
Formal Methods and Verification (FMV)

BE-ICS

Ignacio David Lopez Miguel

Borja Fernández Adiego

Jean-Charles Tournier

Enrique Blanco Viñuela

HSE-RP

Katharina Ceesay-Seitz

Hamza Boukabache

09/12/2021

Context – Formal Methods and Verification (FMV)

▪ Initiative from HSE-RP and BE-ICS

▪ Support of the RAS WG

▪ Objectives:
▪ Build a CERN formal methods community
▪ Inventory and return of experience of CERN projects and tools using formal

methods
▪ Promote the collaboration between different groups
▪ Identify the applicability of formal methods to other areas
▪ Inform other groups on the benefits of the methods
▪ Establish relation with external institutes / universities / companies
▪ Report on current research status (e.g. conference reports)

Formal methods can contribute to
design and develop safe and reliable systems

1. Random Hardware Failures
▪ From degradation mechanism

2. Systematic Failures
▪ Incorrect specification/design
▪ Human errors
▪ Software errors
▪ Maintenance and modifications
▪ ….

Measures to combat the
hardware random failures
(e.g. RBD, FTA, etc.)

Measures to combat the
systematic failures (e.g.
formal specification, formal
verification, (functional)
testing, etc.)

Deterministic
methods

Stochastic
methods

All types of failures have an impact on the reliability and availability of the global system

RAS WG

Formal Methods

Context - Failure categories

1. Brief introduction to formal methods
▪ What are/ Where can we apply/ When should we apply formal methods?
▪ Why they are not very popular in certain industries (yet)?

2. CERN examples
▪ Industrial Controls domain (BE-ICS):

▪ Formal Verification (model checking) of PLC programs
▪ Formal Specification of PLC programs

▪ Digital electronics design domain (HSE-RP)
▪ Formal Verification (model checking) of VHDL code
▪ Semi-formal specification of requirements for HDL designs

3. Conclusions

Contents

5

Techniques based on mathematics and formal logic (precise semantics)

MACHINE

Switch

SETS

STATE = {closed, open}

VARIABLES

state

INVARIANT

state : STATE

INITIALISATION

state := open

OPERATIONS

toggle =

IF state = open

THEN

state := closed

ELSE

state := open

END ;

END

Petri nets, automata, … Temporal logic,
propositional logic, Z

notation,…

B-method, VDM, TLA+,…

init

l1 l2

l3

in>10

out1 False out1 True

in≤10

out2 True out2 False

l0

in IntNonDet()

Graphical languages Textual languages Mathematical languages

(A → B) ⊢ (¬B → ¬A)

𝐴𝐺((𝑎 ∧ 𝑏) → 𝑐)

Petri net

Automata

B-method

Temporal logic

Propositional logic

What are Formal Methods?

e.g. properties
(model checking)

e.g. system model
(model checking)

6

Different phases of a system development, for example:

• Specification and modelling: use of unambiguous languages to describe a system (precise description,
code generation, test case generation, etc.)

• Formal model simulation: formal models to simulate the behaviour of the real system (e.g. model
simulation with UPPAAL)

• Formal verification: formalized properties checked against a formal model (e.g. model checking)

• Test or code generation: formal models to generate relevant test cases or the code itself

• Equivalence checking (does the implementation match the specification?)

• and more …

Where can we use Formal Methods?

7

Formal specification Formal verification

Using TLA+ to create a clear and concise specification, leading to a subsequent
code reduction https://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext

Verification of neural-network-based control systems in non-towered airports
to avoid collisions at landing
https://www.researchgate.net/publication/356096882_Formal_Analysis_of_Neural_Network-Based_Systems_in_the_Aircraft_Domain

Integration of their static analyser INFER into their software development
process https://www.inf.ed.ac.uk/teaching/courses/sp/2019/lecs/distefano-scaling-2019.pdf

Use of the model checker SPIN to verify the model of a software
http://spinroot.com/gerard/pdf/spin04.pdf

Use of the formal specification language VDM to specify industrial applications
https://www.researchgate.net/publication/2879682_The_IFAD_VDM-SL_toolbox

Formal Verification of Critical Aerospace Software https://hal.archives-ouvertes.fr/hal-01184099/document

Where are Formal Methods being used?

