Formal Methods and Verification (FMV)

HSE-RP BE-ICS

Katharina Ceesay-Seitz lgnacio David Lopez Miguel

Hamza Boukabache Borja Fernandez Adiego
Jean-Charles Tournier

Enrigue Blanco Vifuela

09/12/2021

Context — Formal Methods and Verification (FMV)

= |nitiative from HSE-RP and BE-ICS T

= Support of the RAS WG

Formal methods can contribute to
design and develop safe and reliable systems

= Objectives:

Build a CERN formal methods community

Inventory and return of experience of CERN projects and tools using formal
methods

Promote the collaboration between different groups

Identify the applicability of formal methods to other areas

Inform other groups on the benefits of the methods

Establish relation with external institutes / universities / companies
Report on current research status (e.g. conference reports)

Context - Failure categories

RAS WG
1. Random Hardware Failures Stochastic Measures to combat the
= From degradation mechanism methods hardware random failures

(e.g. RBD, FTA, etc.)

Measures to combat the
systematic failures (e.g.
formal specification, formal
verification, (functional)
testing, etc.)

2. Systematic Failures
= Incorrect specification/design
= Human errors
= Software errors
= Maintenance and modifications

Deterministic
methods

Formal Methods

All types of failures have an impact on the reliability and availability of the global system

Contents

1. Brief introduction to formal methods

» What are/ Where can we apply/ When should we apply formal methods?
= Why they are not very popular in certain industries (yet)?

2. CERN examples
= Industrial Controls domain (BE-ICS):
= Formal Verification (model checking) of PLC programs
= Formal Specification of PLC programs

= Digital electronics design domain (HSE-RP)

= Formal Verification (model checking) of VHDL code
= Semi-formal specification of requirements for HDL designs

3. Conclusions

What are Formal Methods?

Techniques based on mathematics and formal logic (precise semantics)

Graphical languages Textual languages Mathematical languages

B-method, VDM, TLA+,...] Temporal logic,
propositional logic, Z
B-method notation,...

[Petri nets, automata, ... } [
e.g. system model

(model checking)

Petri net

MACHINE e.g. properties
Switch

Sere (model chec

T2

king)
: STATE = {closed, open} Temporal logic
VARIABLES
state
5 INVARIANT AG((aADb) - c)
UPS state : STATE

INITIALISATION
Automata state := open

OPERATIONS

toggle = Propositional logic

IF state = open
THEN : (A HB)/—(ﬂb)ﬁﬁA)
state := closed
ELSE
outl €& True state := open
out2 € False END]
= \ID)

in € IntNonDet()

in<10

outl € False
out2 € True

Where can we use Formal Methods?

Different phases of a system development, for example:

« Specification and modelling: use of unambiguous languages to describe a system (precise description,
code generation, test case generation, etc.)

* Formal model simulation: formal models to simulate the behaviour of the real system (e.g. model
simulation with UPPAAL)

* Formal verification: formalized properties checked against a formal model (e.g. model checking)
* Test or code generation: formal models to generate relevant test cases or the code itself
* Equivalence checking (does the implementation match the specification?)

e and more ... 6

Where are Formal Methods being used?

L FACEBOOK
COMPASS 0Q Meta

Correctness, Modelling and Performance of Aerospace Systems Integration of their static analyser INFER into their software development

Pipi funw.compass toolsete g ProcCess https://www.inf.ed.ac.uk/teaching/courses/sp/2019/lecs/distefano-scaling-2019.pdf

amazon
N

Using TLA+ to create a clear and concise specification, leading to a subsequent Use of the model checker SPIN to verify the model of a software
http://spinroot.com/gerard/pdf/spin04.pdf

code reduction https://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext

X IFAD (L BOEING

Use of the formal specification language VDM to specify industrial applications Verification of neural-network-based control systems in non-towered airports

https://www.researchgate.net/publication/2879682 The IFAD_VDM-SL toolbox to aVOid CO“iSionS at |anding
https://www.researchgate.net/publication/356096882 Formal Analysis of Neural Network-Based Systems in_the Aircraft Domain

== Microsoft

AIRBUS o % @)

Core”

inside™

Formal Verification of Critical Aerospace Software https://hal.archives-ouvertes.fr/hal-01184099/document

https://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext
https://www.researchgate.net/publication/356096882_Formal_Analysis_of_Neural_Network-Based_Systems_in_the_Aircraft_Domain
https://www.inf.ed.ac.uk/teaching/courses/sp/2019/lecs/distefano-scaling-2019.pdf
http://spinroot.com/gerard/pdf/spin04.pdf
https://www.researchgate.net/publication/2879682_The_IFAD_VDM-SL_toolbox
https://hal.archives-ouvertes.fr/hal-01184099/document
http://www.compass-toolset.org/

Why aren’t Formal Methods widely used?

