

Michal Simon

XRootD5 landscape

&S XRootD

Outline

Introduction

Adoption

Encryption: the recap
Paged read / write
K8s

Erasure coding
Miscellaneous

R&D

XRootD: the team

Server /| OFS/OSS
* Andy

Client / EC / Python
* Michal

CMake / packaging / CI
« Michal

TLS
« Andy, Michal

XCache
« Matevz

xrootdfs

e Wei

HTTP protocol plugin

e Fabrizio

HTTP TPC plugin
 Brian, Cedric, Elvin

GSI authentication plugin
e Gerri, Michal

EPEL / Debian packaging
« Mattias

XrdOssCsi SciTokens plugin

 David Derek

Ecosystem

XRootD is both a protocol and a framework (~400k lines of code) for
low latency file access and as such is a key component of many
projects:

Software defined storage: EOS (our favorite customer :-), CTA, and
many others

100s of XCache deployments (USDC, RAL, NERSC, GSI, OSG,
and many more)

HTTP TPC Proxy for EOS (again, our favorite customer :-)
GRID access and transfers: JAIEn, FTS/gfal2, Rucio

Analysis: ROOT, Gaudi, Athena, CMSSW
uproot (scikit-nep, numpy), snakemake
xrdcp / xrdfs (Ixplus / Ixbatch)

Adoption

XRootD5 adoption

EOSS already released, tailor made features:
redirect collapse (facilitates HA setup)

better error on write recovery (allows to recover almost all errors
at MGM)

ROOT moved their builds to R5
Implemented root/roots support in RNTuple
Alice, all known XCache instances, RAL, EPEL (e.g. DPM)

IXplus / Ixbatch

Releases

Since last workshop we had:

Three feature releases: 5.2.0,5.3.0and 5.4.0
Five bugfix releases: 5.3.1,5.3.2,5.3.3,5.4.1 and 5.4.2

Packages available in:
Extra Packages for Enterprise Linux (EPEL) and Fedora
EPEL 7/8/9
Debian (also available on Ubuntu)
PyPIl (many enhancements in the area of Python packaging)

Source code available at: https://github.com/xrootd/xrootd

gitlab.cern.ch used for Cli

https://github.com/xrootd/xrootd

Encryption: the recap

On the client side the roots/xroots protocol;
--notlsok options allows to proceed without
encryption if the server is too old to support it
--tlIsmetalink option allows to apply encryption to all
URLSs in a metalink file

On the server side the xrootd.tls configuration directive,
with few compatibility options:
by default it is off
enforce encryption only for clients that support it
(capable)
do encryption only at client discretion (none)

How flexible Is 1t?

Encrypted and unencrypted traffic uses the same
port number (not like http vs https) to ease operators
lives

One can configure the server to encrypt:
only the third-party-copy orchestration
control channel after login (handy for GSI auth)
control channel before login
data streams
everything

On the client side:
--tlIsnodata allows to apply roots/xroots only to the
control stream

Certificates, certificates, ...

XRootD server needs a host certificate in order to
enable encryption
configurable with xrd.tls directive

If roots/xroots is being used client will enforce host
verification
the hostname must match the one in the host
certificate (or one of the SAN extensions)

Certificates, certificates, ...

The client does not need to have a certificate

the user may use his proxy certificate in order to
establish a TLS connection

server can be configured to enforce client certificate
verification with: xrd.tlsca

Allowing the client to establish the TLS connection
based on user X509 proxy certificate opens door to a
new more concise implementation of gsi
authentication in the future

Paged read / write

» Detect and repair ‘in-transit’ data corruption with 4KB level of
granularity

 Hardware assisted crc32c per 4KB page(throughput in order of
~10GB/s per core)

« Hamming distance 6

» Corrupted pages are automatically resent

Paged read / write

Critical for the XCache use-case
« All ingest happens with root protocol via XRootD client
 Boosts data integrity (corrupted data tend to be sticky)
In-the-flight error recovery in xrdcp

Strategic for big file (e.g. 100 GB) transfers

Throughput of 1.25 GB/s per stream (optimized for aggregate
throughput)

K8s support

Virtual network overlay
Namespace where each node has an internal name

Use case: allows cmsd in a XCache cluster to track file
location by dependable name

- Does not relay on IP address or hostname
- Dynamic DNS
- Hostnames are available in local DNS only if container is up
Resolve IP addresses at time of contact and not during
Initialization
Network namespaces

Accommodate K8s network namespaces

Erasure Coding

 The EC module has been originally designed for EOS, now it is also
compatible with vanilla XRootD servers

* No need to have separate metadata file

« Store additional information (i.e. file size) in extended attributes

Staring with 5.2.0 XRootD comes with default erasure coding
plugin

The plug-in can be loaded either by

special redirect request (generated by MGM)
standard plug-in configuration file (EC proxy)

Miscellaneous

Atomic ZIP append (append new files to archive)

Checkpointing mechanism that ensures atomicity
Checkpointed write / rollback / commit
Atlas use case: merge log files

Reproxy option for proxies doing TCP

Use case: enable FTS performance markers with EOS TPC
gateways

Makes sure the proxy server forwards stat requests against data
servers and not the head node (MGM)

Miscellaneous

S3 gateway

Used in US in front of Google Cloud

XRootD proxy + client HTTP plug-in (based on Davix)
Packet marking (experimental)

Based on Firefly protocol

Access tokens
ZTN authentication protocol

Verify that client is capable of obtaining a valid token

Enforces encryption

SciTokens authorization plug-in

For developers

Server:

Server side plug-in stacking with "++ directive

User plugin gets a pointer to the level-up plugin so it
can call it's implementation

Client:

Automatically generate completion handlers from
lambdas

ResponseHandler::Wrap(...)

16

Client declarative API

std :: shared_ptr<File> file=std :: make_shared<File >();
Fwd<uint64_t> off = 0; // forwardable!!!
uint32_t len = 1024,

. charx buf = new char[len+1];

Pipeline p = Open(file ,url ,OpenFlags:: Read)
| Read(file , off ;len,buf) >>
[off](auto& status ,auto& chunk)
{
if (!'status.IsOK())

Pipeline :: Ignore(); // proceed to close
if (chunk.length =— 0) return; // EOF
std :: cout << std::string (chunk. buffer ,chunk.length);
// adjust the offset
off = xoff+1024;

// repeat until EOF
Pipeline :: Repeat () ;

}
| Close(file) >> [file](auto& st){};

Async(std::move(p)) ;

R&D: HPC support

Bind data channels to different address than the control channel
* Allows easier migration from gridftp to root protocol

RDMA support (R&D)
Initial prototype exchanging data over RDMA using libfabric
developed by 2 summer students

Out of the box solution for accessing data in HPCs (or exporting from
DAQS)

©
S
2
+ HPC
5

root + tcp

Storage

Questions?