Correctness, Modelling and Performance of Aerospace Systems
http://www.compass-toolset.org

And many
more …

https://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
https://www.researchgate.net/publication/356096882_Formal_Analysis_of_Neural_Network-Based_Systems_in_the_Aircraft_Domain
https://www.inf.ed.ac.uk/teaching/courses/sp/2019/lecs/distefano-scaling-2019.pdf
http://spinroot.com/gerard/pdf/spin04.pdf
https://www.researchgate.net/publication/2879682_The_IFAD_VDM-SL_toolbox
https://hal.archives-ouvertes.fr/hal-01184099/document
http://www.compass-toolset.org/

8

Pros Cons

Unambiguity
(well-defined semantics)

High cost
(time)

Precision
(e.g. software verification)

Limitation of computational models
(state space explosion in model checking)

… Usability

• Using formal methods is more “expensive” than traditional alternatives in engineering

• Real-life system models may be too large to be handled by simulators or model checkers

Why aren’t Formal Methods widely used?

9

• The most appropriate to describe the behavior of your system

• The most appropriate for the final purpose (specification, formal verification, etc.)

• A formalism supported by tools (e.g. simulator, model checker, etc.)

When the cost of a system failure is higher than the cost of using formal methods

Some examples:

• Safety critical systems

✓ Damage to the environment, the installation, people

✓ Damage of the reputation of the company/organization

✓ Recommended by the standards (e.g. IEC 61508)

• Software libraries used in many systems

• etc.

Which Formal Method should we use?

When should/could we use Formal Methods?

IEC 61511: Functional safety – Safety instrumented systems for the process industry sector

▪ several references to model checking. For example from IEC 61511-2:2016 Annex B:

“… specification should be implemented in the graphical language of the model checking workbench
environment...”

IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems

10

Formal methods and the standards (e.g. functional safety)

Industrial Controls Domain

• Introduction to model checking

• Formal verification (model checking) of PLC programs

• Formal specification of PLC programs

Verification Formal

methods
Formal

verification

Model

checking

Testing

Theorem

proving

Static

analysis

Simulation

Automata

Petri Nets

Temporal

Logic

B Method

…

Formal verification and model checking

13

Software development

Neural networks

Language Tool

Modelling

VENUSTimed automata

Finite state machine

Electronics design

Language Tool

Language Tool Technology Tool

Closed-loop control
system

Safe reinforcement
learning

Stratego

PSL, SVA

VHDL, Verilog,
System VerilogNo commercial tools to

apply formal verification to
PLC programs

Formal verification tools

SymbiYosys

▪ If “Input1”, “Input2”, “Input3” and “Input4” are BOOL, then we need to check 24 = 16 combinations

▪ If they are INT (16-bit), then 216*4 ≈ 1.8*1019 combinations

▪ for large systems (many variables), such requirements cannot (practically) be checked by using testing techniques

▪ Peer reviews and testing can (normally) catch most of the “problems” (e.g. code bugs), but not the corner cases
▪ E.g. Ariane 5 rocket explosion (more than 500 millions US$ cost due to a software flaw in control software)

Input2
Input3
Input4

Output1

Output2
PLC program

Functionality requirement

If Input1 is False, then Output2 is
False

Safety requirement

If Output1 is False, then Output2 is
True

Solution: Model checking

Sensors Actuators

Input1

14

Introduction to model checking (e.g. for PLC programs)

Given a global model of the system and a formal property, the model checking algorithm
checks exhaustively that the model meets the property

Clarke and Emerson (1982) and Queille and Sifakis (1982)

15

Formal

model

Formal

requirement

Model Checker

✓
Property OK

Property failed

Trace leading to the violation

Real System

(hardware, software)

Specifications

PLCverif (for PLC programs)

If Output1 is FALSE
then Output2 is TRUE

Control-flow

automaton (CFA) Temporal Logic

AG (EoC → (!Out1 & Out2))

Introduction to model checking (for PLC programs)

Model Checking lectures
(Aachen university)

https://www.youtube.com/watch?v=Y5Hg4MvUX
c4&list=PLwabKnOFhE38C0o6z_bhlF_uOUlblDTjh

Was born for hardware design,
today it is used extensively for
software verification as well

https://www.youtube.com/watch?v=VHWEldcSx14&t=1s

16

If out1 is FALSE, then out2 is TRUE
at the end of the PLC cycle?

