
C++ Atomics an Overview

k h

1
 .
1

EOS Workshop 22

C++ Atomics an Overview

k h

C++ Atomics
An Overview: Back to Basics
Abhishek Lekshmanan -(IT-ST-PDS)

2

EOS Workshop 22

C++ Atomics an Overview

k h

Objectives
Since multi-threading concepts are so heavily used, just
meant as a concepts refresher
Multi threaded programming is hard, however the
fundamental concepts used translate well into distributed
systems programming nicely
Building blocks for lock free data structures
Checkout the talk later on managing locks on CERNBox &
EOS later in the conf for a more practical example

3

EOS Workshop 22

C++ Atomics an Overview

k h

Atomicity
In concurrent programming, an atomic operation is an
operation seen as non interruptible by other threads and
appears as one single transaction
Real life examples

Database transactions
Finance
Double Checked Locking Pattern (DCLP)
Always entirely successful or rollback semantics, no
interruptions

4

EOS Workshop 22

C++ Atomics an Overview

k h

Typical Multi CPU Arch

5

EOS Workshop 22

C++ Atomics an Overview

k h

std::atomic
Introduced in C++11

Promises atomic operations on types

Portable across platforms

Can be applied on trivially_copyable and Copy

Constructible/Assignable types.

Default specialization for all integral types

std::atomic<int>;

struct Point { uint64_t x; uint64_t y };

struct d3 { uint64_t x, uint64_t y, uint64_t z};

// Since C++17 this can be checked at compile time

static_assert(std::atomic<Point>::is_always_lock_free);

static_assert(!std::atomic<d3>::is_always_lock_free);

// Runtime checking was always possible since C++11

std::atomic<Point>{}.is_lock_free();

std::atomic<d3>{}.is_lock_free();

6
 .
1

EOS Workshop 22

C++ Atomics an Overview

k h

std::atomic
Only atomic operations are allowed on atomic types,

compile time check!

i++; // OK
i += 1; // OK

i *= 2; // will not compile, no atomic mult instruction

i = i+1;

i = i*2;

6
 .
2

EOS Workshop 22

C++ Atomics an Overview

k h

std::atomic
Only atomic operations are allowed on atomic types,

compile time check!

i++; // OK
i += 1; // OK

i *= 2; // will not compile, no atomic mult instruction

BUT....

i = i+1;

i = i*2;

6
 .
2

EOS Workshop 22

C++ Atomics an Overview

k h

std::atomic
Only atomic operations are allowed on atomic types,

compile time check!

i++; // OK
i += 1; // OK

i *= 2; // will not compile, no atomic mult instruction

BUT....

i = i+1;

i = i*2;

atomic load and store are 2 different transactions unless
you

use the various cas/fetch method or the correct operator

overloads, the
transactions aren't atomic

6
 .
2

EOS Workshop 22

C++ Atomics an Overview

k h

CPU view with atomics

6
 .
3

EOS Workshop 22

C++ Atomics an Overview

k h

Operations on atomic
Operation Bool Integer Generic Ptr

Load/Store x x x

Exchange x x x

CAS (compare/exchange) x x x

Fetch-Add/Sub x x

AND x

OR x

XOR x

7
 .
1

EOS Workshop 22

C++ Atomics an Overview

k h

Operations on atomic
Only these transactions are guaranteed to be a single

atomic transaction

Operator overloads exist, however almost always it is better

to be explicit and use member functions

Compare And Swap is the building block for atomic

transactions, and can be used to do almost any operation

atomically

All operations support a memory_order flag. Operator

overloads assume default
memory order

(std::memory_order_seq_cst).

 std::atomic<int> i;

 // Thread 1;

 int local_i = i;

 while (!i.compare_and_exchange_strong(local_i, i*2)) {}

7
 .
2

EOS Workshop 22

C++ Atomics an Overview

k h

Memory Barriers
While the simple CPU view depicts what happens to an

atomic variable itself, this is not the full picture

Atomics are your building blocks in revealing memory to

other threads;

This is achieved by memory barriers; pre C++11 there were

no guarantees you'd have to write asm/intrinsic yourself

C++11 provides ~3 different worlds of memory orders living

in harmony, broadly memory_order_relaxed,

memory_order_acq_rel, memory_order_seq_cst (omiting

consume ordering)*

Typically lock-free/wait-free data structures build upon a

RCU pattern; for eg LL with head change as CAS

8
 .
1

EOS Workshop 22

C++ Atomics an Overview

k h

Memory Order Relaxed
Only guarantees on the atomic variable itself, no guarantees on

any surrounding writes and reads

8
 .
2

EOS Workshop 22

C++ Atomics an Overview

k h

Memory Order Acquire Release

8
 .
3

EOS Workshop 22

C++ Atomics an Overview

k h

Acquire Release: details
All memory writes (both non atomic & atomic) before a

store with memory_order_release in program order shall be

visible
on another thread with a memory_order_acquire

Vice versa for happens after with acquire

Half memory barriers, Order guarantees only affect

cooperating threads

Mutexes/spinlocks under the hood are at least an acquire

operation for a lock and release operation with unlock,

ensuring whatever happens in a critical section is seen by

another thread entering the cs.

