

Converging Storage Layers with Virtual CephFS Drives for EOS/CERNBox

Roberto VALVERDE, Daniel VAN DER STER, Andreas PETERS

Introduction & Motivation

- The CERNBox service is built on top of EOS Open Storage, CERN's highly scalable storage system initially developed for LHC physics analysis
 - EOS provides today 500 PB of raw storage space
 - Data is persisted using file based replication (RW) or Erasure Coding (WORM) using XFS filesystems on disks
 - Interactive use-cases (mounted directly) require support for file updates
 - Currently only supported with file replication
 - A file replication model has generic architectural and operational limitations

File Storage vs Object Storage

- Intrinsic limitations of file based storage with replication
 - IO performance is equal to that of a single disk
 - Max file size is the free space of the least full disk
 - In nearly full clusters, file appends can fail
 - File rebalancing and failure recovery time increases with file size used
 - Problematic for very large (slow) and extremely small files (if many)

File Storage vs Object Storage (II)

- Storing files in Object Storage
 - Each file is split into many chunks
 - 10 performance scales with number of chunks / disks
 - File size is limited to the **free space** of the entire cluster
 - Data rebalancing and failure recovery is parallelised by chunks

Virtualised Storage Services

- EOS provides a separation of persistency and a (nearly) stateless metadata service:
 - Metadata is stored in an HA backend (QuarkDB) and cached in the EOS manager daemon
- The transition to this model has improved the service KPIs drastically

Virtualised Storage Services (II)

- By separating persistence from the data service we can have a fully virtualised EOS
 - Data Availability, Durability, and Lifecycle mgmt can be delegated to the storage backend
 - EOS IO daemons can be relocated between hosts as long as the storage backend provides concurrent access from several hosts

Previous Work

- At CHEP 2021 we evaluated a new approach to EOS storage:
 - CERN has many years of experience running CephFS for HPC and IT use-cases and has an active role in CEPH project
 - Replacing XFS with CephFS in the EOS storage back-end allows to benefit from Object Storage characteristics and keep EOS highlevel functionality
- Evaluating CephFS Performance vs. Cost on High-Density Commodity Disk Servers [Link]

Previous Work

Benchmarking the CephFS kernel client.

CephFS Client Scalability Measurements

Aggregated instance streaming bandwidth vs number of active client nodes with EC4,2 CephFS mount

On an 8-node 100Gig-E cluster it is capable of high throughput performance.

Previous Work

CEPHFS + EOS

CephFS+EOS Write Performance Impact?

Observation: Adding frontend does not change averages but creates long tail effects

max [s]

11.07

47.10

15.03

20.34

8.95

26.67

10.43

13.11

Tails can be reduced using client-side bandwidth throttle

*[1] = 325 MiB/s **[2] = 350 MiB/s

Layered EOS+CephFS introduced some long tail latencies in this high throughput test.

Objectives

- Explore the benefits of a combined EOS/CephFS solution as a CERNBox backend
- Does it have an impact in reliability, durability, availability, performance?
- Would consolidating on one storage backend save on operations personnel or hardware?
- Can we enable new use-cases using this architecture?

PoC Evaluation Criteria

Reliability / Durability

 EOS consistency check (`fsck`) should confirm that data is safely stored on CephFS

Performance

 CephFS backend should not negatively impact performance (IOPS, throughput, latency)

Availability

- Frontend host failure should have minimal impact given the lack of a secondary EOS replica
- Understand how to dimension the frontends

11

PoC Testing

- EOSHOMECANARY testing instance:
 - default space: disk-based storage servers
 - cephfs space: virtual CephFS storage servers
- We ran a microtest suite against the PoC over a 3 month period.
- Three configs: EOS dual replica, EOS single replica, CephFS

PoC Testing - Replica Layout

EOS Workshop 2022

PoC Results: Reliability / Durability

 fsck confirmed that adding a CephFS backend did not introduce any data durability issues

We found an unrelated replication issue [EOS-5045]

PoC Results: Performance

 Previous work confirmed that EOS+CephFS can achieve multi-GBps throughputs, but didn't measure interactive workloads

15

PoC Results: Performance

Example microtest: Time to write 4MB O_DSYNC:

Single replica performance is similar. 2x replica had a perf issue which was fixed on Dec 17.

PoC Results: Performance

• Example microtest: Time to untar a small archive (~1000 files)

Single replica performance is similar.

PoC Results: Availability

- Data is unavailable when a frontend virtual FST is down (e.g rebooting or broken)
 - The virtual disk is just a path in the shared `/cephfs`
 - `eos fs mv` can be used to reassign that virtual FST to another frontend
- This impacts how many EOS virtual FSTs per frontend box

PoC Results: Availability

- When a frontend fails, we need to **redistribute** its virtual disks to the other remaining frontends.
- Operationally it is best if we can use as many other frontends in parallel
 - Ex 1: with 1 virtual FST -- that single FST is taken over by one other box, whose load now doubles.
 - Ex 2: with 10 virtual FSTs -- a single frontend failure can be taken over by 10 other boxes, whose load increases by only 10%.
- We choose to use 12 virtual FSTs per frontend box.
- Another approach would be to have idle standby frontends, but this wastes resources.

EOS Workshop 2022

Production Testing Environment

- **EOSHOME-i00** is a production CERNBox instance hosting several thousand users.
- We added a new "CephFS" space:
 - Two virtual FST hosts (CentOS Stream 8, 64G)
- Backed by our large shared production CephFS.
 - Also used by OpenShift, HPC, and many other CERN services.

Production Testing Results

The results roughly match what we observed on the PoC.

We enabled the same microtest suite in Dec 2021.

Production Testing Results

I also moved my home directory onto the CephFS-backed space.

Discussion & Conclusions

- Replacing XFS disks with CephFS completes the storage virtualisation of EOS
 - We expect significant increase in KPIs, similar to the EOS metadata ->
 QuarkDB transition
- CephFS backend is based on object storage
 - Fewer limitations related to performance, file size, and failure recovery
- This brings a much more flexible architecture
 - Delegate reliability, durability, lifecycle mgmt to Ceph (and e.g. Kubernetes)

EOS Workshop 2022 23

Discussion & Conclusions (II)

- What about cost?
 - At the multi-PB scale, CephFS read-write erasure coding should bring substantial savings
 - May also save on operations personnel by consolidating on our existing Ceph infrastructure and lifecycle processes
- Still lots to do:
 - Need experience with real CERNBox user workloads
 - Explore options to automate the EOS storage daemons, e.g. with Kubernetes persistent volumes

Thank you!