PLC program

Property to verify (verification case)

Intermediate Model - Control Flow Automaton (CFA)

Formalized property
(assertion error)

PLCverif internals – PLC program modeling
PLCverif internals

Specific to PLCs
(PLC scan cycle model)

17

(simplified) nuXmv model
Inlined Control Flow Automaton (CFA)

(Inline and reduce the model)

PLCverif internals – Translation to model checker input language

Temporal logic formula

18

Counterexample

trace that indicates that the model (PLC

program) and the specification do not

match

PLCverif internals – executing
nuXmv

Executing the model checking algorithm

(nuXmv)

19

PLCverif (for users)

The complexity of using formal methods is hidden by the tool (PLCverif) – More details in www.cern.ch/plcverif

http://www.cern.ch/plcverif

Functional Safety projects

• Magnet test benches:

• SM18 Safety PLC programs (CEM Specification + PLCverif)

• B180 FAIR and B311 Switchboard Safety PLC programs

• ITER case study: verification of PLC program in charge of a safety
critical communication protocol

• SPS Personnel Safety System: fail-safe PLC program

Non-safety PLC programs but widely used at CERN:

• UNICOS object library (used in the LHC Cryogenics control system,
many C&V plants, Gas systems, etc.)

Formal verification of PLC programs at CERN

B. Fernandez et al. “Cause-and-Effect Matrix specifications for safety
critical systems at CERN” in Proc. of the 17th ICALEPCS
https://accelconf.web.cern.ch/icalepcs2019/papers/mopha041.pdf

B. Fernandez et al. “Applying model checking to critical PLC applications : An ITER case study” in
Proc. of the 17th ICALEPCS https://cds.cern.ch/record/2305319/files/thpha161.pdf

B. Fernandez et al. “Applying model checking to highly-configurable safety critical software: The
SPS-PPS PLC program” in Proc. of the 18th ICALEPCS

Some of the models had 5.0 * 1091 and 6.5 * 10555

combinations to be checked (Potential State Space)

Model Checking as

complement to

testing

https://accelconf.web.cern.ch/icalepcs2019/papers/mopha041.pdf
https://cds.cern.ch/record/2305319/files/thpha161.pdf

Events and state machine
(behavior)

Variable definition

Invariants

Output variables logic

Benefits
Precise specification

Verification cases generation
(model checking properties)

Test cases generation

Future goals
PLC code generation

(correctness by construction)

Formal specification of PLC programs – PLCspecif
Formal specification of PLC programs wiki:
https://readthedocs.web.cern.ch/display/ICKB/PLC+formal+specification

D. Darvas et al. “A formal specification method for PLC-based applications” in Proc. of the 15th

ICALEPCS https://accelconf.web.cern.ch/ICALEPCS2015/papers/wepgf091.pdf

https://readthedocs.web.cern.ch/display/ICKB/PLC+formal+specification
https://accelconf.web.cern.ch/ICALEPCS2015/papers/wepgf091.pdf

Contact – Formal Methods interest group

If you are interested in Formal Methods, please subscribe to the following egroup:

formal-methods-interest-group@cern.ch

(you will get updates about future events and presentations)

If you want to get started with formal methods or stablish a collaboration, you can send an email to the following
egroup:

formal-methods-working-group-admin@cern.ch

We have created a readthedocs page, where useful information about formal methods and verification will be
collected:

https://readthedocs.web.cern.ch/display/FMVWG/Formal+methods+interest+group+Home

mailto:formal-methods-interest-group@cern.ch
mailto:formal-methods-working-group-admin@cern.ch
https://readthedocs.web.cern.ch/display/FMVWG/Formal+methods+interest+group+Home

