
Ishank Arora
EOS Workshop ‘22

Enabling lightweight and federated
accounts access in CERNBox

Lightweight and federated accounts
Why?

• Collaboration at CERN happens across boundaries and institutes

• Need to share data with such collaborators

• Users currently use public links as a workaround to share data

• Not scalable

• No traceability

Lightweight access
Behind the scenes

• RBAC mechanisms

• Restricted access scopes

• Handling expansions

• Configurable policies

• EOS Tokens for Authorisation

• Access delegation

• Token Revocation

Workflow

01 02 03 04 05

CERN user creates a share
with an external user

CERNBox generates
scoped tokens for the user

EOS file operations proceed
via token authentication

If the scope allows access,
EOS tokens are generated

External user logs in via
external ID provider

Lightweight access

Lightweight access
Share creation for normal users

Lightweight access
ACLs

• ACLs look like

• userid=permissions

• EOS takes care of access control if userid exists in its linux namespace

• For lightweight accounts, it does not.

• Access control to be implemented in our storage microservice

Workflow

01 02 03 04 05

CERN user creates a share
with an external user

CERNBox generates
scoped tokens for the user

EOS file operations proceed
via token authentication

If the scope allows access,
EOS tokens are generated

External user logs in via
external ID provider

Lightweight access

Lightweight access
Keycloak Access

• alice@gmail.com

• 109847@github

• bob@xyzuniversity.edu

Workflow

01 02 03 04 05

CERN user creates a share
with an external user

CERNBox generates
scoped tokens for the user

EOS file operations proceed
via token authentication

If the scope allows access,
EOS tokens are generated

External user logs in via
external ID provider

Lightweight access

Lightweight access
Scoped tokens

Workflow

01 02 03 04 05

CERN user creates a share
with an external user

CERNBox generates
scoped tokens for the user

EOS file operations proceed
via token authentication

If the scope allows access,
EOS tokens are generated

External user logs in via
external ID provider

Lightweight access

Lightweight access
Scope Verification

• Scenario 1: User lists received shares

• GET /apps/file_sharing/api/v1/shares?received=true

• Calls ListReceivedShares

• Response:

• /eos/user/i/ishank/myfolder (rw)

• /eos/user/a/Alice/results (r)

• /eos/project/s/simulations/myfolder (rw)

Lightweight access
Scope Expansion

• Scenario 2: Scope expansion

• /eos/user/i/ishank/myfolder

• /eos/user/a/alice/results

• /eos/project/s/simulations/myfolder

(rw)

(rw)
(r)

Lightweight access
Scope Verification

• Scenario 3: User lists a folder

• PROPFIND /eos/user/i/ishank/myfolder

• Scope verified!

• Response:

• textfile.txt -> eos-01:789

• document.docx -> eos-01:790

• present.pptx -> eos-02:654

• Expand scope again!

(rw)

(rw)
(r)

Lightweight access
Scope Expansion - II

(rw)

(rw)
(rw)

(r)

(rw)
(rw)

Lightweight access
Scope Verification

• Scenario 4: User accesses a file
• GET /eos/user/i/ishank/myfolder/textfile.txt

• Scope verified!

• POST /app/open?file=eos-01:790

• Scope verified!

(r)
(rw)

(rw)

(rw)
(rw)

(rw)

Lightweight access
Scope Verification

• Scenario 5: User accesses a file not in scope
• GET /eos/user/b/bob/videos/skiing.mov

• Call ListReceivedShares

• Response:

• …

• /eos/user/b/bob/videos

• Scope verified!

• Expand scope again!

(r)
(rw)

(rw)

(rw)
(rw)

(rw)

Lightweight access
Scope Verification

• Scenario 6: User accesses a file not in scope
• GET /app/open?file=eos-01:742

• GetPathAsRoot eos-01:742

• Path: /eos/user/a/Alice/results/latest.ipynb

• Scope verified!

• Expand scope again!

(r)
(rw)

(rw)

(rw)
(rw)

(rw)
(r)

Lightweight access
Scope Verification

• Scenario 7: Share creator removes share
• Start background routine to shrink scope

(r)
(rw)

(rw)

(rw)
(rw)

(rw)
(r)

Lightweight access
Token Generation

$ eos token

 --permission rwx

 --path /eos/myfile

 --expires $LATER

zteos64:MDAwMDAwNzR4nONS4WIuKq8Q-Dlz-
ltWI3H91Pxi~cSsAv2S~OzUPP2SeAgtpMAY7f1e31Ts-od-
rgcLZ~a2~bhwcZO9cracyhm1b3c6jpRIEWWOws71Ox6xAABeTC8I

Workflow

01 02 03 04 05

CERN user creates a share
with an external user

CERNBox generates
scoped tokens for the user

EOS file operations proceed
via token authentication

If the scope allows access,
EOS tokens are generated

External user logs in via
external ID provider

Lightweight access

Lightweight access
Authentication via Tokens

$ EOSAUTHZ=$TOKEN eos stat /eos/myfile

$ xrdcp "root://myeos//eos/myfile?authz=$TOKEN" /tmp/

Thoughts

• Reinventing ACLs?

• The mechanism is not restricted to files

• Can set custom sys attributes in EOS and implement basic access control?

• sys.cernbox.lwshare = “user:109847@github = rx,

 user:guest:alice@gmail.com = rwx”

• The RBAC mechanism was developed for public links

• Where we impersonate the share owner for EOS access

• EOS tokens did not exist previously

Thank you!
Questions?

ishank.arora@cern.ch