Pros Cons

Unambiguity High cost
(well-defined semantics) (time)
Precision Limitation of computational models
(e.g. software verification) (state space explosion in model checking)
Usability

* Using formal methods is more “expensive” than traditional alternatives in engineering

* Real-life system models may be too large to be handled by simulators or model checkers

When should/could we use Formal Methods?

When the cost of a system failure is higher than the cost of using formal methods
Some examples:
» Safety critical systems
v' Damage to the environment, the installation, people
v' Damage of the reputation of the company/organization
v' Recommended by the standards (e.g. IEC 61508)
e Software libraries used in many systems
* etc.

Which Formal Method should we use?

* The most appropriate to describe the behavior of your system
 The most appropriate for the final purpose (specification, formal verification, etc.)
e A formalism supported by tools (e.g. simulator, model checker, etc.)

Formal methods and the standards (e.g. functional safety)

IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems

Table A.1 — Software safety requirements specification

Table A.5 — Software design and development —

software module testing and integration

(See 7.4.7 and 7.4.8)

(See 7.2)
Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SIL 4
1a | Semi-formal methods Table B.7 R R HR HR
I ik | Formal methods B.22 C24 —- R R HR
2 Forward traceability between the system safety C211 R R HR HR
requirements and the software safety requirements
3 Backward traceability between the safety C211 R R HR HR
requirements and the perceived safety needs
4 Computer-aided specification tools to support B.2.4 R R HR HR

appropriate technigues/measures above

IEC 61511: Functional safety — Safety instrumented systems for the process industry sector

= several references to model checking. For example from IEC 61511-2:2016 Annex B:

“... specification should be implemented in the graphical language of the

environment...”

Technique/Measure * Ref. SIL1|SIL2|SIL3| SIL4
1 Probabilistic testing C.51 --- R R R
2 Dynamic analysis and testing B.6.5 R HR HR HR
Table B.2
3 Data recording and analysis C.52 HR HR HR HR
4 Functional and black box testing B.5.1 HR HR HR HR
B.5.2
Table B.3
5 Performance testing Table B.6 R HR HR
6 Model based testing C.5.27 R HR HR
7 Interface testing C.53 R HR HR
8 Test management and automation tools c.4.7 R HR HR HR
9 Forward traceability between the software design specification c.2.11 R R HR HR
and the module and integration test specifications
10 Formal verification C.5.12 R R
model checking|workbench

10

Industrial Controls Domain

* Introduction to model checking
* Formal verification (model checking) of PLC programs

* Formal specification of PLC programs

Formal verification and model checking

Formal
methods

Verification

Formal
verification

checking Petri Nets

Temporal

Static Logic
analysis B Method
Theorem

proving

Simulation v

Formal verification tools

Software development Electronics design

Language I Tool

Language I Tool

@ :: SymbiYosys
Sl e PSL, SVA

@ Yy ESBMC SIEMENS

VHDL, Verilog, 3 ®
No commercial tools to cadence

((System Verilog
<> Java m apply formal verification to EEBMGC

PLC programs

Language I Tool Technology I Tool

system

Timed automata UPPVdL Closed-loop control VENUS

Finite state machine

Safe reinforcement t’
learning

PENAL

Stratego

13

Introduction to model checking (e.g. for PLC programs)

Inputl
® N Input2 Outputl S
& &7 € Input3 PLC program E%
Output2
Inputd
Sensors Actuators
Functionality requirement Safety requirement
If Inputl is False, then Output2 is If Outputl is False, then Output2 is
False True

= If “Input1”, “Input2”, “Input3” and “Input4” are BOOL, then we need to check 2% =16 combinations
» |f they are INT (16-bit), then 216" = 1.8*10° combinations

= for large systems (many variables), such requirements cannot (practically) be checked by using testing techniques

= Peer reviews and testing can (normally) catch most of the “problems” (e.g. code bugs), but not the COFNEer cases
= E.g. Ariane 5 rocket explosion (more than 500 millions USS cost due to a software flaw in control software)

{ Solution: Model checking J 14

Introduction to model checking (for PLC programs)

Given a global model of the system and a formal property, the model checking algorithm
| checks exhaustively|that the model meets the property

Clarke and Emerson (1982) and Queille and Sifakis (1982)

PV PLCverif (for PLC programs)

Specifications

Formal T If Output1 is ﬁE Formal

then Output2 UE requirem ent

END_IF;

