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Lightweight and federated accounts
Why?

• Collaboration at CERN happens across boundaries and institutes


• Need to share data with such collaborators


• Users currently use public links as a workaround to share data


• Not scalable


• No traceability



Lightweight access
Behind the scenes

• RBAC mechanisms 

• Restricted access scopes


• Handling expansions


• Configurable policies


• EOS Tokens for Authorisation


• Access delegation


• Token Revocation
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External user logs in via 
external ID provider

Lightweight access



Lightweight access
Share creation for normal users



Lightweight access
ACLs

• ACLs look like


• userid=permissions 

• EOS takes care of access control if userid exists in its linux namespace


• For lightweight accounts, it does not.


• Access control to be implemented in our storage microservice
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Lightweight access
Keycloak Access

• alice@gmail.com 

• 109847@github 

• bob@xyzuniversity.edu
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Lightweight access
Scoped tokens
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Lightweight access
Scope Verification

• Scenario 1: User lists received shares 

• GET /apps/file_sharing/api/v1/shares?received=true 

• Calls ListReceivedShares

• Response:

• /eos/user/i/ishank/myfolder (rw) 

• /eos/user/a/Alice/results (r) 

• /eos/project/s/simulations/myfolder (rw)



Lightweight access
Scope Expansion

• Scenario 2: Scope expansion 

• /eos/user/i/ishank/myfolder 

• /eos/user/a/alice/results 

• /eos/project/s/simulations/myfolder

(rw)

(rw)
(r)



Lightweight access
Scope Verification

• Scenario 3: User lists a folder 

• PROPFIND /eos/user/i/ishank/myfolder

• Scope verified!


• Response:


• textfile.txt -> eos-01:789 

• document.docx -> eos-01:790 

• present.pptx -> eos-02:654

• Expand scope again!

(rw)

(rw)
(r)



Lightweight access
Scope Expansion - II

(rw)

(rw)
(rw)

(r)

(rw)
(rw)



Lightweight access
Scope Verification

• Scenario 4: User accesses a file 
• GET /eos/user/i/ishank/myfolder/textfile.txt

• Scope verified!

• POST /app/open?file=eos-01:790

• Scope verified!

(r)
(rw)

(rw)

(rw)
(rw)

(rw)



Lightweight access
Scope Verification

• Scenario 5: User accesses a file not in scope 
• GET /eos/user/b/bob/videos/skiing.mov

• Call ListReceivedShares 

• Response:

• …


• /eos/user/b/bob/videos

• Scope verified!

• Expand scope again!

(r)
(rw)

(rw)

(rw)
(rw)

(rw)



Lightweight access
Scope Verification

• Scenario 6: User accesses a file not in scope 
• GET /app/open?file=eos-01:742

• GetPathAsRoot eos-01:742 

• Path: /eos/user/a/Alice/results/latest.ipynb

• Scope verified!

• Expand scope again!

(r)
(rw)

(rw)

(rw)
(rw)

(rw)
(r)



Lightweight access
Scope Verification

• Scenario 7: Share creator removes share 
• Start background routine to shrink scope

(r)
(rw)

(rw)

(rw)
(rw)

(rw)
(r)



Lightweight access
Token Generation

$ eos token 

   --permission rwx  

   --path /eos/myfile 

   --expires $LATER 

zteos64:MDAwMDAwNzR4nONS4WIuKq8Q-Dlz-
ltWI3H91Pxi~cSsAv2S~OzUPP2SeAgtpMAY7f1e31Ts-od-
rgcLZ~a2~bhwcZO9cracyhm1b3c6jpRIEWWOws71Ox6xAABeTC8I
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Lightweight access
Authentication via Tokens

$ EOSAUTHZ=$TOKEN eos stat /eos/myfile 

$ xrdcp "root://myeos//eos/myfile?authz=$TOKEN" /tmp/ 



Thoughts

• Reinventing ACLs?


• The mechanism is not restricted to files

• Can set custom sys attributes in EOS and implement basic access control?


• sys.cernbox.lwshare = “user:109847@github = rx, 

                         user:guest:alice@gmail.com = rwx” 

• The RBAC mechanism was developed for public links


• Where we impersonate the share owner for EOS access


• EOS tokens did not exist previously



Thank you!
Questions?


ishank.arora@cern.ch


