested
assuming various location of heat source.

@ As the exact design of the heat-sink depends
on the heat source and expected amount of
power to be dissipated, decision was to:

e prepare special temperature sensor setup to
investigate temperature gradient in the pot
with real data (first year of Run 3),

o design adequate heat sink, if needed (based
on Run 3 year 1 data).

I
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ement of Temperature Sensors Inside Pot

o During installation of
detector packages (Mar. AFAR ANEAR C NEAR CFAR
'20 and Sep. '21) B
temperature sensors inside AN @
pots were placed in a b t:j
special way. '

@ This should allow, based
on 2022 data, to

understand: - . -
o where exactly heat is
induced, oy ] m
o need of heat-sink for pot bottom pot botiom pot botiom pot bottom

2023-2025 data-taking
~ (and if so — its design).
P
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al Test — 2021 Pilot Beams

o AFP was inserted 16-20 mm from the beam during the pilot beams.

@ A quick look at pot heat was taken, but (as expected) the effect was not

visible (small beam intensity, large pot-beam distance).

@ A real campaign will be lunched during the first intensity ramp in 2022.
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L —S

M. Trzebinski

AFP detectors will take data during (almost) all fills with STABLE
BEAMS in Run 3.

When operating in a close vicinity of LHC beam, Roman pots are heated.

AFP cooling system actively keeps temperature of about -20 °C on the
detectors and passively cools the pot.
Extrapolations based on Run 2 data are not conclusive:

o luminosity levelling may introduce additional, non-linear effects.
Effect of heat induction will be studied using data-driven methods starting
from first intensity ramp in 2022:

o special setup of temperature sensors inside AFP pots,
o quick look on pilot beam data was done, but no conclusions can be made
(as expected due to large pot-beam distance and low beam intensity).

Several heat-sink solutions were tested during 2019 mini-campaign in the
AFP lab.
Depending on the measured data, the following scenarios are considered:

e no special action — in case of being cooled enough with the existing setup
(note: new heat exchangers installed in LS2),

o design and installation of heat-sinks during YETS 2022-2023 in case heat
from pot bottom needed to be dissipated more effectively.
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