Control-flow gic for outz .
automaton (CFA) € Temporal Logic

Otheta

AG (EoC — (!Outl & Out2))

Model Checking lectures Was born for hardware design,
(Aachen university) x J today it is used extensively for
https://www.youtube.com/watch?v=Y5Hg4MvUX . software verification as well
c4&list=PLwabKnOFhE38C006z_bhIF_uOUIbIDTjh Property failed
Property OK 15

Trace leading to the violation

https://www.youtube.com/watch?v=VHWEldcSx14&t=1s

PLCverif internals — PLC program modeling

9

LS PLC program
FUNCTION FC1 : WOID
— VAR_INPUT
inl : BOOL;
in2: BOOL;
in3 : BOOL;
ind: BOOL;
END VAR
VAR OUTPUT

outl : BOOL;
out2 @ BOOL;
END_WVAR
BEGIN
Jf logic for outl
IF inl OR MOT in2 THEN
outl := NOT in3 OR ind;
ELSE
outl := FALSE;
END_IF;

// logic for out2
out2 := (inl OR NOT in2) AND (NOT in3 or in4);
END_FUNCTION

Property to verify (verification case)

If outl is FALSE, then out2 is TRUE
at the end of the PLC cycle?

PLCverif internals

Intermediate Model - Control Flow Automaton (CFA)

FC1:FC1

1 1
| ANNOTATIONS |
1 1

_ . ”e (! ({outl = false) --> (out2 = true)))]
[(! (! ((outl = false) --= (out2 = true))))] assertion. error := 1

Verificationl cop : Verificationl copDS

FC1l/inl ;== NONDETERMINISTIC of bo%
FC11/in2 := NONDETERMINISTIC of bool

FC11/in3 ;== NONDETERMINISTIC of bool
FC11/in4 ;= NONDETERMINISTIC of bool

1 main call

CALL: FCL:FCI(
IN: OUT:)

L= false (¥)

prepare_EoC

Formalized property
(assertion error)

Specific to PLCs
(PLC scan cycle model)

16

PLCverif internals — Translation to model checker input Ianguage

Inlined Control Flow Automaton (CFA)
(Inline and reduce the model)

(simplified) nuXmv model

verificationLoop. VenficationLocp

loop_start

Cl/inl := NONDETERMINISTIC of bool
FCl/in2 := NONDETERMINISTIC of bool
FC1/in3 := NONDETERMINISTIC of bool
FCl/in4 := NONDETERMINISTIC of bool

)

/FCI.«"outl = ((FCL/inl || (! FC1/in2)) && ((! FC1/i
n3) || FCL/in4)
TCLoUZ =TI T TC) & (T FeIn
1'13} [| FC1/in4))

@ VerificationLoop 16

Q(chm = false) - FC1/ ourz)})]\ras(fegé‘f]melmfmf el) o FCHou2N] | Eoc = false ()

verificationLoop. VerificationLoop_end

prepare EoC

MODULE main

VAR

loc {init pv, end, loop_ start, callEnd, prepare EoC, ...};

FCl inl boolean;

FCl inZ2 boolean;

FCl_outl boolean; -- frozen

__assertion_error unsigned word[16]; -- frozen

EoC boolean; —-- frozen

ASSTGN

—— CFA structure (log)

init(loc) := init_pv;

=sac;

init (Fcl inl) := FALSE;

next (FC1 _inl) := case
loc = loop_start & (TRUE) {TRUE, FALSE};
TRUE FCl inl;

init (FCl_ocutl) := FALSE;

next (FC1_ocutl) := case
loc = x & (TRUE) ((FC1l_inl) | (M{FCl_in2))) & ((!{(FCl_in3)) | (FC1l_ind));
TRUE FCl_Outl;

Losac;

init(_ assertion error) := Oudlé_ 0;

next (_ assertion error) := case
loc = verificationLoop VerificationLoop 16 & (! (((FCl_outl) = (FALSE)) -> (FCl _out2))) Oudle_1;
TRUE __assertion error;

=sac;

init (EoC) := FALSE;

next (EoC) := case
loc = callEnd & (TRUE) TRUE;
loc = prepare EoC & (TRUE) FRLSE;
TRUE EoC;

SSac:

-— Reguirement
CTLSPEC AG((EoC) -> ((__assertion_error) = (Oudlé_0)));

Temporal logic formula

17

PLCverif internals — executing
nuxXmyv

Executing the model checking algorithm
(nuXmyv)

Counterexample

trace that indicates that the model (PLC
program) and the specification do not
match

S C:\dev\PLCverif\tools\nuxmv> .\nuXmv.exe .\wverifCasel.smv

This is nuXmv 1.1.1 (compiled on wed Jun 1 10:23:30 2016)
* Copyright (c) 2014-2016, Fondazione Bruno Kessler

For more information on nuxmv see https://nuxmv.fbk.eu
or email to <nuxmv@list.fbk.eu>.