Useful building block for lock free data structures, inter-

thread ordering provided

8
 .
4

EOS Workshop 22

C++ Atomics an Overview

k h

Memory Order Sequential Consistency
Bidirectional barrier: Default flag assumed on all atomic

operations unless explicitly specified otherwise

Global program order: Establishes strong happens before

and after consistency at a global level

Expensive: Orders of magnitudes slower

Makes it easier to reason esp when multiple atomics are

involved, but may not be necessary. for eg. lock impl

doesn't need seq_cst

Benchmark Run single int store() 8x4.6 GHz CPUs Time CPU freq

BM_memory_order_seq_cst/real_time/threads:1 443 ns 443 ns 225.746M/s

BM_memory_order_seq_cst/real_time/threads:2 231 ns 461 ns 432.928M/s

BM_memory_order_seq_cst/real_time/threads:4 123 ns 492 ns 811.682M/s

BM_memory_order_seq_cst/real_time/threads:8 118 ns 924 ns 850.25M/s

BM_memory_order_release/real_time/threads:1 28.7 ns 28.6 ns 3.48057G/s

BM_memory_order_release/real_time/threads:2 15.1 ns 30.2 ns 6.62921G/s

BM_memory_order_release/real_time/threads:4 8.59 ns 34.3 ns 11.6379G/s

BM_memory_order_release/real_time/threads:8 5.36 ns 40.0 ns 18.6547G/s

8
 .
5

EOS Workshop 22

C++ Atomics an Overview

k h

Takeaways
Atomic guarantees data consistency in concurrent contexts
CAS and memory orders are the building blocks to
designing lock free structures
Be careful when mixing atomic & non-atomic operations
Concurrency is hard, if you're reaching out to atomic to
build data structures for performance, go all the way!

Memory orders expresses what you want the hardware
to do and easier to reason
Choice of memory barrier can affect performance,
also affects platform runtimes

9

EOS Workshop 22

C++ Atomics an Overview

k h

References
PIKUS, F. G. (2021). Threads, Memory and Concurrency. In
Art of writing efficient programs; PACKT PUBLISHING
LIMITED.
Fedor Pikus: CppCon 2017 Talk: C++ Atomics from basic to
advanced
Michael Wong: CppCon 2015 Talk: C++11/14/17 atomics &
memory model
Paul E McKenney: CppCon 2015 Talk: C++ Atomics: The sad
story of memory_order_consume
Olivier Giroux: CppCon 2019 Talk: The One Decade Task:
Puting std::atomic in CUDA

10

https://www.youtube.com/watch?v=ZQFzMfHIxng
https://www.youtube.com/watch?v=DS2m7T6NKZQ
https://www.youtube.com/watch?v=ZrNQKpOypqU
https://www.youtube.com/watch?v=VogqOscJYvk

EOS Workshop 22

C++ Atomics an Overview

k h

Questions?

11

EOS Workshop 22

C++ Atomics an Overview

k h

www.cern.ch

1
 .
1

EOS Workshop 22

C++ Atomics an Overview

k h

Benchmark source file
#include <atomic>

#include "benchmark/benchmark.h"

static void BM_memory_order_seq_cst(benchmark::State& state)

{

 std::atomic<int> x{0};

 for (auto _ :state) {

 for (int i=0;i<100;i++)

 x.store(1);

 benchmark::ClobberMemory();

 }

 state.SetItemsProcessed(100*state.iterations());

}

static void BM_memory_order_release(benchmark::State& state)

{

 std::atomic<int> x{0};

 for (auto _ :state) {

 for (int i=0;i<100;i++)

 x.store(1, std::memory_order_release);

 benchmark::ClobberMemory();

 }

 state.SetItemsProcessed(100*state.iterations());

}

BENCHMARK(BM_memory_order_seq_cst)->ThreadRange(1,8)->UseRealTime();

BENCHMARK(BM_memory_order_release)->ThreadRange(1,8)->UseRealTime();

BENCHMARK_MAIN();

12
 .
3