Please report bugs at https://nuxmv.fbk.eu/bugs

(click on "Login Anonymously" to access)

Alternatively write to <nuxmv@list.fbk.eus>.

* This wversion of nuXmv is linked to NusMv 2.6.0.
For more information on NusSMV see <http://nusmv.fbk.eu>
or email to <nusmv-users@list.fbk.eu>.
Copyright (C) 2010-2014, Fondazione Bruno Kessler

* This version of nuXmv is linked to the CUDD library version 2.4.1
* Copyright (c) 1995-2004, Regents of the University of Colorado

* This wversion of nuxXmv is linked to the MiniSat SAT solver.
See http://minisat.se/Minisat.html

* Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson

* Copyright (c) 2007-2010, Niklas Sorensson

“%* This wersion of nuxXmv is Tlinked to MathsAT

* Copyright (C) 2009-2016 by Fondazione Bruno Kessler
* Copyright (C) 2009-2016 by University of Trento
See http://mathsat.fbk.eu

specification AG (EoC -> __assertion_error = Qudl6_0)
as demonstrated by the following execution sequence
ace Description: CTL Counterexample
ace Type: Counterexample
-> State: 1.1 <-
loc = init_
FCl_inl = FALSE
FCl_in2 FALSE
FCl_in3 FALSE
FCl_in4 FALSE
FCl_outl = FALSE
FCl_out? = FALSE
EoC = FALSE
> State: 1.2 <-
loc = loop_start
> State: 1.3 <-
loc = x
FCl inl TRUE
FCl_in3 TRUE
> State: 1.4 <-
loc = verificationLoop_VerificationLoop_16
> State: 1.5 <-
loc = verificationLoop_VerificationLoop_end
> State: 1.6 <-
loc = callEnd
> State: 1.7 <-
= prepare_EoC
EoC = TRUE

A

18

PLCverif (for users)

PLCverif
B PLCverif PLCverif
File Preferences | Fil= Preferences
& | ¢

¥ Project Explorer
o G [PLCv
Bl Verification cas|

=

v 125 1_PBCS Wo
= output

[=- src-gen

= Demo.sg

£y verifCass

£y verifCass

B wverifCass

=% 2_PBCS_Wo

1= 3_PBCS_Wo

E

-

£ 4 PBCS_Wo

55 Project Explorer

= G [@ PLCveq

B scLfile..

El Verification cass

-

v 22 1 PBCS Worl

[= output
[src-gen
& Demo.scl
S verifCase
£, verifCasel
B verifCase

B PLCverif

File Preferences Help

5 Project Explorer = 0
= <}=={> PLCwverif project...
& scLfile..

Bl Verification case...

-

v 5 1_PBCS_Workshop_Dermi a
= output
[= src-gen
& Demo.scl
E,'J verifCasel.wel
E,', verfCased w3
B verifCasedwve3

=5 3 PBCS Worl

= z_PBI:S_w.:rEl

=5 2_PBCS_Waorkshop_Dermi
1% 3_PBCS_Workshop_Dem

&
v

=~ bazeline 1 & == 4 PBCS_Workshop_Derm
B > baseine | x4 pRCS Worl T L - P
5 > baseline_1 Zﬁ? baselne 1 e = baseline_1300_local [b:
2 - ’ =1« 7 . haceline 1500 annff [h Y
ha haSEIIH_E_1 22+ hacsline 19 £ >
i BECOprojec] «
1:"}" BESeminar Oz Qutline 2 = B
= - o= Outline 3 ==
_Inﬁ.ﬁama.% R 1 An outline is not available,
EE Qutline 3

Qi

& Demo.scl

v it

Bl verifCase2.vc3 (verification case) &3

+ Verification backend

Selection and configuration of the external verification tool to be used.

Backend:

I NuSMV v I

Algorithm: {default)

Advanced settings

b Requirement

b Regquirement — advanced
b Reporters

b Advanced settings

* Verify
Everything is ready? Buckle up and hit the "Verify' button!
I Werify! I
Last result: M A
Last execution: MSA
Last duration: M A

An outline is not available.

OUTPOT BOOL FCT.0utl | 1alse

- O it
(s rcee] | 22 |}
= O

Ly

L

OUTPUT BOOL | FC1.out2 | false

The complexity of using formal methods is hidden by the tool (PLCverif) — More details in

www.cern.ch/plcverif

http://www.cern.ch/plcverif

Formal verification of PLC programs at CERN

Functional Safety projects

* Magnet test benches:

* SM18 Safety PLC programs (CEM Specification + PLCverif)
e B180 FAIR and B311 Switchboard Safety PLC programs

ITER case study: verification of PLC program in charge of a safety
critical communication protocol

B. Fernandez et al. “Applying model checking to critical PLC applications : An ITER case study” in
Proc. of the 17t ICALEPCS https.//cds.cern.ch/record/2305319/files/thphal61.pdf

IS:/E/

.
=

B. Fernandez et al. “Cause-and-Effect Matrix specifications for safety
critical systems at CERN” in Proc. of the 17" ICALEPCS

https://accelconf.web.cern.ch/icalepcs2019/papers/mopha041.pdf

E/E/PE system
safety

requirements
specification

E/E/PE system “
architecture

Software safety
requirements
specification

| N—

Software
architecture

* | SPS Personnel Safety System: fail-safe PLC program

 B. Fernandez et dl. “Applying model checking to highly-configurable safety critical software: The
SPS-PPS PLC program” in Proc. of the 18 ICALEPCS

Model Checking as
complement to
testing

Non-safety PLC programs but widely used at CERN:

* UNICOS object library (used in the LHC Cryogenics control system,

many C&V plants, Gas systems, etc.)

[—r Qutput

----# \erfication

|

Software
system design

Validation

{ testing (module)

| Validated
software

Integration testing
(components,
subsystems and

Integration

—

Module J
testing

Coding

]_

Some of the models had 5.0 * 10°1 and 6.5 * 10°%°

combinations to be checked (Potential State Space)

https://accelconf.web.cern.ch/icalepcs2019/papers/mopha041.pdf
https://cds.cern.ch/record/2305319/files/thpha161.pdf

Formal specification of PLC programs — PLCspecif

Formal specification of PLC programs wiki:

ExampleModule https://readthedocs.web.cern.ch/display/ICKB/PLC+formal+specification
This module represents value limiter. If it is enabled, the output value is within the limits given

as parameters. If disabled, the output is always 0.

D. Darvas et al. “A formal specification method for PLC-based applications” in Proc. of the 15t

Assigned inputs: Assigned outputs: .
 ValueReq: INT16 Value to be limited o Value INT16 ICALEPCS https://accelconf.web.cern.ch/ICALEPCS2015/papers/wepqgf091.pdf
EnableReq_fromLogic : BOOL # Status : BOOL

® EnableReq_fromScada : BOOL
EnableReq_fromField : BOOL
 DisableReq : BOOL

Variable definition

Benefits

e PMin : INT16 param Lower limit. . - .

o PMax : INTI6 param Upper limit Precise specification
Input signal definitions: — (none)
Event input definitions: . re . .

e @disable < rising_edge(DisableReq) (pri=1) Ve r|f| cation cases ge neration

& @enable <= EnableReq_fromLogic OR EnableReq_fromScada OR EnableReq_fromField (pri=2) Svere sl SEE e (mo d e I C h ec kl n g p ro p e rt| es)
Core logic (state machine) (behavior)

@disable

Test cases generation

® Status = in_state(Enabled)

Invariant properties:
o ALWAYS PMin < Value < PMax ASSUMING PMin < PMax Invariants
If the limit values are valid, the output is always within the limits.

" @enable
Output signal definitions:
e Value = ValueReq | ValueReq
= P-:m : me :::: Output variables logic
F TPz Future goals
F F ValueRa .
o Value = [1n_state(Enabled) || result] : PLC code generation
P O (correctness by construction)

https://readthedocs.web.cern.ch/display/ICKB/PLC+formal+specification
https://accelconf.web.cern.ch/ICALEPCS2015/papers/wepgf091.pdf

Contact — Formal Methods interest group

If you are interested in Formal Methods, please subscribe to the following egroup:

formal-methods-interest-group@cern.ch

(you will get updates about future events and presentations)

If you want to get started with formal methods or stablish a collaboration, you can send an email to the following
egroup:

formal-methods-working-group-admin@cern.ch

We have created a readthedocs page, where useful information about formal methods and verification will be
collected:

https://readthedocs.web.cern.ch/display/FMVWG/Formal+methods+interest+group+Home

mailto:formal-methods-interest-group@cern.ch
mailto:formal-methods-working-group-admin@cern.ch
https://readthedocs.web.cern.ch/display/FMVWG/Formal+methods+interest+group+Home

